If a Human Can See It, So Should Your System: Reliability Requirements for Machine Vision Components

ICSE 2022

Boyue Caroline Hu

Lina Marsso

Krzysztof Czarnecki

Rick Salay

Huakun Shen

Marsha Chechik

Introduction

- Machine Vision Components (MVCs) in safety-critical systems
- Undesired behaviors can lead to fatal accidents
- Vision tasks are performed using machine learning (ML), since vision tasks are hard to specify

Towards safe MVCs, one needs to define what it means for an MVC to be correct and then check its correctness prior to system deployment

- In SE, reliability is the ability of a system or component to perform its required functions in a specified environment [IEEE-90]
- Reliability of MVC

Whether the performance of an MVC remains reliably **unaffected by** image transformations that commonly occur in **real-world scenarios**

Uber SUV accident 2018

Related Work in MVC Reliability

Specifying reliability of MVCs Set of qualities of the training dataset [Kohli-et-al-17] High-level MVC requirements [Gauerhof-et-al-20] ... Assessing reliability Adversarial robustness (e.g., [Serban-et-al-20]) Using metamorphic testing (e.g., [Zhang-et-al-18]) ...

Kohli Marc D et al. "Medical image data and datasets in the era of machine learning—whitepaper from the 2016 C-MIMI meeting dataset session". Journal of Digital Imaging, 2017

Gauerhof, Lydia et al. "Assuring the Safety of Machine Learning for Pedestrian Detection at Crossings". In: Proc. of SAFECOMP'20

Zhang Mengshi et al. "DeepRoad: GAN-based Metamorphic Testing and Input Validation Framework for Autonomous Driving Systems". In: Proc. of ASE'18 Serban Alex et al. "Adversarial Examples on Object Recognition: A Comprehensive Survey". In: Proc. of CSUR'20

Dan Hendrycks et. al. "Benchmarking Neural Network Robustness to Common Corruptions and Perturbations". In: Proc. of ICLR'19

- Lack of detailed and machine-verifiable reliability requirements limits the ability to assess MVC reliability
- Reliability should be studied with changes that can occur in real-world scenarios
- MVC are developed to automate human vision, thus it should be at least as reliable as humans.

Need: A method to establish human performance as a reference for defining and checking MVC reliability

Our Solution

Use human performance as a baseline to define reliability of MVCs against realistic changes in the real-world deployment:

if the changes do not affect humans, they shouldn't affect MVC either

- 1. Specify **two reliability requirements classes** for MVCs, with parameters representing human performance
- 2. A method to instantiate the requirement classes into machine–verifiable requirements

Reliability Requirements

Visual Change (Δ_v) Using IQA

A generic metric to measure changes of different transformations?

Different parameter domains Gaussian Blur: (kernel size, sigma) Gaussian Noise: (mu, sigma)

Different visual effects

Definition:

A measure for visual changes in images Δ_v , using established Image Quality Assessment (IQA) metrics [e.g., Sheikh-et-al]

Original image: IQA value: 1 $\Delta_v = 0$

Minimal changes: IQA value: $0.995 \Delta_v = 0.005$

Reasonable changes: IQA value: $0.29 \Delta_v = 0.71$

Unreasonable changes: IQA value: $0.004 \Delta_v = 0.96$

Hamid Sheikh et al. "Image Information and Visual Quality", IEEE Transactions on Image Processing, 2006

Reliability Requirements: Correctness-Preservation Class

<u>Intuitively:</u> For the range of changes in images that do not affect human performance, correctness of MVC should not be affected as well

Transformation T_x

Threshold (measured with Δ_v) t_c

Performance metric *m* that measures correctness of MVC output compared to ground truth

Ground truth

The MVC's performance m must not degrade for images transformed with visual changes within the threshold t_c

<u>Note</u>: ground truth **is** required to measure correctness.

m should be chosen according to the type of MVCs, e.g., prediction accuracy for image classification MVCs.

Reliability Requirements: Prediction-Preservation Class

<u>Intuitively:</u> For the range of changes in images that do not affect human predictions, the predictions of MVC should stay unaffected as well

Transformation T_x

Threshold (measured with Δ_v) t_p

Prediction similarity metric *s* that compares MVC outputs on both original and transformed images

Note: ground truth is not required

The MVC's prediction similarity *s* must not degrade for images transformed with visual changes within the threshold t_p

s should also be chosen according to the type of MVC, e.g., for image classification MVCs:0 if the two labels are the same and 1 otherwise

Comparing the Reliability Requirement Classes

Correctness-Preservation

Checks for the correctness of decisions after transformation

Requires ground truth which is costly to obtain

Prediction-Preservation

Checks for the preservation of decisions after transformation

Can be checked on **unlabeled** images which are easier to obtain

If only the prediction-preservation requirement is satisfied, the MVC might preserve incorrect decisions and change correct ones

Neither requirement subsumes the other.

Obtaining Machine-Verifiable Requirements

Requirement Instantiation

<u>Parameters of the requirement classes:</u> Image transformations Thresholds Metrics m and s

Obtaining Thresholds t_c and t_p

Can we require MVCs to remain reliable subject to any range of changes in the environment? NO!

Example: adding frost

Estimate the thresholds (t_c/t_p) of visual changes that do not affect humans through experiments with human participants.

