
Planning as Model Checking Tasks
Yi Li∗, Jing Sun†, Jin Song Dong‡, Yang Liu‡ and Jun Sun§
∗Department of Computer Science, University of Toronto, Canada

Email: liyi@cs.toronto.edu
†Department of Computer Science, The University of Auckland, New Zealand

Email: j.sun@cs.auckland.ac.nz
‡School of Computing, National University of Singapore, Singapore

Emails: {dongjs, liuyang}@comp.nus.edu.sg
§Singapore University of Technology and Design, Singapore

Email: sunjun@sutd.edu.sg

Abstract—Model checking provides a way to automatically
verify hardware and software systems, whereas the goal of
planning is to produce a sequence of actions that leads from the
initial state to the desired goal states. Recently research indicates
that there is a strong connection between model checking and
planning problem solving. In this paper, we investigate the
feasibility of using different model checking tools and techniques
for solving classic planning problems. To achieve this, we carried
out a number of experiments on different planning domains in
order to compare the performance and capabilities of various
tools. Our experimental results indicate that the performance
of some model checkers is comparable to that of state-of-the-
art planners for certain categories of problems. In particular,
a new planning module with specifically designed searching
algorithm is implemented on top of the established model
checking framework, Process Analysis Toolkit (PAT), to serve
as a planning solution provider for upper layer applications. A
case study on a public transportation management system has
been developed to demonstrate the idea of using the PAT model
checker as a planning service.

I. INTRODUCTION

Model checking [1] is an automatic technique for veri-
fying models of software or hardware systems against their
specification. The system model is exhaustively explored and
checked by model checkers to ensure that desired properties
are guaranteed in all cases. In general, what we care the most
about the system model is whether some safety or liveness
properties, usually described in temporal logics such as Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL), are
satisfied. Given a system model M, an initial state s, and a
formula ϕ which specifies the property, the model checking
process can be viewed as computing an answer to the question
of whetherM, s |= ϕ holds. Invariant which can be expressed
using LTL formula (G¬p) is an example of safety properties,
where G reads as always. Typically, a counterexample is given
by model checkers when the property is found to be violated.

Model checking has emerged as a promising and powerful
approach to automatically verify software and hardware sys-
tems. Recently, several research indicates that model checking
can also be applied to AI planning domain. Berardi and
Giuseppe [2] compared the performance of two well-known
model checkers, Spin [3] and SMV [4], with some state-
of-the-art planners (IPP [5], which was one of the best

performers in AIPS’98 competition; FF [6], which was among
the best performers in AIPS’00; and TLPLAN [7], which
accepts temporally extended goals used as control knowledge
to prune the search space). The experiment results suggest
that the two model checkers are comparable to IPP in terms
of performance, instead that FF performs much better than
both. In other words, Spin and SMV used as planners are
competitive with the best performing planners at the AIPS’98
competition. And there is still large space for improvement
in solving planning problems using model checkers. Spin
can indeed improve its performance by exploiting additional
control knowledge, which consists of suitable constraints on
state transitions and thus can be used to reduce the state space
explored during searching.

Hörne and Poll [8] investigated the feasibility of using two
different model checking techniques for solving a number of
classical AI planning problems. The two model checkers use
different reasoning techniques. ProB is based on mathematical
set theory and first-order logic. It is specifically designed
for the verification of program specifications written in the
B specification language. The other model checker used is
NuSMV [9], an extension of the symbolic model checker
SMV. With NuSMV the problem is represented using Binary
Decision Diagrams (BDDs). For both model checkers, the
state space is explored exhaustively: if there exists a plan,
it will be found, and they always terminate. However, they
do not provide all possible plans but terminate after one is
found, if it exists. The experiment results suggest that several
options were found suitable to solve the type of planning
problems considered in the paper. These are the Constraint
Logic Programming (CLP) based ProB, running in either
temporal model checking mode or performing a breadth-first
search, and the tableaux-based NuSMV using an invariant.

Another source of interest for this topic is that with the
capability of solving planning problems, model checkers can
be used as an underlying service provider to provide planning
solutions for upper layer applications. Newly developed model
checkers usually have more sophisticated techniques for han-
dling large state spaces, which is critical in the real world set-
ting. Therefore, using model checking as service should work
well for real world planning problems, such as trip planning,

scheduling, etc. In this paper, we further explore the synergy
between the two separate domains, namely model checking and
planning. They are both important techniques used in system
designs. For example, one can obtain a workable design under
the environment and resource constraints via planning and
verify that the required properties are all satisfied by model
checking. Our goal is to find a way to connect them together
such that the tools that support model checking can also be
used to find solutions for planning problems.

In this paper, we consider classical planning problems that
have only deterministic actions and assume complete infor-
mation about the planning states. Essentially following [10],
we define a classical planning problem to be a three-tuple
(S0,G,A) where S0 represents the initial state, G represents the
set of goal states and A represents a finite set of deterministic
actions. Each state is represented as a conjunction of fluents
that are ground, functionless atoms. Each action a ∈ A itself
is described by a tuple (pre(a), add(a), del(a)) where pre(a)
represents the precondition to be satisfied before the action
can be executed, add(a) and del(a) represent the positive
and negative effects after the action is executed. Therefore
the state resulting from executing action a in state s can be
expressed as Result(s, a) = (s− del(a))

⋃
add(a). Finally, the

goal G is a set of planning states satisfying a propositional
property specifying the final states of a plan. Therefore, a plan
p is a finite sequence of actions 〈a0, a1, ..., an〉, such that the
execution of p yields a state s ∈ G.

