Symbolic Optimization with SMT Solvers

 Aws Albarghouthi / UToronto
 Marsha Chechik / UToronto
 Arie Gurfinkel / CMU
 Zachary Kincaid / UToronto
 Yi Li / UToronto

 POPL 2014 / San Diego, CA
SMT Explosion!

SMT solvers appear everywhere. Why?

• Amazing performance!

• Support a large range of logical theories

• We’ve become really good at casting problems as SMT queries!
SMT Applications

Verification
 • Checking VCs, invariant generation, etc.

Bug finding
 • Symbolic execution, BMC, fuzzing, etc.

Synthesis
 • Circuit synthesis, sketching, superoptimization, etc.

Functional programming
 • Liquid types
SMT Applications

Verification
• Checking VCs, invariant generation, etc.

Bug finding
• Symbolic execution, BMC, fuzzing, etc.

Synthesis
• Circuit synthesis, sketching, superoptimization, etc.

Functional programming
• Liquid types

~22% of POPL’14 papers mention SMT solvers!
How are SMT Solvers Used?

Finding models

• **Bug finding:** erroneous traces

• **Synthesis:** program/circuit

Proving unsatisfiability (validity)

• **Verification:** VC holds

• **Refinement types:** subtyping relation holds
How are SMT Solvers Used?

What about optimization?
Optimal Models

$\varphi \xrightarrow{\text{SMT solver}} m \models \varphi$
Optimal Models

\[\varphi \rightarrow SMT \text{ solver} \rightarrow m \models \varphi \]

\[\varphi, f \rightarrow \text{Optimizing SMT solver} \]
Optimal Models

\[\varphi, f \xrightarrow{\text{Optimizing SMT solver}} m \models \varphi \]

\[\varphi \xrightarrow{\text{SMT solver}} m \models \varphi \]

\[\max f(m) \]
Why Should You Care?

Plenty of applications for optimization:

• *Numerical invariant generation*

• *Counterexample generation*

• *Program synthesis*

• *Constraint programming*

• *... and many others*
Problem Statement

\(\varphi \in T \cup LRA \)

signature disjoint
Problem Statement

<table>
<thead>
<tr>
<th>$\varphi \in T \cup LRA$</th>
<th>E.g.: $3x + 2y \leq 0 \lor z \geq 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>signature disjoint</td>
<td></td>
</tr>
</tbody>
</table>
Problem Statement

\[\varphi \in \mathcal{T} \cup \mathcal{LRA} \]

signature disjoint

Set of linear objective functions: \(f_1, \ldots, f_n \)

E.g.: \(x + 2y, z \)

E.g.: \(3x + 2y \leq 0 \lor z \geq 3 \)
Problem Statement

\[\varphi \in T \cup LRA \quad \text{signature disjoint} \]

E.g.: \[3x + 2y \leq 0 \lor z \geq 3 \]

Set of linear \textit{objective functions}: \(f_1, \ldots, f_n \)

E.g.: \(x + 2y, z \)

\textbf{Goal: find assignments} \(m_1, \ldots, m_n \)

\[m_1 \models \varphi \text{ s.t. } \max f_1(m_1) \]

\[\ldots \]

\[m_n \models \varphi \text{ s.t. } \max f_n(m_n) \]
Problem Statement

\[\varphi \in T \cup LRA \]

Set of linear \textit{objective functions}: \(f_1, \ldots, f_n \)
Problem Statement

\[\varphi \in T \cup LRA \]
Set of linear *objective functions*: \(f_1, \ldots, f_n \)
Problem Statement

φ ∈ $T \cup LRA$

Set of linear **objective functions**: f_1, \ldots, f_n

$f_1 \leq k_1$

$f_2 \leq k_2$
Problem Statement

\(\varphi \in T \cup LRA \)

Set of linear **objective functions**: \(f_1, \ldots, f_n \)
Problem Statement

\[\varphi \in T \cup LRA \]

Set of linear \textit{objective functions}: \(f_1, \ldots, f_n \)

Find strongest \(\bigwedge_{i \in [1,n]} f_i \leq k_i \) that contains \(\varphi \)
Challenges & Contributions

Symba: an SMT-based optimization algorithm

- Non-convex optimization
- Linear arithmetic modulo theories
- Multiple independent objectives
- SMT solver as a black box
Outline

Symba by example

Application and evaluation

What’s next?
Example

\[\varphi \equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4) \]

Objective functions: \(\{y, x + y\} \)
Example

\[\varphi \equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4) \]

Objective functions: \(\{y, x + y\} \)
Example

\[\varphi \equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4) \]

Objective functions: \(\{y, x + y\} \)

