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Software change histories are results of incremental updates made by developers. As a byproduct of the

software development process, change history is surprisingly useful for understanding, maintaining and

reusing software. However, traditional commit-based sequential organization of version histories lacks

semantic structure and thus is insufficient for many development tasks that require high-level, semantic

understanding of program functionality.

In this dissertation, we propose a new semantics-based view of software version histories, where a set

of related changes satisfying a common high level property (also known as slicing criteria) is recognized

as a semantic history slice. As one concrete instantiation, test cases exercising a software functionality

can be used as slicing criteria to identify changes implementing the particular functionality.

Specifically, we present a family of automated techniques which analyze the semantics of historical

changes and assist developers in many practical software evolution tasks. First, we introduce CSlicer,

an efficient static history slicing algorithm which requires only a one-time effort for compilation and

test execution. It mostly relies on static analysis of dependencies between change sets and is therefore

inexpensive in terms of running time but can be imprecise. Second, we present Definer, a dynamic

history slicing algorithm based on delta refinement. It executes tests multiple times and observes the test

results while attempting to shorten the history slices iteratively. The semantic slices found by the dynamic

approach are guaranteed to be minimal, but the running time can be much longer. Finally, we describe

the design and implementation of a Web-based semantic slicing framework CSlicerCloud which aims to

find balance between performance and precision, unifies different history slicing algorithms and provides

software developers a flexible and ready-to-use environment for various evolution management tasks.

We have successfully applied the history slicing techniques in many development tasks including

creating focused pull requests, back-porting bug fixes, locating feature implementations and building

feature models to assist evolution understanding. For validation, we evaluate our approaches on a

benchmark of developer-annotated version history instances obtained from real-world open-source software

projects from GitHub.
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Chapter 1

Introduction

“Everything changes and nothing stands
still.”

— Heraclitus

1.1 Preamble

Real software is seldom created “all at once” and changes are inevitable [Som04]. Software development is
typically an incremental and iterative process where many program versions are produced, each advancing
and improving on the previous ones. For example, new requirements, errors and bugs emerge while
the use cases and the operating environment evolve during the lifespan of a software system. Software
developers often take advantage of the knowledge and insights they gain over time to repair, enhance and
optimize earlier versions of the system through incremental updates.

Managing a large software system is hard, and managing a fast-evolving one is extremely challenging.
The amount of change made to an actively maintained code base can be enormous. According to Potvin
and Levenberg [PL16], in 2014, approximately 15 million lines of code (almost equivalent to the size of the
Linux kernel) were changed in the Google repository on a weekly basis. As of January 2015, the Google
code base had approximately 35 million change sets spanning the company’s entire 18-year existence.
Our knowledge about the system at any given point of time is no longer relevant, because it becomes
obsolete too rapidly.

The history of changes accumulated during the development process has become a crucial artifact
for understanding and analyzing software systems from an evolutionary point of view. The information
embedded in change sets goes beyond lines added and removed. Modern version control systems record
meta data such as timestamps, log messages, developer conversations, and test results along with code
edits. Many studies have been conducted to analyze and extract useful information from software change
histories. For example, trends and patterns observed in the past changes can be used to estimate quality
of new changes [KWZ08] and gain insights about the overall system [WC10].

Existing history-based information retrieval approaches are mostly reduced to change classification
– given a set of changes whose categories are already known, find a good predictor that identifies the
right category for a given new change. The classification approaches use the statistical power of the
historical data to separate the buggy changes from the clean ones [WH05, KWZ08], the non-essential

1
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changes from the essential ones [KR11], and the unrelated changes from the related ones [HZ13], etc. A
similar idea is also used to learn high-level properties of the base system to which changes are applied.
Some notable ones include characterizing architectural evolution [ZDZ03, WC10], optimizing development
process [BHEN13], and identifying project specific API usage patterns [NHC+16] as well as developer
expertise [SJ12, CFSM16].

Dealing with the sheer amount of change data and distilling useful information is only one aspect
of effective evolution management. In fact, a wide range of software engineering tasks cannot be easily
supported with only the data-mining-style interpretation of historic changes. Particularly, one needs to
cope with the constant instability caused by local changes to ensure global reliability. Conversely, one
has to break down global functional goals into local steps of individual changes to move forward. These
tasks require a clear recognition of the connections between changes and the overall system. The code
changes should therefore be put into the context of programing languages and functional requirements
with a deeper understanding of the semantics of changes, more precise modeling of system properties,
and a rigorous reasoning about their interactions.