Clearly, a classical planning problem can be easily converted
into a model checking problem. The fact that this approach
is feasible was supported by [11], which states that planning
should be done by semantically checking the truth of a for-
mula and planning as model checking is conceptually similar
to planning as propositional satisfiability. Given a planning
problem (S0,G,A), one can construct a system model M
by translating every action a ∈ A into a corresponding state
transition function first. The initial state S0 can also be mapped
to the initial state s of model M by assigning value to each
variable accordingly. Then for the goal state G, which can be
expressed using a propositional formula ϕ, we can construct
a safety property G¬ϕ that requires the formula ϕ never
to hold, such that the model checker is able to search for
a counterexample path that leads to a state where ϕ holds.
The resulting plan is optimal in terms of make-span when the
counterexample path is the shortest.

This research is divided into two stages, corresponding to
the two closely related problems that we considered, i.e.,
planning via model checking and PAT as planning service.
We first conducted a number of experiments on different
planning domains in order to compare the performance and
capabilities of various tools. Our experimental results indicate
that the performance of some model checkers is comparable
to that of state-of-the-art planners for certain categories of
problems and the performance of model checkers can even
be further improved by exploiting domain-specific knowledge.
In particular, a newly developed model checking framework -
Process Analysis Toolkit (PAT) [12] out-performs most of the

existing tools in the problem domain. We further investigated
the possibility of developing a new planning module with
specifically designed searching algorithm on top of the PAT
framework, to serve as a planning solution provider for upper
layer applications. We demonstrate our approach through a
case study on a public transportation management system that
uses the PAT model checker as a planning service.

The rest of the paper is organized as follows. Section 2
presents the review on performance of different planning tools.
In Section 3, we introduce the idea of using the PAT model
checker as a planning service by developing a route planning
module for the Transport4You system. It realizes the practical
application of the approach with concrete evaluation results,
where different model checking algorithms designed for the
module are compared and analyzed. Section 4 concludes the
paper and outlooks the future directions.

II. REVIEW ON TOOLS FOR PLANNING

In this section, we conduct a performance review on three
commonly used model checkers together with two well-known
planners as benchmarks in solving planning problems. A
background description of the tools investigated are listed as
follows.

SatPlan [13] is an award winning planner for optimal
planning created by Henry Kautz, Jörg Hoffmann and Shane
Neph. SatPlan2004 took the first place for optimal determin-
istic planning at the International Planning Competition at
the 14th International Conference on Automated Planning &
Scheduling. SatPlan accepts the STRIPS subset of Planning
Domain Definition Language (PDDL) and finds plans with
the shortest make-span. It encodes the planning problem into
a SAT formulation with length k and checks the satisfiability
using SAT solvers. If the searching times out, then k is
increased by one and the process is repeated.

Metric-FF [14] is a domain independent planning system
developed by Jörg Hoffmann. It is an extension of FF that
supports numerical plan metrics. The system has participated
in the numerical domains of the 3rd International Planning
Competition, demonstrating very competitive performance.
Two input files, namely the domain file and problem file
are needed to run Metric-FF. Metric-FF accepts domain and
problem specifications written in PDDL 2.1 level 2, which
allows numerical plan metrics.

NuSMV [9] is an extension of the symbolic model checker
SMV [4] developed at the Carnegie Mellon University known
as CMU SMV. Like CMU SMV, NuSMV uses the CUDD-
based BDD package, a state-of-the-art BDD package de-
veloped at Colorado University. During model construction,
NuSMV builds a clusterised BDD-based Finite State Machine
(FSM) using the transition relation. A model is described in
terms of a hierarchy of modules. Module instantiations are
semantically similar to call-by-reference. NuSMV allows for
Boolean, integer and enumerated types for state variables.

Spin [3] is an established explicit state model checker devel-
oped at Bell Labs in the original Unix group of the Computing
Sciences Research Center, starting in 1980. Spin models are

described in a modelling language called “Promela” (Process
Meta Language). The language allows for the dynamic cre-
ation of concurrent processes. Communication via message
channels can be defined to be synchronous or asynchronous.
Promela loosely follows CSP and its guarded expressions are
well supported, so that preconditions for actions can be easily
enforced in the model. Promela also allows C-style macro
definitions, which reduces the code length and facilitates the
generalization of the model.

Process Analysis Toolkit (PAT) [12] is a self-contained
framework for specification, simulation and verification of
concurrent and real-time systems developed in School of Com-
puting, National University of Singapore. It supports efficient
trace refinement checking, LTL model checking with various
fairness assumptions. PAT is designed to verify event-based
compositional models specified using CSP# [15], which is an
extension to Communicating Sequential Process (CSP) [16]
by embedding data operations. CSP# combines high-level
compositional operators from process algebra with program-
like codes, which makes the language much more expressive.

A. Performance Comparison

In this subsection, we compare the performance of NuSMV
(pre-compiled version 2.5.2), Spin (pre-compiled version
6.0.1) and PAT (version 3.3.0) on solving two classical plan-
ning problems: the bridge crossing problem and the sliding
game problem. SatPlan2006 and Metric-FF are also used as
benchmarks in the experiments. The two problems selected
can be regarded as puzzle solving problems and the optimal
solutions are not trivial. The descriptions of the problems are
as follows.

• The bridge crossing problem: Four wounded soldiers find
themselves behind enemy lines and try to flee to their
home land. They arrive at a bridge that spans a river
which is the border between the two countries at war.
The bridge has been damaged and can only carry two
soldiers at a time. Furthermore, several land mines have
been placed on the bridge where a torch is needed to
sidestep all the mines. The soldiers only have a single
torch and 60 minutes to cross the bridge, and they are not
equally injured. The extent of their wounds have an effect
on the time it takes to get across. So the time needed for
each soldier are 5, 10, 20, 25 minutes respectively. The
goal is to find a solution to get all the soldiers to cross
the bridge to safety in 60 minutes or less.