Optimal Solution:

\[y \leq 3 \land x + y \leq \infty \]
Example

\[\varphi \equiv 1 \leq y \leq 3 \land (1 \leq x \leq 3 \lor x \geq 4) \]

Objective functions: \(\{y, x + y\} \)

Optimal Solution:
\[y \leq 3 \land x + y \leq \infty \]
Example

Objective functions: \(\{y, x + y\} \)

Under-approximation of optimal solution: false
Example

Objective functions: \(\{y, x + y\} \)

Under-approximation of optimal solution: \textit{false}

Phase 1: Grow under-approximation

Illustration of \textit{YMBA} on a 2-D example.
Example

Objective functions: \(\{y, x + y\} \)

Under-approximation of optimal solution: \textit{false}

Phase 1: Grow under-approximation
Example

Objective functions: \(\{ y, x + y \} \)

Under-approximation of optimal solution: \(false\)

Phase 1: Grow under-approximation

New under-approx:
\[
\begin{align*}
y & \leq 2 \land \\
x + y & \leq 4
\end{align*}
\]
Example

Objective functions: \{y, x + y\}

Phase 2: Check if \(y \) is unbounded
Example

Phase 2: Check if \(y \) is unbounded

Pick point \(p_1 \)

Find point \(p_1' \) s.t.
- increases value of \(y \)
- sits on the same boundaries

![Illustration of S](image)

Formulas

3.1 Definitions

Paper and formalize S

then \(U \)

\(\vdash \)

\(\models \)

Geometrically, \(G \)

where

\(y \)

represents a local maximum.

\(\) cannot apply \(U \)

after applying \(U \)

\(p \)

represents the maximum value of \(y \)

\(y \)

is unbounded, \(S \)

represents.

Example

phase

\(p \)

is a valuation of the variables of \(q \)

Combinations of Theories

OPT

For clarity of presentation, we treated

\(T \)

\(\vdash \)

\(\models \)

\(::= \)

\(\) is an over-approximation of

\(\) is invariant); and

\(\) is an approximation of

\(\) computes
Example

Phase 2: Check if y is unbounded

Pick point p_1

Find point p_1' s.t.

- increases value of y
- sits on the same boundaries

Find point p_2 s.t.

- increases value of y
- sits on more boundaries

Figure 1.
Atoms $\vdash y$

Illustration of YMBA

In this case, it might find the point p s.t. $\exists \gamma \models \rho$, where γ is a valuation of the variables of S'. S' becomes NBOUNDED and terminates with the optimal solution $(p_0, \text{S'} \models \text{NBOUNDED})$. Geometrically, $\text{USH} \cdot p_0 \cdot \text{LOCAL} < y$ and increases value of y. As a result, USH sits on the boundaries $\forall y \in \text{Vars}$. YMBA computes opt to denote the set of all satisfying assignments γ. USH sits on the boundaries $\forall y \in \text{Vars}$.
Example

Phase 2: Check if y is unbounded

Pick point p_1

Find point p'_1 s.t.
- increases value of y
- sits on the same boundaries

Find point p_2 s.t.
- increases value of y
- sits on more boundaries

Figure 1. Illustration of $YMBA$

Figure 2. Optimal Solutions
Example

Phase 2: Check if y is unbounded

Pick point p_1

Find point p'_1 s.t.
- increases value of y
- sits on the same boundaries

Find point p_2 s.t.
- increases value of y
- sits on more boundaries

New under-approx:
\[
\begin{align*}
y &\leq 3 \\
x + y &\leq 6
\end{align*}
\]
Example

Objective functions: \(\{ y, x + y \} \)

Phase 1: Grow under-approximation

\[
\text{Example}
\]

Objective functions: \(\{ y, x + y \} \)

Phase 1: Grow under-approximation
Example

Objective functions: $\{y, x + y\}$

Phase 1: Grow under-approximation
Example

Objective functions: \(\{ y, x + y \} \)

Phase 1: Grow under-approximation

New under-approx:
\[
\begin{align*}
y & \leq 3 \\
x + y & \leq 8
\end{align*}
\]
Example

Objective functions: \(\{y, x + y\} \)

Phase 2: Check if \(x + y \) is unbounded
Example

Objective functions: \{y, x + y\}

Phase 2: Check if \(x + y\) is unbounded

Can keep increasing without hitting a boundary
Example

Objective functions: \(\{ y, x + y \} \)

Phase 2: Check if \(x + y \) is unbounded

Can keep increasing without hitting a boundary

Optimal solution:
\[
\begin{align*}
y & \leq 3 \\
x + y & \leq \infty
\end{align*}
\]
Symba in a Nutshell

Alternate between two phases

- *Sampling*: grow under-approximation
- *Check if objective function is unbounded*
Symba in a Nutshell

Alternate between two phases

- *Sampling*: grow under-approximation
- *Check if objective function is unbounded*

Fair alternation ensures completeness
Symba in a Nutshell

Alternate between two phases

- *Sampling*: grow under-approximation
- *Check if objective function is unbounded*

Fair alternation ensures completeness

Algorithm also maintains an over-approx

- See *paper*
Symba Abstractly

Arrange infinitely many models into finitely many boundary classes
Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 in same boundary class s.t.