Numerous tools and techniques have been proposed to alleviate the gap between local changes and
global system properties [Arn96, FRC81, Zel99, PDHP08, YQTR15, LVH10, SFS12]. This dissertation
follows this long and rich path and focuses on analysis of program changes in histories. In the rest of this
chapter, we look at some related research over the past few decades (Section 1.2). We then state our
main contributions and discuss how this dissertation advances the state of software change analysis by
contributing novel algorithms and providing support for everyday software developing tasks (Section 1.3).

1.2 Taming Changes in Fast-Evolving Systems

A clear understanding of the interactions between incremental changes and their underlying base system
is the prerequisite for many software engineering tasks. For example, developers need to be aware of
the consequences and ripple effects of their changes before committing and deploying the changes to
the system. On the other hand, when an error is manifested in the system, it is useful to pinpoint the
changes that might have caused the failure before a repair is attempted. Over the years, people have
developed many techniques such as change impact analysis [Arn96], regression testing [FRC81], upgrade
checking [SFS12], and delta debugging [Zel99], to support such activities. In this section, we provide a
detailed (but of course incomplete) overview of the recent advances.

As shown in Figure 1.1, a history of changes can be seen as a stack of versions (or snapshots) of
the base system, i.e., 〈v0, . . . , vi−1, vi, vi+1, . . . , vn〉, where v0 is the base version. The set of differences
between two consecutive snapshots is called a change set (or a delta). Essentially, it is a function
transforming one snapshot into another. Therefore, a history can also be seen as a sequence of deltas,
i.e., 〈∆1, . . . ,∆i,∆i+1, . . . ,∆n〉 and vi+1 = ∆i+1(vi). There are two streams of research focusing on
slightly different aspects of change histories, and we categorize them as change-centric and version-centric
techniques.

1.2.1 Change-Centric Techniques

Change-centric techniques target at a spectrum of program versions and treat deltas as first-class citizens.
The goal is to understand relationships between specific changes and their connections to high-level
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Figure 1.1: Snapshots and deltas.

system properties. Examples include identifying dependencies between changes and deciding whether a
change could affect the result of a test suite or cause a bug in the system.

Change Impact Analysis

Change Impact Analysis (IA) [Arn96] solves the problem of determining potential consequences of source
code modifications. The consequences are usually given as an impact set containing code elements that
might be affected by the change. Existing research on IA can be roughly divided into three categories –
the static [SLL+15], dynamic [LR03, OAL+04] and combined [OAH03, RST+04, ZKK11] approaches.

The static IA approaches proposed to date rely on static analysis of program dependencies and call
graphs in a style that is very similar to forward program slicing [Wei81]. Like that of any other static
technique, the analysis result of static IA is sensitive to various parameters such as the granularity level
of changes, and the precision of dependency and pointer analysis [AR11]. Fine tuning parameters to
achieve the best cost-effectiveness can be a tricky task. For example, the precision of the control and
data dependency used in the slicing algorithm is closely related to the size of the output impact set: an
imprecise dependency analysis can be over-conservative, i.e., resulting in large impact sets with many
false positives. On the other hand, a more precise algorithm might be too expensive. Acharya and
Robinson [AR11] propose a way to combine analyses with different level of precisions to achieve good
cost-effectiveness.

The dynamic approaches rely on observable data, for instance, execution traces collected from running
a test suite. Dynamic IA techniques are generally more efficient than their static counterparts. But
naturally, the impact estimates computed in this manner reflect only program behaviors observed in
limited runtime traces; thus, they under-approximate by definition. However, these estimates may be
particularly useful in cases where safety is not required because they provide more precise information
about impact – relative to a specific program behavior – than static techniques [OAL+04].

Some recent work uses the combined approach. For example, Ren et al. [RST+04] introduced a tool,
Chianti, for change impact analysis of Java programs. Chianti takes two versions of a Java program and
a set of tests as input. First, it builds dynamic call graphs for both versions, before and after the changes,
using the test suite. Then it computes a set of atomic changes defined at the method level by comparing
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the two program snapshots. Finally, it uses the old call graph along with the classified atomic changes
to predict the tests that might be affected, and uses the new call graph to select the affecting changes
that might cause test failures. FaultTracer [ZKK11] improved the precision of Chianti by extending the
standard dynamic call graph with field access information.