• The sliding game problem, is sometimes also referred as
the eight-tiles problem. We have eight tiles, numbered
from 1 to 8, that are arranged in a 3×3 matrix. The first
tile, which is at the top-left corner is empty and marked
by 0. A tile can only be shifted horizontally or vertically
into the empty space. The goal of the puzzle is to arrange
the eight tiles into the increasing setting.

Note that the bridge crossing problem is a plan existence
problem with a constraint on the total time. A workable
plan that can be finished within 60 minutes is already good
enough. There is no need to literally “calculate” an optimal

solution. PAT can find the “Shortest Witness Trace” by using
the breadth-first search in the state space, i.e., the returned
counterexample trace is guaranteed to be the shortest one.
Otherwise, a depth-first search is performed and the first
counterexample trace encountered is displayed. Therefore, for
the bridge crossing problem where shortest witness trace is not
needed, we used the depth-first search mode; for the sliding
game problem, for which an optimal solution is expected,
we enabled the “Shortest Witness Trace” option instead. The
counterexample provided by NuSMV is always shortest, so it
can also be used to generate optimal solutions for the sliding
game problem. Unfortunately, the counterexample produced
by Spin is not always shortest. However, we still collected the
performance data for reference.

To collect the execution time data more accurately, we
performed each experiment three times and calculated the
average to avoid possible fluctuations caused by the overhead
imposed by operating systems. All the experimental results
were collected on an Dell desktop with an Intel Core 2 Duo
E6550 2.33GHz processor and 3.25GB RAM. Spin, PAT and
NuSMV were tested in Windows XP SP3, while SatPlan and
Metric-FF were tested in Ubuntu 10.04 environment. Except
for NuSMV, all other tools provide accurate statistics including
the execution time at the end of each session. For NuSMV, we
made use of the source command to invoke the time command
right before and after the model checking sessions to record
the execution time.

The experimental results are presented in the following
subsections, where INVAR denotes using invariant mode of
NuSMV, LTL/CTL denotes using LTL/CTL model checking
mode of NuSMV, WITH denotes PAT under “reachability-
with” mode, and DFS/BFS denotes PAT using depth-first or
breadth-first search respectively. Time is in seconds unless
otherwise indicated.

1) The Bridge Crossing Problem: To generalize the prob-
lem and obtain experimental results in a broader range, we
expanded the original bridge crossing problem to versions with
up to 9 soldiers. Apart from the breadth-first and depth-first
searches, PAT also supports a “reachability-with” checking,
which is a reachability test with some state variables reaching
their maximum/minimum values. Hence PAT can be used to
find the minimum amount of time needed to finish the bridge
crossing. The time limits were first calculated by PAT using
the “reachability-with” mode. Other model checkers were then
tested taken the time limits as given. Of course, to be fair,
PAT was also run one more time using the depth-first search
mode. We also ran Metric-FF on the bridge crossing problem
with parameters g = 100 and h = 1, which emphasizes the
plan quality over the performance to increase the possibility
of getting an solution within the time limit.

TABLE I: Time cost of each soldier

Soldier 1 2 3 4 5 6 7 8 9
Time Cost 5 10 20 25 30 45 60 80 100

TABLE II: Experimental results for the bridge crossing problem

Soldiers Time Metric-FF PAT NuSMV Spin
WITH DFS INVAR CTL LTL

4 60 0.00 0.05 0.04 0.0 0.1 0.1 0.02
5 90 0.00 0.19 0.04 0.1 0.9 0.4 0.02
6 130 0.03 1.12 0.22 0.2 14.4 2.5 0.06
7 175 0.16 6.18 0.25 0.5 330.8 71.3 0.11
8 235 0.94 33.19 10.26 m m m 10.50
9 300 5.30 145.51 16.40 m m m 19.50

This set of experiments are tailored to show how the model
checkers compete on plan existence problems that deal with
time constraints. The results are summarized in Table II. The
time cost of each soldier is listed in Table I above. Inside the
table, the column “Soldiers” indicates the number of soldiers
in the problem instance and the column “Time” indicates the
time limit used in that test. A symbol m is there to show that
the system ran out of memory and did not get a solution.
Although the configurations for Metric-FF (g = 100 and
h = 1) have put a much higher weight on plan quality,
the optimality of the results got form Metric-FF is still not
guaranteed. So the data is only used as a benchmark for
comparisons.

When the number of soldiers reaches 8, NuSMV is not
able to build a model according to the model descriptions due
to memory shortage. The invariant checking mode performs
generally better than CTL and LTL checking mode because
CTL and LTL model checking algorithms’ searching space
involves both the model and the property, but reachability
checking only explore the model’s space1. With regard to
Temporal model checking in NuSMV, the performance is
better using LTL than CTL. Figure 1 shows that the time

Fig. 1: Execution time comparison of PAT, Spin and Metric-FF
on the bridge crossing problem

needed for the bridge crossing problem increases rapidly when

1PAT will automatically detect the safety LTL properties and convert them
into reachability problems. Hence, we do not include the LTL checking model
for PAT in this experiment.

the number of soldiers increases. For example, the execution
time for Spin increases by nearly 100 times when the number
of soldiers increases from 7 to 8. It is clear that the state
space expands in a very fast speed. Planners such as Metric-
FF handle this kind of problem in a very different way from
model checkers. Metric-FF performs a standard weighted A*
search which exploits the power of heuristics and sacrifices
the optimality to speed up the searching. That is the reason
why Metric-FF performs much better than the other two.

