Jonathan Peter Lorraine

Homepage: https://www.cs.toronto.edu/ lorraine/ Email: lorraine@cs.toronto.edu Location: Toronto, Ontario, Canada Citizenship: Canadian/U.S.

Professional Experience

2022-Current Research Scientist Intern, NVIDIA Working on generative modelling with Sanja Fidler's group at the Toronto AI Lab. Led paper to ICCV on making text-to-3D pipelines real-time. Collaborated on multiple patent filings for technologies in Generative AI. Served as a consulting expert on AutoML and hyperparameter optimization across multiple teams.

2017-Current Graduate Researcher, Vector Institute

Papers accepted to multiple top machine learning conferences. Researching hyperparameter optimization, learning in games, and nested optimization.

2021-2022 Research Scientist Intern, Google

Worked on research and applied engineering for an AutoML platform used across Google for production-ready models. Designed a method used by our team to select parameters for production performance with $\sim 10 \times$ less compute. Led a paper on the method. Also, mentored senior engineers on best hyperparameter optimization methods, and promoted cutting-edge methods.

2021 Research Scientist Intern, Facebook AI Research (Now Meta AI)

Led a spotlight paper acceptance at AAMAS. Worked with Jakob Foerster (homepage) on machine learning in multi-agent systems. Advised product teams on state-of-the-art hyperparameter optimization techniques, leveraging personal research to enhance model performance and efficiency across various projects.

2016-2022 (Lead) Teaching Assistant, University of Toronto

Designed content, conducted lectures, and organized grading for 10+ Computer Science courses, including four graduate-level courses on ML topics such as Deep Learning and Natural Language Computing. Courses include:

- CSC2547: Automated Reasoning with Machine Learning (Winter 2023)
- CSC2626: Imitation Learning for Robotics (Fall 2022)
- CSC2547: Learning to Search (Fall 2019)
- CSC413/2516: Neural Networks and Deep Learning (Winter 2020, Winter 2021)
- CSC412/2506: Probabilistic Learning and Reasoning (Winter 2019)
- CSC411/2515: Machine Learning (Fall 2018, Winter 2021)
- CSC401/2511: Natural Language Computing (Winter 2022)
- CSC311: Introduction to Machine Learning (Fall 2020)
- CSC165: Mathematical Expressions and Reasoning for Computer Science (Fall 2016)

2016-2019	Machine Learning Engineer / Data Scientist, Electronica AI Collaborated with internal and client C-suite leaders to design, test, validate, and optimize auto- mated financial trading strategies, leveraging machine learning to improve predictive accuracy and trade execution. Led multidisciplinary teams of more than five internal stakeholders across Software Engineering, Finance, and Legal to combine quantitative methods with AI, resulting in market-making strategies with daily order flow of 200M+.
2016-2018	Software Developer, Alkemi Conducted stress testing on financial exchanges to identify bottlenecks and vulnerabilities in real-world scenarios. Also, performed optimization and validation of automated trading strate- gies based on intra/inter-exchange price discrepancies.
2013-2016	Research Assistant, University of Toronto Worked with Statistics and Operations Research Professor Dmitry Krass (homepage) to gener- ate computational results resulting in 3 publications.
2012-2014	Mobile Application Developer, First Class Education Software Developed applications for teaching university level biology on Android and iOS. (app. 1, 2)
	Education
2018-Current	 Ph.D. in Computer Science, University of Toronto Machine learning group, advised by Professor David Duvenaud (homepage). Thesis: Ultra-Scalable Nested Optimization for the AI Era: Hyperparameter Optimization and More.
2016-2018	M.Sc. in Applied Computing, University of Toronto Specialist in Data Science, advised by Professor David Duvenaud. Thesis: Black-Box Optimizers for Robust and Efficient Optimization of Trading Strategies.
2012-2016	H.B.Sc., University of Toronto Specialist in Computer Science, major in Mathematics, and a minor in Economics. Graduated with high distinction.
	Publications
2022	Lorraine, J., Xie, K., Zeng, X., Lin, C., Takikawa, T., Sharp, N., Lin, T., Liu, M., Fidler, S., Lucas, J. ATT3D: Amortized Text-To-3D Object Synthesis We train a single, amortized model to output objects for various text prompts, allowing gener- alization, interpolations, and reduced training cost. Accepted at ICCV 2023. (link)
2022	Lorraine, J., Anderson, N., Lee, C., De Laroussilhe, Q., Hassen, M. Task Selection for AutoML System Evaluation We select relevant development tasks to accurately assess the impact of AutoML system changes on holdout tasks with different distributions, as in production. (link)
2022	Vicol, P., Lorraine, J., Duvenaud, D., Grosse, R. On Implicit Bias in Overparameterized Bilevel Optimization