Regression Testing

As a way of reestablishing confidence in software correctness, regression testing [FRC81] reruns previously
completed tests whenever a change is made to a piece of software. We say that a change introduces a
regression fault if any one of the regression test cases fails.

Regression testing can be expensive if the test suite is large and tests take a long time to run. Regression
test selection and prioritization techniques [GHK+01, KP02, YH12, GMS+14] analyze incremental changes
to a code base and choose to run only those tests whose behaviors may be affected by the latest changes
in the code. By focusing on a small subset of the regression test suite, the testing process runs faster and
can be more tightly integrated into the development process. Substantial research has been done on this
topic [ERS10], and many of the approaches use ideas similar to change impact analysis.

Gligoric et al. [GMS+14, GEM15] considered a more practical model for change histories and general-
ized traditional IA-like test selection techniques to distributed version histories. Software change histories
in a distributed Software Configuration Management (SCM) system often have many branches; therefore,
they can be modeled as directed acyclic graphs. Their novel treatment of branch merging commands
allowed selecting test sets which are safe and substantially smaller than the ones computed by previous
techniques.

The power of traditional regression testing in exposing regression faults is limited by the quality of
the existing test suites. Due to the high cost of building thorough test suites, the tests used in practice
tend to exercise only a small fraction of the program’s functionality and may be inadequate for testing
changes in a program. Behavioral regression testing [OX08, JOX10] identifies behavioral differences
between two versions of a program through dynamic analysis. First, it generates a large number of test
inputs that focus on the changed parts of the code. Second, it runs the generated test inputs on the old
and new versions of the code and identifies differences in the observable behaviors. Finally, it analyzes
the identified differences and presents them to developers. With additional tests generated, behavioral
regression testing can potentially expose more bugs due to faulty changes.

Delta Debugging

Software debugging and, specifically, fault localization, is one of the most time-consuming processes in
software development [AA14]. Programmers spend significant amount of time locating root causes of
failures. Delta debugging [Zel99, ZH02] is one of the automated fault localization techniques that simplify
and isolate a minimal cause of a given test failure by analyzing historic changes.

Given two program versions and a test suite such that the tests pass in the older version and fail in
the newer one, delta debugging finds an approximated minimal set of changes (deltas) that contribute to
the test failure. The high-level idea is to repeatedly partition the changes and opportunistically reduce
the search space when the target tests fail on one of the partitions. The divide-and-conquer-style of
search continues with increasing partition granularities until a 1-minimal [ZH02] partition is reached.
The 1-minimal set produced guarantees to manifest the erroneous behaviors whereas removing any single
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change from it would not. The algorithm applies to program inputs as well; it can also be used to find
small failure-inducing inputs for a buggy program.

Later, Misherghi and Su [MS06] proposed Hierarchical Delta Debugging (HDD) – an extension of
the original delta debugging idea which considers the structures of the changed data and improves
performance as well as solution quality. Instead of treating input space as a flat atomic list, HDD assumes
tree-structured data and performs partitions with the underlying structures in mind. The HDD algorithm
has an arguably higher chance of success in finding the right partitions for structured inputs such as
programs, HTML/XML files, video codecs, and UI interactions.

1.2.2 Version-Centric Techniques

Version-centric techniques mostly concern the properties of particular snapshots of a system in the
presence of changes. The umbrella term differential program analysis [WE03] is used for analysis of two
related programs in order to determine their functional difference or prove their semantic equivalence. The
programs considered can either be two versions in a temporal order or even two distinct representations of
the same program, e.g., source code vs. binary. Using one program as a specification, one could establish
relative correctness for the other.

Differential Symbolic Execution

Person et al. introduced the concept of Differential Symbolic Execution (DSE) [PDHP08] which is an
adaptation of the classic symbolic execution technique [Kin76] for analyzing program changes. DSE is
capable of characterizing the semantics of a set of program changes in terms of behavioral difference. In
contrast to a source code line difference which consists of a set of added and removed lines and carries
little program semantics, a behavioral difference is a more precise description of the variations in how
program executes due to changes. Behavioral difference can be used to produce better version differencing
information. For example, formatting and minor syntactic changes may not alter the meaning of a
program but cannot be distinguished by line differences. Subsequent maintenance activities (such as
program documentation, regression testing, fault localization and program summarization) that rely on
change analysis to identify the effects of a change may, consequently, do large amounts of unnecessary
work. DSE performs standard symbolic execution on both program versions, before and after the change,
and either reports that the two versions are equivalent or characterizes the behavioral differences by
identifying the sets of inputs that cause different effects.