The performance of PAT and Spin is similar on this problem
domain. For smaller instances, for example, when the number
of soldiers ranges from 4 to 7, Spin performs better than PAT,
although the difference is relatively small. For larger instances
like the problem with 8 or 9 soldiers, PAT starts to perform
better that Spin.

2) The Sliding Game Problem: Optimal AI planning is a
PSPACE-complete problem in general. For many problems
studied in the planning literature, the plan optimisation prob-
lem has been shown to be NP-hard [17]. The eight-tiles game
is the largest puzzle of its type that can be completely solved.
It is simple, and yet obeys a combinatorially large problem
space of 9!/2 states. The N × N extension of the eight-tiles
game is NP-hard [18]. The difficulties of the problem instances
are measured by the lengths of their optimal solutions. There
is also an approximated measurement named the Manhattan
distance or Manhattan length, which is defined as | x1 − x2 |
+ | y1 − y2 | where (x1, y1) and (x2, y2) are two points on
a plane. We have experimented on 6 problem instances in
total. Two of them (“Hard1” and “Hard2”) are the hardest
with an optimal solution of 31 steps. Two of them (“Most1”
and “Most2”) have the most optimal solutions and a slightly
shorter solution length of 30 steps. The last two problem
instances (“Rand1” and “Rand2”) are randomly generated with
optimal solutions of length 24 and 20 steps respectively.

This set of experiments are designed to show how different
model checkers perform on optimal deterministic planning
problems. The results got from SatPlan are used for reference.
The results are summarized in Table III. Inside the table,
“> 600” indicates that no solution was found after 10 minutes.
The column “L*” records the length of the optimal solutions
and the column “H” shows the Manhattan distance of the
problem. Also note that the solutions found by Spin are not
optimal.

The CTL and LTL checking mode of NuSMV can hardly
find a solution within 10 minutes. The invariant checking
mode performs much better compared to the other two modes.

TABLE III: Experimental results for the sliding game problem

Problem L* H SatPlan PAT NuSMV Spin
BFS INVAR CTL LTL suboptimal

Hard1 31 21 444.42 9.60 45.2 > 600 > 600 2.25
Hard2 31 21 438.34 10.05 41.6 > 600 > 600 2.06
Most1 30 20 152.76 9.84 42.8 > 600 > 600 1.99
Most2 30 20 152.24 10.01 42.0 > 600 > 600 2.47
Rand1 24 12 33.70 7.00 30.0 > 600 > 600 2.63
Rand2 20 16 2.89 3.54 16.8 505.6 > 600 2.13

Fig. 2: Execution time comparison of PAT, NuSMV and
SatPlan on the sliding game problem, shown on a logarithm
scale

From Figure 2 we can conclude that the execution time of
SatPlan for different problem instances varies greatly. The
performance of SatPlan depends largely on the length of the
optimal plans. “Hard1” and “Hard2” which take only 1 step
more than “Most1” and “Most2”, spend nearly 3 times longer
to find a solution. For simpler instances, SatPlan performs the
best among the three tools. However, when the length of the
optimal plans increases, the size of the SAT instances created
by SatPlan grows fast. The resulting execution time increases
quickly as well.

The performance of PAT and NuSMV is relatively stable.
PAT using breadth-first search mode takes shorter time for all
the problems. This comparison indicates that PAT belongs to
the category of explicit state model checkers performs better
than symbolic model checker NuSMV and SAT based planner
SatPlan on plan optimization problems. Although we cannot
generalize the argument without further experiments and jus-
tifications, this empirical finding still proves the feasibility of
applying PAT to the optimal deterministic planning domain.

III. PAT AS A PLANNING SERVICE

When performing the experiments in Section 2, it is shown
that the generalization of the problems should be a priority
because the encoding of the planning problems in the re-
spective model description languages is cumbersome. This
gives rise to the idea of using model checkers as service.
Considering planning problems in more realistic environment,

the variables and parameters in the model descriptions are
usually subject to change over time. In some cases, the goals
and cost/reward functions could also be different when the
environment variables vary. This is where the concept of
replan comes into play. Using model checkers as service
enables real-time replanning by generating problem descrip-
tions dynamically at runtime, and modifying models with the
most updated parameters. However, some modifications to the
model checking algorithms are necessary to finally realize this
goal. As a newly developed model checking framework, PAT
out-performed most of the tools in previous section on the
proposed problem domain. Using PAT as planning service has
several advantages over other alternatives.

• The searching algorithms of PAT is highly efficient and
ready to be used, as is proved in the comparisons with
other tools. Therefore, the performance of planning is
ensured with no extra effort. It also saves the time of
implementing a different planning algorithm for every
new problem.

• CSP# is a highly expressive language for modelling
various kind of systems. The tools we experimented on,
including SatPlan and Metric-FF, are all restricted to a
certain area of problems. For instance, SatPlan is not able
to solve planning problems with numerical plan metrics
and Metric-FF lacks support for plan optimization prob-
lems. With a number of sophisticated model checking
options, such as “reachability-with” and “BFS/DFS”, PAT
is ready to solve all kinds of planning problems.

• PAT is constructed in a modularized fashion. Modules
for specific purposes can be built to give better support
for the domains that are considered. For example, using
“Probability CSP Module”, it is even possible to solve
nondeterministic planning problems with PAT. Addition-
ally, we can also build our own planning modules with
customized searching algorithms. We shall further discuss
the later section.