	We characterize implicit regularization from various bilevel optimization methods. Oral at ICML 2022. (link)
2022	Lorraine, J., Acuna, D., Vicol, P., Duvenaud, D. Complex Momentum for Optimization in Games We generalize gradient descent with momentum, which improves convergence in adversarial games with near identical compute cost. Accepted at AISTATS 2022. (link)
2022	Lorraine, J., Vicol, P., Parker-Holder, J., Kachman, T., Metz, L., Foerster, J. Lyapunov Exponents for Diversity in Differentiable Games We find multiple solutions in games by branching optimization near bifurcations, found with Lyapunov exponent based objectives. Oral at AAMAS 2022. (link)
2021	Richter-Powell, J., <u>Lorraine, J.</u> , Amos, B. Input Convex Gradient Networks We model convex gradients by integrating a JVP parameterized by a neural network. Spotlight at the Optimal Transport and ML Workshop at NeurIPS 2021. (link)
2021	Raghu, A., <u>Lorraine, J.</u> , Kornblith, S., McDermott, M., Duvenaud, D. Meta-learning to Improve Pre-training We meta-learn pre-training hyperparameters with gradients by combining iterative and im- plicit differentiation. Accepted at NeurIPS 2021. (link)
2020	 Lorraine, J., Vicol, P., Duvenaud, D. Optimizing Millions of Hyperparameters by Implicit Differentiation We jointly tune as many hyperparameters as parameters, while being only few times more costly compute than standard training. Accepted at AISTATS 2020. (link)
2019	Lorraine, J., Hossein, S. JacNet: Learning Functions with Structured Jacobians We learn functions by parameterizing their derivative, allowing us to easily enforce constraints on higher-order information. Accepted at the ICML 2019 INNF Workshop. (link)
2018	MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., Grosse, R. Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions Our hypernetwork architecture scales hyperparameter optimization to modern networks. Accepted at ICLR 2019. (link)
2018	Adam, G., Lorraine, J. Understanding Neural Architecture Search Techniques We investigate failure modes of neural architecture search methods, and propose solutions by modulating hidden state interpretability. (link)
2017	Lorraine, J., Duvenaud, D. Stochastic Hyperparameter Optimization through Hypernets We learn a differentiable loss for hyperparameters, which can scale to thousands of dimensions. Accepted at the NIPS 2017 Meta-learning Workshop. (link)
	Other Research Experience

2016 **Optimizing Facility Location and Design** Developed a method to solve a non-linear concave knapsack problem. Accepted at the European Journal of Operational Research. (link)

2016	Budgetary Effects on Pricing Equilibrium in Online Markets Extended prior work to account for vendor cost affect on equilibria. (link)
2015	On Covering Location Problems on Networks with Edge Demand Made a method for finding numerical solutions to a max covering problem on a network with edge-based demand. Accepted at the journal of Computers ♂ Operations Research. (link)
2014	Structural Properties of Voronoi Diagrams in Facility Location with Continuous Demand
	Designed an algorithm for finding a point to add a Voronoi diagram, with a Voronoi cell that
	has maximal area. Accepted in Discrete Applied Mathematics. (link)