Directed incremental Symbolic Execution (DiSE) [PYRK11] builds on DSE by adding static impact
analysis for locating possible locations where the execution may vary. The insight of DiSE is to
leverage the information extracted from the cheaper change impact analysis to enable more efficient
symbolic execution of programs as they evolve. Godefroid et al. introduced incremental compositional
symbolic execution [GLRG11], and the key novelty is compositionality – the search process can be made
compositional by memorizing symbolic execution sub-paths as test summaries which are reusable during
the search, resulting in a search algorithm that can be exponentially faster than a non-compositional
one [God07].

Later, Cadar and Palikareva proposed shadow symbolic execution [CP14] which runs two different
program versions in the same symbolic execution instance, with the old version effectively “shadowing”
the new one, in order to effectively drive execution toward the behavior that has changed from one
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version to the other. Instead of relying on static analysis for locating changed locations, shadow symbolic
execution uses precise runtime information about the execution of both versions for identifying divergent
behaviors. This could provide important opportunities for pruning large parts of the program space and
potentially significantly improve the scalability of differential symbolic execution techniques.

Relative Specification and Verification

As an alternative to the behavior-based change semantics, relative specification is another mechanism for
capturing differences between two program versions. By specifying properties over variables from both
programs, one can explicitly express intended equivalences or differences as precise logical formulas and
therefore obtain verifiable relative correctness.

In 2012, Yi et al. introduced software change contracts [QYR12, YQTR15]. They designed a
customized JML-like [BCC+05] change contract language in order to write specifications for changes in
Java programs. Unlike conventional program contract languages which specify pre- and post-conditions
of methods, the change contract language is able to describe how post-conditions of the same method
in two consecutive versions relate to each other, under certain pre-conditions. Exceptional behavior, as
well as structural changes (e.g., insertion and removal of parameters or fields) and refactoring, are also
supported.

Differential Assertion Checking (DAC) [LMSH13], proposed by Lahiri et al., uses mutual specifications
to specify relative safety. The goal is to check whether the updated version is as safe as the old version
whose safety had been previously established. Given two program snapshots v0 and v1, and a set of
assertions all of which hold at v0, DAC checks whether these assertions still hold at v1. Unlike in DSE,
behavioral preservation does not have to be guaranteed across versions, and only a weaker form of
equivalence with respect to assertions is checked.

When verifying the correctness of relative specifications, both change contracts and differential
assertion checking use a similar approach of constructing a composed program [LMSH13, YQTR15]. A
composed program incorporates both versions of the target program along with their relative specifications,
so that verification conditions can be generated and verified by a theorem prover using standard software
verification techniques [DKW08]. The verified mutual specifications can then serve as a certificate for the
relative safety of the updated program.

Incremental Upgrade Checking

Given two program versions and a safety proof for the original one, incremental upgrade checking [SFS12]
adapts the earlier proof artifacts to prove or disprove safety for the updated version. In essence, it
solves a similar problem as DAC, attempting to prove a property-specific equivalence of two program
versions: whether both versions satisfy a property P . However, incremental upgrade checking focuses on
reducing verification costs, while DAC and other relative specification verification techniques emphasize
establishing cross-version relationships.

Sery et al. [SFS12] proposed an algorithm based on function summaries. Their algorithm maintains a
function summary (a logical formula which constrains the inputs and outputs of a function) for each
procedure such that the summary over-approximates the behaviors of the procedure. When a newer
version arrives, one can locally check if the summaries are still valid over-approximations of the updated
procedure. The local checks are much cheaper compared with re-verification of the whole program. If the
check succeeds, then the upgrade is safe. If not, the check has to be propagated upwards to the caller of
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the modified functions. As soon as safety is reestablished, new summaries are generated for all functions
for future reference. If the check fails at the root of the call tree, then the upgrade is unsafe, and an error
trace is reported.

