
Diagnosis via Proofs of Unsatisfiability for
First-Order Logic with Relational Objects

Nick Feng, Lina Marsso, and Marsha Chechik

ASE 2024
October 30, 2024

Context
Systems increasingly interacting with humans in various domains
(transport, environment, health and social care)

ALMI: Assistive-care robotics
Helps with food preparation, dressing, fallen-user alert, etc.

2

Detect the user has fallen Alert that the user has fallen

ALMI robot from RoboStar (University of York, UK)

Normative requirements

3

• Capture social, legal, ethical, empathetic, cultural (SLEEC) aspects of systems

• Specified by stakeholders with non-technical expertise
• Lawyer, regulators, ethicists, etc.

• Hard to get right
• Stakeholders from different fields, different vocabularies
• Their views are often conflicting or redundant
• Stakeholders might not have sufficient technical background

to reason about requirements
• Requirements are complex: Allow constraints over data and time

4

Normative requirements well-formedness analysis

• SLEEC, a normative requirement DSL [FASE23]

• Translate SLEEC rules to FOL*[ASE23]

• Well-formedness properties [ICSE24]:
Conflicting, restrictive or Insufficient requirements, or unnecessary redundant

• LEGOS-SLEEC checks requirements well-formedness [ICSE24]
(via FOL* satisfiability checking [CAV23])

[FASE23] S. Getir-Yaman, C. Burholt, M. Jones, R. Calinescu, and A. Cavalcanti. "Specification and Validation of Normative Rules for Autonomous
Agents", FASE 2023.
[ASE23] N.Feng, L.Marsso, S. Yaman, B. Townsend, R. Calinescu, A. Cavalcanti, M. Chechik ``Towards a Formal Framework for Normative Requirements
Elicitation”. ASE/NIER’23
[CAV23] N. Feng, L. Marsso, M. Sabetzadeh, and M. Chechik. "Early verification of legal compliance via bounded satisfiability checking", CAV 2023.
[ICSE24] N. Feng, L. Marsso, S. Yaman, B. Townsend, Y. Baatartogtokh, R. Ayad, V. Mello, I. Standen, I. Stefanakos, C. Imrie, G. Rodrigues, A.
Cavalcanti, R. Calinescu, and M. Chechik. "Analyzing and Debugging Normative Requirements via Satisfiability Checking", ICSE2024 –
ACM SIGSOFT Distinguished Paper Award.

5

FOL*
First order logic with quantifiers over relational objects [CAV23]

R1: Every value written must be eventually read within 30 seconds.
R1 = ∀w: Write(loc, value, time) (∃	r:Read(loc, value, time)
 r.loc = w.loc AND r.value = w.value AND
 w.time < r.time <= w.time + 30s)

Read:
loc : Nat

value: Real
time: Nat

Write:
loc : Nat

value: Real
time: Nat

Relational Object Signature

Used to specify time- and data-sensitive declarative software requirements

[CAV23] N. Feng, L. Marsso, M. Sabetzadeh, and M. Chechik. "Early verification of legal compliance via bounded satisfiability checking", CAV 2023.

7

Well-formedness analysis via FOL* satisfiability

Let Rules = {R1, R2, R3 … R5} in FOL*

R5 is redundant if and only if
 R5 is implied by the rest

FOL* Redundancy Query: (Rules \ R5) AND NOT(R5) is UNSAT

But which rules specifically are redundant with R5?

8

From SLEEC to FOL* UNSAT core

[CAV23] N. Feng, L. Marsso, M. Sabetzadeh, and M. Chechik. "Early verification of legal compliance via bounded satisfiability checking",
CAV 2023.
[ICSE24] N. Feng, L. Marsso, S. Yaman, B. Townsend, Y. Baatartogtokh, R. Ayad, V. Mello, I. Standen, I. Stefanakos, C. Imrie, G. Rodrigues, A.
Cavalcanti, R. Calinescu, and M. Chechik. "Analyzing and Debugging Normative Requirements via Satisfiability Checking", ICSE2024 –

FOL* query
LEGOS Solver [CAV23]

SAT

UNSAT
Turn to FOL*

QUERY [ICSE24]

SLEEC rules

wellformedness
property

(e.g., redundancy)

FOL* Redundancy Query: (Rules \ R5) AND NOT(R5) is UNSAT

The solver produces a lot of info, in another language, with possibly buggy implementation

LEGOS incrementally searches for a satisfying solution for the FOL∗ formulas
 (over expanding domains of relational objects) and grounds FOL* query

9

Diagnosis via Proofs of Unsatisfiability for
First-Order Logic with Relational Objects

FOL*
query

UNSAT
Certificate

Proof
Trimmer

UNSAT	
Diagnostic
Generator

Solver Proof	
Checker

Challenges:
Legos solver produces a lot of info, in another language, with possibly buggy implementation

Our solution:
Derive and trim proof of UNSAT for FOL* to
• enable checking the UNSAT claim’s correctness
• explain the unsatisfiability (diagnosis) in SLEEC

LEGOS-PROOF

LEGOS-
SLEEC

SLEEC
rules

wellformedness
property

10

Goal: Diagnosis

Example: Why is R5 redundant?