Experiments with Human Participants

Objective: obtain human predictions on original and transformed images

Forced-choice image categorization task:

Humans are presented with the images with transformations applied, for 200 ms

Asked to choose one of the presented categories (e.g., car or not car)

Between images, shown **noise mask** to minimize feedback influence in the brain

Conducted experiments:

Noise mask

- Amazon Mechanical Turk platform (2,000 human participants)
- 8 safety-related transformations: RGB, contrast, defocus blur, brightness, **frost**, color jitter, jpeg compression, and Gaussian noise

Instantiated Requirements: Example

Transformation: artificial frost addition

(Correctness-preservation) The recognition accuracy (*m*) of an MVC should not decrease if the visual change in the images is within the range $\Delta_v \le 0.84$ (Prediction-preservation) The percentage of labels an MVC can preserve (*s*) after adding frost should not decrease if visual change in the images is within the range $\Delta_v \le 0.91$

Original

Within range

Within range

Outside of range

Checking Satisfaction of Requirements

Requirement Checking

Requirement Checking

Does an MVC satisfy our requirements for a given transformation?

1. Generate test cases: transformed images under the specified thresholds t_c/t_p (uniformly sampling in the parameter domain)

original

- 2. Execute the test cases on the MVC
- Ground truth: car

Correctness-Preservation

Requirement Checking

3. Evaluate the test case execution results

Correctness-Preservation: "as correct as the original" (0 VS 40%) m of original image: 0/1 (0%) m of transformed images: 2/5 (40%)

Requirement Checking

Prediction-Preservation: "same prediction for minimal vs. significant changes as for the original" (100% VS 60%) s of original image: estimated using minimal changes of the original image: 1/1 (100%) s of transformed images: 3/5 (60%)

Requirement Checking

3. Evaluate the test case execution results

Ground truth: car

4. Requirements considered satisfied if values of the metric on transformed images are "close enough" to values of the metric on original images

Evaluation

Research Questions

1. Evaluate our ranges

How well do the existing reliability evaluation methods cover the humantolerated range of changes?

2. Evaluate usefulness of our requirements

How effective is our requirement checking method in identifying reliability gaps compared to existing approaches?

Evaluating Our Ranges

How well do the existing reliability evaluation methods cover the human-tolerated range of changes?

Here we show the comparison of distribution of test images with state-of-the-art dataset for benchmarking robustness against common transformations: CIFAR-10-c.

Blue: cifar-10-c benchmark images; Green: tests for prediction-preservation

Evaluating Our Ranges

Tests generated using our reliability requirements VS existing tests in benchmark dataset CIFAR-10-c

Blue: cifar-10-c benchmark images; Green: tests for prediction-preservation

Evaluating Our Ranges

Tests generated using our reliability requirements VS existing tests in benchmark dataset CIFAR-10-c

Blue: cifar-10-c benchmark images; Green: tests for prediction-preservation

Evaluate Usefulness of Our Requirements

?	How effective is our requirement checking method in identifying reliability gaps compared to existing approaches?			CIFAR-10-c leaderboard model name	Rank on CIFAR- 10-c	Rank of satisfying our correctness preservation	Rank of satisfying ou prediction preservation
Testing with benchmark dataset VS testing our requirements				RLAT	1	5	1
				RLATAugMixNoJ SD	2	2	7
Tra	nsformation: JPEG		CIFAR-10-c : RLATAugMixNoJSD is the second most reliable against JPEG compression.				2
Ge	nerated transformed						4
ima tol	images (tests) within human			Our requirements: Even though RLATAugMixNoJSD has good accuracy on			
Tes	ited models on the CIFAR-	0 0.0 0.1 0.2 0.3 0.4 0.5 visual_change score	transformed images, its output is not consistent.				5
10-	c leaderboard						6

Tested mode • 10-c leaderboard

•

•

CIFAR-10-c ranking is only based on accuracy

ing our

Research Questions

1. Evaluate our ranges

How well do the existing reliability evaluation methods cover the human-tolerated range of changes?

Not addressed by existing benchmark

2. Evaluate usefulness of our requirements

How effective is our requirement checking method in identifying reliability gaps compared to existing approaches?

We can detect gaps missed by existing benchmark

It is important to check MVC reliability against our requirements.

Research Questions

1. Evaluate our ranges

How well do the existing reliability evaluation methods cover the human-tolerated range of changes?

Not addressed by existing benchmark

2. Evaluate usefulness of our requirements

How effective is our requirement checking method in identifying reliability gaps compared to existing approaches?

We can detect gaps missed by existing benchmark

Threats to validity 🐠

- [Construct] Human performance is hard for MVC to match
- [Internal] Testing with uniformly distributed transformation parameter values
- [External] Limited data considered due to budget consideration

Conclusion

Reliability of Machine Vision Components (MVC): ``if a human can see it, so should the MVC''

- An MVC should be reliably unaffected by image transformations, at least within the range of changes that does not affect humans
- 2 classes of reliability requirements: **correctness-preservation** and **prediction-preservation**, and a method to instantiate and check them
- Our framework revealed new reliability gaps not previously detected in state-of-the-art image classification models

Conclusion

Reliability of Machine Vision Components (MVC): ``if a human can see it, so should the MVC''

- An MVC should be reliably unaffected by image transformations, at least within the range of changes that does not affect humans
- 2 classes of reliability requirements: correctness-preservation and prediction-preservation, and a method to instantiate and check them
- Our framework revealed new reliability gaps not previously detected in state-of-the-art image classification models

Limitation:

- Only image classification
- Obtaining human data is expensive
- Simple testing method

Future Work:

- Extend reliability requirements to other type of MVCs
- Develop methods to reduce the cost of human performance
- Extend reliability checking method with reliability diagnosis

Thank you!