Later, Fedyukovich et al. [FGS14] introduced a new algorithm which reuses safe inductive invariants
from earlier proofs. An inductive invariant ψ for the original version v0 is a labeling of its Control Flow
Graph (CFG), so that ψ (1) contains all initial states, and (2) is closed under the transition relation
for program v0. The inductive invariant ψ is also safe if it does not intersect with an error state. The
proposed upgrade verification algorithm attempts to construct a new safe inductive invariant ϕ for the
updated version v1 by first weakening ψ to π such that π is inductive for v1, and then strengthening π to
ϕ such that ϕ is also safe for v1. If such a ϕ can be found, then it effectively becomes a safety proof for
v1. The algorithm is applied to verify the correctness of compiler optimizations.

Yang et al.’s property differencing work [YKPR14] also aims to reduce verification costs for incremental
checking, but approaches the problem from a different angle. Rather than reusing proof artifacts, they
partition the analysis of code and property specifications and compute logical differences between the
initial and updated properties. Then they rely on change impact analysis to reduce the number of
properties needed to be re-verified. Property differencing is complementary to other reuse-based techniques
and can be applied in combination with them to achieve better overall performance.

1.2.3 Gaps Identified in This Thesis

While several solutions, from both the change-centric and version-centric world, have been proposed to
establish the connections and interactions between changes and the underlying base systems, a number
of important software evolution management tasks remain challenges for practitioners.

The History Restructuring Challenge

Software Configuration Management (SCM) systems, such as Git [Git16b], SVN [SVN16] and Mercu-
rial [Mer16], are commonly used for hosting software development artifacts. They allow developers to
periodically submit their ongoing work, storing it as an increment over a previous version. Such an
increment is usually referred to as a commit (Git and SVN) or a change set (Mercurial). Commits are
stored sequentially and ordered by their time stamps, so that it is convenient to trace back to any version
in the history. Branching is another construct provided by most modern SCM systems. Branches are
used, for example, to store a still-in-development prototype version of a project or to store multiple
project variants targeting at different customers.

However, the sequential and manually-managed organization of changes is inflexible and lacks support
for many tasks that require high-level, semantic understanding of program functionality [RKBC12].
Moreover, manually-managed change histories often mix together changes made for multiple development
activities, such as feature implementations, bug fixes, and performance improvements [HZ13, MSBE15],
which is suboptimal for many development scenarios. Thus, when submitting pull requests for review,
contributors should refrain from including unrelated changes as suggested by many project contribution
guidelines [Bit16, Lin17, Azu16]. Also, project maintainers commonly suggest to split a tangled code
patch into multiple ones, e.g., as indicated by these code review comments:1

1https://github.com/apache/commons-lang/pull/41

https://github.com/apache/commons-lang/pull/41
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“Okay, nevertheless we need to split this up because it is unrelated to the issue we’re talking
about.”

Therefore, it is necessary to be able to restructure change histories according to the specific development
scenarios at hand. In particular, being able to group and collapse, categorize and split changes with
precise semantic understanding can enable better project organization, easier code maintenance, and
more effective history analysis.

The Change Isolation and Migration Challenge

Developers often need to locate and migrate functionality, either for porting bug fixes between branches
or for propagating features from development branches to release branches. Back-porting is one example
of such a migration, when changes made in a newer version of software are ported to an earlier one in
order to provide the updated functionality to all users. Several SCM systems provide the mechanism of
“replaying” commits on a different branch, e.g., the cherry-pick command in Git. Yet, little support is
provided for matching high-level functionality with commits that implement it: SCM systems only keep
track of temporal and text-level dependencies between the managed commits. The job of identifying the
exact set of commits implementing the functionality of interest is left to the developers.

Even in very disciplined projects, when such commits can be identified by browsing their associated
log messages, the functionality of interest might depend on another functionality implemented on the
same branch. To ensure correct execution, that other functionality has to be identified and migrated
to the new branch as well which is a tedious and error-prone manual task [RKBC12]. For example,
consider the feature “make Groovy method blacklist truly append-only”, introduced in version 1.3.8 of
the Elasticsearch project [Ela15] – a real-time distributed data search and analytics framework written in
Java. This feature and its corresponding test cases were implemented in a single commit (#647327f4).
Yet, propagating this commit to a different branch will likely fail because one of the added statements
makes use of a field whose declaration was introduced in an earlier commit (#64d8e2ae).