SLEEC:

Di
ag

no
si

s

R1 when DressingStarted then DressingComplete within 120 sec
 unless (roomTemperature < 19) then DressingComplete within 90 sec
 unless (roomTemperature < 17) then DressingComplete within 60 sec

 R2 when CurtainOpenRqt then CurtainsOpened within 60 sec

 R3 when UserFallen then SupportCalled unless (not assentToSupportCalls)

R4 when DressingAbandoned then RetryAgreed within 30 sec

 R5 when DressingStarted and (roomTemperature > 20) then DressingComplete within 120 sec

R1 when DressingStarted then DressingComplete within 120 sec
 unless (roomTemperature < 19) then DressingComplete within 90 sec
 unless (roomTemperature < 17) then DressingComplete within 60 sec

 R2 when CurtainOpenRqt then CurtainsOpened within 60 sec

 R3 when UserFallen then SupportCalled unless (not assentToSupportCalls)

R4 when DressingAbandoned then RetryAgreed within 30 sec

 R5 when DressingStarted and (roomTemperature > 20) then DressingComplete within 120 sec

Ru
le

s

11

Diagnosis via Proofs of Unsatisfiability for
First-Order Logic with Relational Objects

FOL*
query

UNSAT
Certificate

Proof
Trimmer

UNSAT	
Diagnostic
Generator

Solver Proof	
Checker

Challenges:
Legos solver produces a lot of info, in another language, with possibly buggy implementation

Our solution:
Derive and trim proof of UNSAT for FOL* to
• enable checking the UNSAT claim’s correctness
• explain the unsatisfiability (diagnosis) in SLEEC

LEGOS-PROOF

LEGOS-
SLEEC

SLEEC
rules

wellformedness
property

12

FOL* UNSAT proof certificate 1/2

Lemma:
FOL*

formula

Fact: quantifier-free
clause in over-

approximated query
Relational
object in D

The name of the
application rule
being applied

The dependent steps for
enabling the derivation

The effect of an
application of a
derivation rule

FOL* Derivation rule example
ExistentialInst (EI): Instantiate an existential formula with a fresh new relational object outside of the domain 𝐷

Step Effects (lemma\fact\object) Derivation rule Dependency

1 ∃ 𝑟: 𝑅𝑒𝑎𝑑(𝑟. 𝑡𝑖𝑚𝑒 > 5 …) Input {}

2 𝑟!. 𝑡𝑖𝑚𝑒 > 5 … EI[𝑟 ← 𝑟!] {1}

…

N UNSAT Implication {2, 5, 7 …}

Create UNSAT proof certificate by recording UNSAT derivation steps (using FOL* derivation rules)

13

FOL* UNSAT proof certificate 2/2

Each derived
effect is a

node

Incoming edges are the
dependencies of an application of

a derivation rule

14

Diagnosis via Proofs of Unsatisfiability for
First-Order Logic with Relational Objects

FOL*
query

UNSAT
Certificate

Proof
Trimmer

UNSAT	
Diagnostic
Generator

Solver Proof	
Checker

Challenges:
Legos solver produces a lot of info, in another language, with possibly buggy implementation

Our solution:
Derive and trim proof of UNSAT for FOL* to
• enable checking the UNSAT claim’s correctness
• explain the unsatisfiability (diagnosis) in SLEEC

LEGOS-PROOF

LEGOS-
SLEEC

SLEEC
rules

wellformedness
property

Step Effects (lemma\fact\object) Derivation rule Dependency

1 ∃ 𝑟: 𝑅𝑒𝑎𝑑(𝑟. 𝑡𝑖𝑚𝑒 > 5 …) Input {}

2 𝑟!. 𝑡𝑖𝑚𝑒 > 5 … EI[𝑟 ← 𝑟!] {1}

…

N UNSAT Implication {2, 5, 7 …}

15

Checking UNSAT proof correctness and trimming 1/2

Start from the
derivation of UNSAT

Step 1: Check the validity of
the application of the rule

Step 2: minimize the
dependency set

Step 3: Recursively check
all rules in the dependency

set in the reverse step
order

Validate the soundness of LEGOS implementation
Trim UNSAT FOL* proof certificates to only contain relevant information

16

Checking UNSAT proof correctness and trimming 2/2

The removed dependencies are
not checked, and are sliced away

in the verified proof

17

Diagnosis via Proofs of Unsatisfiability for First-
Order Logic with Relational Objects

FOL*
query

UNSAT
Certificate

Proof
Trimmer

UNSAT	
Diagnostic
Generator

Solver Proof	
Checker

Challenges:
Legos solver produces a lot of info, in another language, with possibly buggy implementation

Our solution:
Derive and trim proof of UNSAT for FOL* to
• enable checking the UNSAT claim’s correctness
• explain the unsatisfiability (diagnosis) in SLEEC

LEGOS-PROOF

LEGOS-
SLEEC

SLEEC
rules

wellformedness
property

18

Proof-based diagnosis 1/3

• Refine the UNSAT core by projecting the derivation steps onto the core and removing
atoms that are irrelevant for the derivation
• Obtain a subset of input clauses for deriving UNSAT (UNSAT core)

Example: Why is R5 redundant?