In this section, we present a case study on “Transport4You”
which is a project submission by our research group to
the 33rd International Conference on Software Engineering
(ICSE) - Student Contest on Software Engineering (SCORE).
The project won the “Formal Methods Award” 2 out of 56
submissions, which was presented for the final round of the

2The awards page of the 33rd International Conference on Software
Engineering (ICSE 2011) in Hawaii, USA – http://2011.icse-conferences.org/
content/awards.

competition at ICSE 2011 in Hawaii. The “Transport4You”
Intelligent Public Transportation Manager (IPTM) is a specif-
ically designed municipal transportation management solution
which is able to simplify the fare collection process and
provide customized services to each subscriber. To be specific,
a system that is able to provide customized trip information
and timely responses to each subscriber is to be built to satisfy
the increasing needs. In other words, the new system should
not only play the role of a bus conductor, but also be a trip
advisor who informs the users of changes in the lines and
possibly suggests optimized routes for them.

The “Transport4You” IPTM system consists of two sub
systems, namely the bus embedded system (BES) and the
central mainframe (CM). The bus system is responsible for
passenger detection, part of the fault correction and detection
results report to the central server. In contrast, the server
system deals with all kinds of service requests from users
and administrators, information management, as well as user
notification. The two sub systems communicate via TCP
connections and at the same time interact with users and ad-
ministrators. A significant component of the “Transport4You”
IPTM system is the Route Plannig module which makes use
of the model checking capability of PAT as a planning service.
This function provides a guide for users who are not familiar
with the bus routes and need suggestions for choosing bus
lines. This can also be applied to suggest alternative optimal
routes to subscribers, based on the behavioural data analysed
in the User Behavior Analysis module. To further illustrate
the idea of using PAT as planning service, we have built a
simulator for the IPTM system.

Fig. 3: Simulator architecture diagram

As is shown in Figure 3, the simulator generates a CSP#
model during execution according to the current road con-
ditions and bus line configurations, whenever a subscriber is
querying on which route to choose. Users can choose their
starting point as well as destination on the simulator interface.
After clicking on the “Plan” button, the underlying support
modules generate a CSP# model according to what have been
chosen and pass it to PAT. After interpreting the returned
results from PAT, the system is able to display the planned
route and detailed instructions to users as shown in Figure
4. The route planning module can work correctly even when

there are real time changes on road conditions. When the
interrupted road or bus service is detected, the administrators
will update the road condition database immediately. All
subsequent queries will be processed according to the newly
updated road conditions. The planning results are, therefore,
guaranteed to be accurate based on the most updated data.

Fig. 4: Simulator screen shot of route planning results

A. Route Planning Model Design

In this subsection, we discuss the design of the route plan-
ning CSP# model. We will look at two different approaches for
improving the solution quality and compare the performance
of them. To construct a CSP# model for route planning, we
have to first formally define the problem. There are 14 bus
lines travelling among 61 bus stops on our simulated city map.
In addition, each bus line has a sequence of bus stops that it
must reach one by one.

Definition 1: A Route Planning task is defined by a 5-tuple
(S,B,t,c,L) with the following components:

• S is a finite, non-empty set of bus stops. Terminal stops
include start terminals sstart ⊆ S, and end terminals send ⊆
S, where sstart ∩ send = ∅.

• B is a finite set of bus lines, and for every bus line
bi ∈ B, bi : S → S is a partial function. bi(s) is the
next stop taking bus i from stop s. ∀ s ∈ sstart ∀ b ∈
B, s ∈ dom(b) −→ b−1(s) = α. ∀ s ∈ send ∀ b ∈ B, s ∈
dom(b) −→ b(s) = β. ∀ b ∈ B, b−1(α) = α ∧ b(β) = β.

• t : S → BS is a function where BS ⊆ B. t(s) is the set
of available bus lines at stop s, i.e., BS = {bi ∈ B | s ∈
dom(bi)}.

• c : S → S is a partial function. c(s) is the stop one can
get to by crossing the road at stop s.

• L is a unary predicate on S. L(s) is true when the current
location of user is stop s.

The definition should be intuitive enough and require little
additional explanation. The tuple can be constructed from the
evaluation of the bus line and road configurations that are
stored in the ITPM central mainframe. Now we can define the
Route Planning domain.

Definition 2: Given initial location s0 and destination sg,
a Route Planning domain maps a Route Planning task to a
classical planning problem with close-world assumption as
follows:

States: Each state is represented as a literal s ∈ S, where
L(s) holds.

Initial State: s0
Goal States: sg

Actions: 1) (TakeBus(bi, s), PRECOND: bi ∈ t(s),
EFFECT: ¬L(s) ∧ L(bi(s)))

2) (Cross(s), PRECOND: s ∈ dom(c),
EFFECT: ¬L(s) ∧ L(c(s)))

After defining the problem, we shall look at a basic CSP#
model that solves the route planning problem. According to
the problem definitions, the model includes four parts, namely
the environment variables (bus stops and bus lines), the initial
state, the state transition functions (actions) and the goal states.
The design of each part will be discussed as follows.

1) Environment Variables: In the description of the envi-
ronment variables, we first declare an enumeration that lists
all the bus stops for later use:

enum{TerminalA, Stop5, Stop7, Stop9 ... Stop26,
Stop11, Stop35, Stop34};

Then we use a self-defined data type 〈BusLine〉 to keep
track of the bus line configurations and provide useful helper
methods.

var sLine1 = [TerminalA, Stop5, Stop7, Stop9, Stop58,
Stop31, Stop33, Stop53, Stop57,TerminalC];

var〈BusLine〉Line1 = new BusLine(sLine1, 1);
var sLine2 = [TerminalC, Stop56, Stop52, Stop32,

Stop30, Stop59, Stop10, Stop8, Stop6,TerminalA];
var〈BusLine〉Line2 = new BusLine(sLine2, 2);
...
var sLine14 = [TerminalC, Stop34, Stop32, Stop30,

Stop16,TerminalB];
var〈BusLine〉Line14 = new BusLine(sLine14, 14);

In the above code, the instantiation of 〈BusLine〉 takes in
two parameters, including an integer array that contains a
sequence of bus stops as well as an integer that is the line
number. After declaration, we are able to use the bus line
variable to look up useful information of a particular bus line
including the previous stop and the next stop with respect to
the current stop.