$f(p_1) < f(p_2)$

no p_3 exists in stronger boundary class where $f(p_3) \geq f(p_2)$
Symba Abstractly

Arrange infinitely many models into finitely many **boundary classes**

Find p_1, p_2 in same boundary class s.t.

$f(p_1) < f(p_2)$

no p_3 exists in stronger boundary class where $f(p_3) \geq f(p_2)$

Necessary and sufficient condition to prove unboundedness of f
Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

Find \(p_1, p_2 \) in same boundary class s.t.
\[
f(p_1) < f(p_2)
\]
no \(p_3 \) exists in stronger boundary class where \(f(p_3) \geq f(p_2) \)

Necessary and sufficient condition to prove unboundedness of \(f \)

Symba searches through lattice of classes!
Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

Find \(p_1, p_2 \) in same boundary class s.t.
\[
f(p_1) < f(p_2)
\]
no \(p_3 \) exists in stronger boundary class where \(f(p_3) \geq f(p_2) \)

Necessary and sufficient condition to prove unboundedness of \(f \)

Symba searches through lattice of classes!
Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

Find \(p_1, p_2 \) in same boundary class s.t.
\[
f(p_1) < f(p_2)
\]
no \(p_3 \) exists in stronger boundary class where \(f(p_3) \geq f(p_2) \)

Necessary and sufficient condition to prove unboundedness of \(f \)

Symba searches through lattice of classes!
Symba Abstractly

Arrange infinitely many models into finitely many boundary classes

Find p_1, p_2 in same boundary class s.t.

$\begin{align*}
 f(p_1) &< f(p_2) \\
 \text{no } p_3 \text{ exists in stronger boundary class where } & f(p_3) \geq f(p_2)
\end{align*}$

Necessary and sufficient condition to prove unboundedness of f

Symba searches through lattice of classes!
Application

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.)*
 [Sankaranarayanan et al., VMCAI‘05]

- *Complex transition relations (multiple paths)*
Application

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.*)*
 [Sankaranarayanan et al., VMCAI‘05]

- *Complex transition relations (multiple paths)*

\[S \]

Initial states
Application

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains (intervals, octagons, etc.)*
 [Sankaranarayanan et al., VMCAI‘05]

- *Complex transition relations (multiple paths)*

\[S \rightarrow T \]

Initial states
Transition relation (multiple paths)
Application

Implemented Symba using Z3

Application: Computing precise abstract transformers:

- TCM domains (intervals, octagons, etc.)
 [Sankaranarayanan et al., VMCAI‘05]

- Complex transition relations (multiple paths)

\[S \land T \]

Initial states

Transition relation (multiple paths)
Application

Implemented Symba using Z3

Application: Computing *precise abstract transformers*:

- *TCM domains* (intervals, octagons, etc.)
 [Sankaranarayanan et al., VMCAI‘05]
- *Complex transition relations* (multiple paths)

\[S \land T \]

Initial states
Transition relation (multiple paths)

Objective functions:

Intervals domain:

\[\{ x, -x, \ldots \} \]
Application

 Implemented Symba using Z3

 Application: Computing *precise abstract transformers*:

 - *TCM domains* (intervals, octagons, etc.)
 [Sankaranarayanan et al., VMCAI’05]
 - *Complex transition relations* (multiple paths)

\[
S \land T
\]

Initial states

Transition relation (multiple paths)

Objective functions:

Intervals domain:
\[
\{ x, -x, \ldots \}
\]

Octagons domain:
\[
\{ x + y, \ldots \}
\]
Evaluation

Instrumented UFO [CAV’12] to generate abstract post queries from SV-COMP programs

• Took the ~1000 hardest benchmarks
• Average # of variables: ~900 (max: ~19,000)
• Average # of objective functions: 56 (max: 386)
Evaluation

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR’12]
- Modifies SIMPLEX within SMT solver to find a local optimum
- Handles a single objective function at a time
Evaluation

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR’12]

- Modifies SIMPLEX within SMT solver to find a local optimum
- Handles a single objective function at a time

Figure 5.

Table 2.