Service

2023	Reviewer: The IEEE/CVF Conference on Computer Vision and Pattern Recognition
2022	Reviewer: International Conference on Autonomous Agents and Multi-agent Systems
2022	Reviewer: International Conference on Automated Machine Learning
2021,22,23	Reviewer: International Conference on Machine Learning
2021,22	Reviewer: International Conference on Artificial Intelligence and Statistics
2020,21	Reviewer: International Conference on Learning Representations
2020,21	Reviewer: Conference on Neural Information Processing Systems
2018	Reviewer: NIPS Smooth Games Optimization and Machine Learning Workshop

Grants & Awards

2023 Vector Research	Grant: 6000 CAD
----------------------	-----------------

- vector Research Grant: 3000 CAD
- AAMAS Student Scholarship Award: 1200 USD
- ²⁰²¹ Vector Research Grant: 6000 CAD
- 2021 Ray Reiter Graduate Award: 1000 CAD
- vector Research Grant: 6000 CAD
- ²⁰¹⁹ Vector Research Grant: 6000 CAD
- ²⁰¹⁷ MITACS Accelerate Research Grant: 30 000 CAD
- ²⁰¹⁴ NSERC Undergraduate Research Award: 4500 CAD
- ²⁰¹³ Cheng Yu Tung Grant: 4800 CAD
- 2012 GE-STAR Award: 4500 USD

Talks

- ATT₃D: Amortized Text-to-3D Object Synthesis. NVIDIA Computer Vision, Remote.
- ²⁰²³ ATT₃D: Amortized Text-to-3D Object Synthesis. NVIDIA Omniverse, Remote.
- AutoML and Scalable Hyperparameter Optimization. NVIDIA, Remote.
- ²⁰²² Nested-optimization-aware Hyperparameter Optimization. University of Toronto. Remote.
- ²⁰²² Lyapunov Exponents for Diversity in Differentiable Games. AAMAS, 2022. Remote.
- ²⁰²² Bilevel, Hypergradient Hyperparameter Optimization. University of Toronto. Remote.
- ²⁰²² Complex Momentum for Optimization in Games. AISTATS, 2022. Remote.
- ²⁰²² Lyapunov Exponents for Diversity in Differentiable Games. Google Brain. Remote.
- ²⁰²¹ Gradient-Based Hyperparameter Optimization. Google. Remote.

- AutoTFX Reading Group. Google. Remote.
- ²⁰²¹ Using Bifurcations for Diversity in Learning. BOFM Workshop ICML, 2021. Remote.
- ²⁰²¹ Gradient-Based Hyperparameter Optimization. Facebook AI Research. Remote.
- ²⁰²⁰ Optimizing Millions of Hyperparameters by Implicit Differentiation. AISTATS, 2020. Remote.
- ²⁰¹⁹ Meta-Learning Reading Group, Vector Institute. Toronto, Canada.
- JacNet: Learning Functions with Structured Jacobians, ICML 2019 Invertible networks and normalizing flows workshop. Long Beach, USA.
- ²⁰¹⁸ Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions, Vector Institute. Toronto, Canada.
- ²⁰¹⁸ Applied Research in Action 2018, University of Toronto. Toronto, Canada.
- 2017 Complex Order Book Strategies and Intra/Inter-Exchange Arbitrage, Alkemi AI. Toronto, Canada.
- ²⁰¹⁷ Hyperparameter Opt. with Hypernets, NIPS Meta-Learning Workshop 2017. Long Beach, USA.
- ²⁰¹⁷ Bayesian Optimization for Trading Strategies, Electronic AI. Toronto, Canada.
- Maximizing the Trading Area of a new Facility, Rotman School of Management. Toronto, Canada.
 On Covering Location Problems on Networks with Edge Demand, Rotman School of Management. Toronto, Canada.

Student Supervision & Mentorship

 $_{2021-2022}$ Jack Richter-Powell (McGill Undergraduate \rightarrow Research UofT \rightarrow PhD student at MIT) $_{2018-2019}$ Haoping Xu (UofT Undergraduate \rightarrow PhD student at UofT)

Patents

Lorraine, J., Xie, K., Fidler, S., Lucas, J. Neural Network-Based Digital Asset Generation

Last updated: August 30, 2023