2) Initial State: In the description of the initial states, we
declare two variables, currentStop and currentBus. The vari-
able currentStop corresponds to the state variable s mentioned
before, while currentBus is only for record in the current
model.

var currentStop = Stop5;
var B0 = [−2];
var〈BusLine〉currentBus = new BusLine(B0,−1);

The initial value of currentStop is set to be Stop5 in this
example. The currentBus is also a variable of type 〈BusLine〉

and its initial value is set to some negative integer to avoid
confusion.

3) State Transition Functions: Now we are coming to the
most critical part of the model. We need to translate the action
schema mentioned before to a state transition function that can
be further converted to CSP# processes with the help of the
“case” statement. The description of transition functions can
be further divided into two parts. In the first part, a process
named takeBus() is defined to capture the state transitions
caused by taking bus. The second part deals with a process
crossRoad() which is defined to capture the state transitions
caused by walking to the opposite side of the road.

takeBus() = case{
currentStop == TerminalA : BusLine1[]

BusLine3[]BusLine5[]BusLine7
currentStop == Stop5 : BusLine1[]BusLine5
currentStop == Stop7 : BusLine1[]BusLine5
currentStop == Stop9 : BusLine1
...
currentStop == Stop11 : BusLine12
currentStop == Stop35 : BusLine13
currentStop == Stop34 : BusLine14

};
This process takeBus() simply hands over the control to

another process according to which bus lines are available in
the current bus stop. For example, at Stop5, there are two bus
lines available, namely BusLine1 and BusLine5. Then we still
need to define processes BusLine1 to BusLine14 which have
very similar events.

BusLine1 = TakeBus.1{
currentStop = Line1.NextStop(currentStop);
currentBus = Line1; } → takeBus();

...
BusLine14 = TakeBus.14{

currentStop = Line14.NextStop(currentStop);
currentBus = Line14; } → takeBus();

This is where the actual state transitions happen. Each bus
line process invokes TakeBus.n event, and at the same time,
updates the value of currentStop and currentBus. Finally, the
bus line process returns the control to the process takeBus().
Notice that there is another version of this process that also
allows road crossing at any bus stop. We shall look at it later
after the discussion of the crossRoad() process.

crossRoad() = case{
currentStop == Stop5 : cross{currentStop =

Stop6} → takeBus()
currentStop == Stop7 : cross{currentStop =

Stop8} → takeBus()
...
currentStop == Stop35 : cross{currentStop =

Stop34} → takeBus()
currentStop == Stop34 : cross{currentStop =

Stop35} → takeBus()
};

The process crossRoad() also makes use of the key word
“case”. Depending on the value of currentStop, a common
event cross will be evoked and the hidden effect is the update
of currentStop to the stop opposite to it. For instance, when
the user is at Stop5, event cross can happen and the user’s
location is changed to Stop6. After the state transition, the
process also hands over its control to takeBus() and searches
for further transitions. Combining two processes by an external
choice operator gives us the final transition function:

plan = takeBus()[]crossRoad();

As mentioned before, to enable road crossing, we have to
modify the bus line process. Instead of returning the control
to takeBus(), we have to return to plan which may also invoke
the process crossRoad(). This could increase the search space
of the model, however the increase of verification time is not
significant.

4) Goal States: The goal states of the model are fairly easy
to define. Very similar to the initial state description, we only
need to specify the goal to be that the value of currentStop
equals to the destination stop chosen by user that is Stop53 in
our example.

#define goal currentStop == Stop53;

B. The Cost Function Approach

The basic model we discussed before is able to solve the
Route Planning problem. It even provides optimal plans in
terms of the make-span if the “BFS” mode is used. However,
the quality of the plan is not always guaranteed. The plan
quality depends on several factors, including the length of
the suggested route, the total walking distance, the number of
buses changed, etc. To measure the plan quality, we introduce
cost function into the model. It is fairly intuitive to assign a
non-negative integer value to each action. For instance, we
assign a cost of 10 for TakeBus(bi, s) and a cost of 2 for
Cross(s). In addition, we also assign a cost of 5 for two
consecutive TakeBus actions with different bi, which implies
there is a bus change occurring. The plans produced by the
basic model are sometimes suboptimal in terms of the total
cost. There are two causes for the inefficiency:

• The basic model treats action Cross and TakeBus as the
same. However, in real life, different subscribers may
have their own preferences on the minimization of the
number of bus stops or the walking distance.

• The basic model does not have penalties on bus changes
when producing the route plan. The number of bus
changes is considered a critical factor when judging the
quality of the plan.

To ensure high plan quality in our new model, we use a cost
function as gauge. The implementation of the cost function in
our established basic model can be done with very little effort.
For takeBus() and crossRoad() process, we can add a hidden
event: tau{cost = cost + x}, where x is 10 or 2. For bus
changes, we can add another hidden event with a conditional

branch:

tau{if (!currentBus.isEqual(LineX)){cost = cost + 5}}

where LineX is the bus line to be taken next.