<table>
<thead>
<tr>
<th></th>
<th>OptMathSAT</th>
<th>SymbaIR (40)</th>
<th>SymbaIR (60)</th>
<th>SymbaIR (100)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#SMT calls</td>
<td>132,051</td>
<td>84,814</td>
<td>20,854</td>
<td>60</td>
</tr>
<tr>
<td>Time (s)</td>
<td>6,867</td>
<td>3,841</td>
<td>164,156</td>
<td>577,068</td>
</tr>
<tr>
<td>Opt-Z3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ATH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MPL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SymbaIR's Configurations

- (40) handles a single objective function at a time.
- (60) and (100) capture the results of running SymbaIR with different timeouts.

Diagram:

The diagram shows the performance comparison between OptMathSAT and Symba (vanilla). The x-axis represents Symba (vanilla) time in seconds, and the y-axis represents OptMathSAT time in seconds. The scatter plot indicates a linear relationship between the two, with a notable increase in time for OptMathSAT as the complexity of the benchmarks increases.
OptMathSAT

Compared w/ OptMathSAT [Sebastiani & Tomasi IJCAR’12]

- Modifies SIMPLEX within SMT solver to find a local optimum
- Handles a single objective function at a time

Evaluation

Time in s / benchmark

- **OptMathSAT**
- **Symba (vanilla)**

Symba outperforms OptMathSAT

Average speedup: 2.2x
Evaluation

Implemented [Sebastiani & Tomasi, IJCAR’12] within Z3

- Extended it to optimize multiple objectives simultaneously

Our OptMathSAT (in Z3)

Time in s / benchmark

Evaluation

Implemented [Sebastiani & Tomasi, IJCAR’12] within Z3

- Extended it to optimize multiple objectives simultaneously

Our OptMathSAT (in Z3)

Time in s / benchmark

Evaluation

Implemented [Sebastiani & Tomasi, IJCAR’12] within Z3

- Extended it to optimize multiple objectives simultaneously

Our OptMathSAT (in Z3)

Time in s / benchmark

Evaluation

Implemented [Sebastiani & Tomasi, IJCAR’12] within Z3

- Extended it to optimize multiple objectives simultaneously

Our OptMathSAT (in Z3)

Time in s / benchmark

Evaluation

Implemented [Sebastiani & Tomasi, IJCAR’12] within Z3

- Extended it to optimize multiple objectives simultaneously

Our OptMathSAT (in Z3)

Time in s / benchmark

Evaluation

Implemented [Sebastiani & Tomasi, IJCAR’12] within Z3

- Extended it to optimize multiple objectives simultaneously

Our OptMathSAT (in Z3)

Time in s / benchmark

Evaluation

Implemented [Sebastiani & Tomasi, IJCAR’12] within Z3

- Extended it to optimize multiple objectives simultaneously

Our OptMathSAT (in Z3)

Time in s / benchmark
Evaluation

Implemented [Sebastiani & Tomasi, IJCAR’12] within Z3

- Extended it to optimize multiple objectives simultaneously

<table>
<thead>
<tr>
<th></th>
<th>Time in s / benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Our OptMathSAT (in Z3)</td>
<td></td>
</tr>
<tr>
<td>Symba (vanilla)</td>
<td></td>
</tr>
<tr>
<td>Symba consistently slower</td>
<td>than OptMathSAT(Z3)</td>
</tr>
</tbody>
</table>

Our OptMathSAT (in Z3)

Symba consistently slower than OptMathSAT(Z3)
Evaluation

Optimized Symba

- Spends 40% of the time (at most) performing unbounded checks
- Uses a modified, “locally optimal” Z3 for growing under-approx
Evaluation

Optimized Symba
- Spends 40% of the time (at most) performing unbounded checks
- Uses a modified, “locally optimal” Z3 for growing under-approx

Our OptMathSAT (in Z3)

Time in s / benchmark

Symba (optimized)
Evaluation

Optimized Symba

- Spends 40% of the time (at most) performing unbounded checks
- Uses a modified, “locally optimal” Z3 for growing under-approx

![Scatter plot showing Time in s / benchmark vs Symba (optimized) with 1.5x speedup over OptMathSAT(Z3) No timeouts with Best Symba config. (see paper for more)]
Conclusion

Symba: non-convex optimization

- Efficient SMT-based implementation
- Many applications in program analysis and beyond

Future work

- Integer arithmetic
- Non-linear arithmetic
- Parallelization
Conclusion

Symba: non-convex optimization

- Efficient SMT-based implementation
- Many applications in program analysis and beyond

Future work

- Integer arithmetic
- Non-linear arithmetic
- Parallelization

bitbucket.org/arieg/ufo