R1 when DressingStarted then DressingComplete within 120 sec
 unless (roomTemperature < 19) then DressingComplete within 90 sec
 unless (roomTemperature < 17) then DressingComplete within 60 sec

 R2 when CurtainOpenRqt then CurtainsOpened within 60 sec

 R3 when UserFallen then SupportCalled unless (not assentToSupportCalls)

R4 when DressingAbandoned then RetryAgreed within 30 sec

 R5 when DressingStarted and (roomTemperature > 20) then DressingComplete within 120 sec

Ru
le

s

19

Proof-based diagnosis 2/3

Identify input rules that cause redundancy

Example: Why is R5 redundant?

R5 when DressingStarted and (roomTemperature > 20) then DressingComplete within 120 sec

R5 is redundant because of R1

 R1 when DressingStarted then DressingComplete within 120 sec
 unless (roomTemperature < 19) then DressingComplete within 90 sec
 unless (roomTemperature < 17) then DressingComplete within 60 sec

Di
ag

no
si

s

20

Proof-based diagnosis 3/3

Highlight the reason of a derivation

Example: Why is R5 redundant?

R5 when DressingStarted and (roomTemperature > 20) then DressingComplete within 120 sec

R5 is redundant because of R1

 R1 when DressingStarted then DressingComplete within 120 sec
 unless (roomTemperature < 19) then DressingComplete within 90 sec
 unless (roomTemperature < 17) then DressingComplete within 60 sec

Di
ag

no
si

s

LEGOS-PROOF Framework

21

• LEGOS [CAV23] incrementally searches for a satisfying solution for the FOL∗ formulas
 (over expanding domains of relational objects)

• Extend LEGOS with support for proof of UNSAT for FOL*
• Create UNSAT proof certificate by recording UNSAT derivation steps

(using FOL* derivation rules)
• Developed technique to

validate the soundness and trim UNSAT FOL* proof certificates
• Derived `proof-based diagnoses to explain the cause of UNSAT in SLEEC

LEGOS-PROOF tool: https://github.com/NickF0211/LEGOS-Proof-Artifact/

[CAV23] N. Feng, L. Marsso, M. Sabetzadeh, and M. Chechik. "Early verification of legal compliance via bounded satisfiability checking", CAV 2023.

LEGOS-PROOF
FOL*
query

UNSAT
Certificate

Proof
Trimmer

UNSAT	
Diagnostic
Generator

Solver Proof	
Checker

LEGOS-PROOF

LEGOS-
SLEEC

SLEEC
rules

wellformedness
property

https://github.com/NickF0211/LEGOS-Proof-Artifact/

22

Evaluation

RESERVE:
repository of 9 real-world case studies

23

• Domains: transport, environment, manufacturing
health and social care.
• Different stages: ranging from the design phase

to deployed systems
• Non-technical stakeholders: an ethicist,

a lawyer, a philosopher, and a psychologist
• Technical stakeholders: a safety analyst, and

3 engineers
• Normative requirements: 233 N-NFRs in total

RESERVE: http://www.cs.toronto.edu/~sleec/

Research questions

24

• How efficient is LEGOS-PROOF for generating/checking the proof for
redundancies?

• How effective is LEGOS-PROOF for trimming the proof?

• How the diagnosis assist users in debugging identified inconsistencies?

How the diagnosis assist users in debugging identified
inconsistencies?

27

• LEGOS-PROOF identified small core of 2-4 rules causing the issue out of 15/19 rules
• All the highlighted clauses in the redundancy diagnosis were used for understanding and

resolving them

c

c

Conclusion

Goal: Produce a diagnosis to explain the cause of UNSAT

Our contributions:
• Support proof of UNSAT for FOL*
• Developed technique to validate and trim UNSAT FOL* proofs
• Derived `proof-based diagnoses to explain the cause of UNSAT

Next step:
Extend the proof-based diagnosis to other SE activities (e.g., test coverage)

Outcome: An effective engagement with a formal
reasoning tool for non-technical stakeholders!

28

29

LEGOS-PROOF:
https://github.com/NickF0211/LEGOS-Proof-Artifact/

Thank you! Questions?

FOL*
query

UNSAT
Certificate

Proof
Trimmer

UNSAT	
Diagnostic
Generator

Solver Proof	
Checker

LEGOS-PROOF

LEGOS-
SLEEC

SLEEC
rules

wellformedness
property

https://github.com/NickF0211/LEGOS-Proof-Artifact/