Algorithm 1 newBFSVerification()

initialize queue: working;
current← InitialStep;
τ ←∞;
repeat

value← EvaluateCost(current);
if current.SatisfyGoal() then

if value < τ then
τ ← value;

end if
end if
if value > τ then

continue;
end if
for all step ∈ current.MakeOneMove() do

working.Enque(step);
end for

until working.Count() 6 0

However, the introduction of cost function also increases
the complexity of the problem. The original optimal planning
problem can be solved by a simple breadth-first search. As
the size of optimal solutions in this context is usually small,
the execution time is also relatively short. Unfortunately,
the default “reachability-with” checking algorithm in PAT
searches the whole state space for a maximum/minimum value
of a given variable. The execution time is considerably long
for this kind of searching according to our experiments. To
resolve the problem of long execution time, we design a new
searching algorithm with the assumption that all cost values
are non-negative integers. Once a solution is found in the
searching, we update the threshold τ with its cost value. In the
following search, if the cost of the current partial plan exceeds
τ , we consider it a dead-end since no further transitions could
make the cost lower. This pruning of the search space largely
reduces the execution time and memory usage to a satisfactory
level and still preserves the optimality of the solutions. The
new algorithm newBFSVerification() is given in Algorithm 1.
In this algorithm, working is the task queue used in the BFS;
τ is the temporary variable to stored the current best value
met so far; value stores the cost valuation of the current state;
current.SatisfyGoal returns true if the goal is satisfied for the
current state; current.MakeOneMove returns the all possible
outgoing transitions from the current state. The state pruning
happens if value is greater than τ .

C. Search Space Pruning

As mentioned in the previous subsection, one of the reasons
for producing suboptimal solutions is that the number of bus
changes is uncontrolled. Taking an example shown in Figure

5, bus line b1 and b2 both travel along the path 〈s1, s2, s3〉.
The route of b1 is shown in solid lines while the route of b2 is
shown in dashed lines. We refer to a particular edge between
two stops by the corresponding action name. For instance,
TakeBus(b1, s1) refers to the solid edge between s1 and s2.

Fig. 5: An example bus line configuration

As illustrated in Figure 6, the basic model produces unsat-
isfactory solutions when there obviously exists better ones.
The partial solution “TakeBus(b1, s1) ⇒ TakeBus(b2, s2)”
introduces a redundant bus change from b1 to b2. To prune
the search space and speed up the verification, we have
to restrict that a user is not going to change a bus if it
is not necessary. This constraint can be easily captured by
adding a new method “bool IsRedundent(BusLine Current-
Bus,int CurrentStop)” to the defined type 〈BusLine〉. In the
guard condition of process BusLine2, we can define a con-
traint !Line2.IsRedundent(currentBus, currentStop) to avoid
this transition if the change to Line2 is considered redundant.

Fig. 6: A solution produced by the basic model

The criteria for deciding whether an action TakeBus(bi, sj)
is redundant or not given the current bus line is bk can be
formulated as follows.

Definition 3: An action TakeBus(bi, sj) is not redundant if
one of the followings holds:

1) bi = bk

2) bi ∈ t(sj) ∧ bk ∈ t(sj) ∧ bi(sj) 6= bk(sj) ∧ ∃m ∈ N1,
bi(sj)

−m 6= bk(sj)
−m

3) 1 and 2 do not hold and bi(sj) 6= bk(sj) ∧ b−1
i (sj) 6=

b−1
k (sj)

Definition 3 can be casually interpreted as, “when a user is
going to change to a different bus that does not form a special
pattern with the current bus as shown in Figure 7 and shares
the same previous stop or next stop with the current bus, the
change is considered redundant.

The basic idea is to stay on one bus as long as possible.
This can be enforced by simply ignoring the transitions to
a bus having the same previous stop as the current one,
because the transition to that bus should happen earlier (not
necessarily from the current bus) or does not happen at all. As
is shown in Figure 8a, the partial solution “TakeBus(b2, s1)⇒
TakeBus(b1, s2)” is not valid as at s2, b1 and b2 have the
same previous stop s1. A valid path is “TakeBus(b1, s1) ⇒

Fig. 7: Special pattern of two overlapping bus lines

TakeBus(b1, s2)”. Similarly, the transitions to a bus having the
same next stop as the current one should also be avoided,
because the transition can happen later (not necessarily from
the current bus) or does not happen at all. As shown in Figure
8b, the partial solution “TakeBus(b1, s1) ⇒ TakeBus(b2, s2)”
is not valid as at s2, b1 and b2 have the same next stop s3. A
valid path is “TakeBus(b1, s1)⇒ TakeBus(b1, s2)”.

(a) Same Previous Stop

(b) Same Next Stop

Fig. 8: Redundant bus changes

However, after enforcing these two basic rules, the transition
can never happen between two lines forming the special
pattern illustrated in Figure 7. When two bus lines form such a
overlapping pattern, a bus change at the end of the overlapping
segment, which is s3 in this case, is not considered redundant.
The reason why we force the bus change to occur at the end
of the overlapping segment is that this ensures that necessary
bus change happens only once within the overlapping range.

D. Performance Evaluation

In this subsection, we evaluate the performance as well
as the solution quality of the two modified planning models
discussed in the previous sections. We tested all (3660) starting
stop and destination stop combinations on the three models.
The length of the shortest solution was got by solving the
shortest path problem using Dijkstra algorithm after we con-
verted the original map to a directed graph with path cost 1
for each edge. Table IV shows the comparison results.

In the table, all values are average among the 3660 test
cases. From the comparison, we can see that the search space

TABLE IV: Comparison results of three route planning models

Model States Transitions Time(s) Memory(KB) Cost Length
Basic 1029.46 1070.93 0.0448 11119.91 58.23 5.51
Cost 1125.31 1169.82 0.0483 11281.58 56.02 5.59
Prune 158.48 185.77 0.0179 9197.95 56.79 5.51

pruning model performs the best in terms of execution time
and memory space. In fact, a large portion of redundant
transitions is pruned and the search space is reduced to a
minimal. At the same time, the search space pruning model
also preserves the make-span optimality. In addition, the model
also produces low cost plans with an average total cost of
56.79 which is slightly higher than the optimal value 56.02.
Among all of them, 89.6% of the solutions are in fact cost-
optimal. The cost function model guarantees the lowest total
cost as it is designed to do so. However, it is a little inefficient
on the memory usage, as the plan metric optimization is indeed
expensive. Some solutions are not the shortest as the Cross
actions have less cost but are still counted towards the total
length of the plans.

IV. CONCLUSION

In this paper, we explored the use of model checking
techniques in the AI planning domain. We believe our work
established a good start point in this direction towards more
practical applications. We first examined the feasibility of
using different model checkers on solving classical planning
problems. In our experiments, we compared the performance
and capabilities of different tools including PAT, Spin and
NuSMV. PAT is proved to be most suitable for solving
various kind of planning problems. The experimental results
also indicated that some model checkers, e.g. PAT, can even
compete with sophisticated planners in certain domains.

Based on the performance evaluation, we further suggested
the approach of developing PAT as planning service. We
applied our approach to a case study on the “Tranport4You”
IPTM system. We implemented a route planning module for
the system by exploiting the model checking power of PAT. By
following the formal definitions of the route planning problem,
we designed a basic CSP# model. We further improved the
model in two ways. One is introducing a cost function for
measuring plan quality, while the other is adding in domain
specific control knowledge for search space pruning. Finally,
we compared the different approaches we attempted based
on their execution time and memory efficiency as well as
their planning quality. The results showed that our approach
provides a good solution towards the problem. Our case study
project won the “Formal Methods Award” at the Student
Contest on Software Engineering in ICSE’11.

Although experiments have been carried out on three model
checkers and two planners so far, we would like to extend
the comparisons to a larger range of model checking as
well as planning tools to get a more general view of the
subject. We also observe that by either fine tuning the way of
modelling or exploiting domain specific knowledge, we could

further optimize the models. In addition, we are interested in
implementing an automated translator for the translation from
PDDL to CSP#. Large amount of work has to be done to
ensure the correctness and efficiency of the translation.

REFERENCES

[1] D. Peled, P. Pelliccione, and P. Spoletini, Wiley Encyclopedia of Com-
puter Science and Engineering. John Wiley & Sons, 2009, ch. Model
Checking.

[2] D. Berardi and G. D. Giacomo, “Planning via model checking: Some
experimental results,” 2000, unpublished manuscript.

[3] G. J. Holzmann, The SPIN Model Checker: Primer and Reference
Manual. Addison-Wesley Professional, Sep. 2003.

[4] K. L. McMillan, “Symbolic model checking: an approach to the state
explosion problem,” Ph.D. dissertation, Carnegie Mellon University,
1992.

[5] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos, “Extending
planning graphs to an ADL subset.” Springer-Verlag, 1997, pp. 273–
285.

[6] J. Hoffmann and B. Nebel, “The FF planning system: Fast plan genera-
tion through heuristic search,” Journal of Artificial Intelligence Research,
vol. 14, pp. 253–302, 2001.

[7] F. Bacchus, F. Kabanza, and U. D. Sherbrooke, “Using temporal logics
to express search control knowledge for planning,” Artificial Intelligence,
vol. 16, pp. 123–191, 2000.

[8] T. Hörne and J. A. van der Poll, “Planning as model checking: the
performance of ProB vs NuSMV,” in Proceedings of the 2008 annual
research conference of the South African Institute of Computer Scientists
and Information Technologists on IT research in developing countries,
ser. SAICSIT ’08. New York, NY, USA: ACM, 2008, pp. 114–123.

[9] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pis-
tore, M. Roveri, and A. Tchaltsev, NuSMV 2.5 User Manual, CMU and
ITC-irst, 2005.

[10] S. Russell and P. Norvig, Artificial Intelligence. Pearson, 2010, ch.
Classical Planning.

[11] F. Giunchiglia and P. Traverso, “Planning as model checking,” in Recent
Advances in AI Planning, ser. Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2000, vol. 1809, pp. 1–20.

[12] J. Sun, Y. Liu, J. S. Dong, and J. Pang, “PAT: Towards flexible veri-
fication under fairness,” in 21th International Conference on Computer
Aided Verification (CAV 2009). Grenoble: Springer, 2009, pp. 709–714.

[13] H. A. Kautz, B. Selman, and J. Hoffmann, “SatPlan: Planning as sat-
isfiability,” in Abstracts of the 5th International Planning Competition,
2006.

[14] J. Hoffmann, “Extending FF to numerical state variables,” in Proceed-
ings of the 15th European Conference on Artificial Intelligence (ECAI-
02). Lyon, France: Wil, Jul. 2002, pp. 571–575.

[15] J. Sun, Y. Liu, J. S. Dong, and C. Chen, “Integrating specification and
programs for system modeling and verification,” in Proceedings of the
2009 Third IEEE International Symposium on Theoretical Aspects of
Software Engineering, ser. TASE ’09. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 127–135.

[16] C. A. R. Hoare, “Communicating Sequential Processes,” Communica-
tions of the ACM, vol. 21(8), pp. 666–677, Aug 1978.

[17] P. Gregory, D. Long, and M. Fox, “A meta-CSP model for optimal plan-
ning,” in Proceedings of the 7th International conference on Abstraction,
reformulation, and approximation, ser. SARA’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 200–214.

[18] A. Reinefeld, “Complete solution of the eight-puzzle and the benefit of
node ordering in IDA*,” in Proceedings of the 13th international joint
conference on Artificial intelligence. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1993, pp. 248–253.