Thus, it would be ideal to have a technique which identifies all dependencies of the target functionality
so that when they are isolated and migrated together, the resulting product preserves the desired
functionalities and behavioral correctness.

The Variability Reverse Engineering Challenge

Successful software evolves, more and more often, from a single system to a set of system variants
tailored to meet the similar yet different functional requirements from distinct markets and clients.
Software Product Line Engineering (SPLE) [PBL05, RC13b] is a software development paradigm which
promotes systematic software reuse by leveraging the knowledge about the set of available features (also
known as core assets [CN01]), relationships among the features (also known as feature models [Bat05])
and relationships between the features and software artifacts that implement them. This systematic
organization of the product portfolio represents variabilities explicitly and reduces the chance of code
duplications; therefore, it helps decrease development and maintenance effort and cost.

However, since it is difficult to foresee the needs of reuse a priori (and hence to design a software
product line upfront) in reality, software product variants often emerge ad-hoc, by means of duplication.
This is also known as the “clone-and-own” approach – a routinely used practice where developers create
a new product by copying/branching an existing variant and later modifying it independently from the
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original [DRB+13]. The reverse engineering process from an existing loosely organized product portfolio to
systematic SPLE approaches relies on the identification of the relationship between the features and their
corresponding implementation, which is the main goal of feature location techniques [DRGP13, RC13b].

Recently, a number of techniques for identifying features in the Software Product Line (SPL) context
have been proposed [XXJ12, ZFdSZ12, ASH+13b, ASH+13a, LAG+14, LLE13, TKW+13, LLHE16].
Most of such techniques are based on intersecting code of multiple product variants in order to identify
code fragments shared by variants with a particular feature. The identified code fragments can then be
attributed to that feature. These intersection-based techniques [LLHE16] operate in a static manner and
are effective when a large number of product variants (tens or even hundreds) are available.

Yet, we often cannot rely on the availability of a large number of variants, especially in the “clone-
and-own” scenario. Such cloned products are commonly maintained in a version control system, e.g.,
Git [Git16b]. Their number can be relatively small, e.g., 3-10 products. For such scenarios, the problem
of variability reverse engineering from software change histories remains a challenge.

1.3 Contributions of This Thesis

A common root of the challenges presented in the previous section is the missing connections between
individual changes and the high-level system semantics. In this dissertation, we consider the problem of
managing fast-evolving software systems with a new semantic-based view of version histories, where a set
of related changes satisfying a common high level functional property (slicing criteria) is known as a
semantics-preserving history slice. We hypothesize that the proposed organization of version histories is
effective in software evolution management tasks including software understanding, maintenance, and
reuse.

Figure 1.2 outlines our major contributions and high-level relationship between them. Major contri-
butions are shown in bold and surrounded by boxes along with their descriptions listed below. Some
contributions also come with automated tool support which we built to evaluate our techniques in
practical evolution management scenarios. Arrows between boxes indicate dependencies between different
parts. The following discussion explicates each individual contribution in detail.

Semantic History Slicing. Specifically, we studied the day-to-day evolution management practices
of open source software projects and identified many use cases of our proposed semantic-based history
organization. We formally defined the problem of semantic history slicing for software version histories
(see Chapter 3). Given a base program v0, its change history H, and a test suite T , semantic history
slicing computes a portion of H – a semantic slice H ′, such that after replaying H ′ on top of v0, the
functionalities captured in T are still preserved. Additionally, a minimal semantic slice is often more
desired in practical applications. We then developed two automated semantic history slicing techniques
including a static slicing approach and a dynamic slicing approach.

Static Slicing Technique. The static approach relies on the identification of the functional and
compilation dependencies with respect to the target slicing criteria. Functional dependencies correspond
to the changes that can directly affect the core functionality of interest. They are essential for ensuring
behavioral correctness of the migrated code. On the other hand, compilation dependencies are the changes
required by language rules to guarantee well-formedness of the functional core. The generic static history
slicing algorithm is independent of the underlying SCM infrastructure and tools. We also extended the
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Figure 1.2: The contributions of this dissertation and dependencies between them.

generic algorithm to bridge the gap between language semantic entities and text-based modifications, thus
making it applicable to existing text-based SCM systems. We implemented a prototype tool CSlicer
and applied it to several case studies on real world software projects.

Dynamic Slicing Technique. The dynamic approach operates based on the concept of change
significance which measures the importance of a specific change with respect to the target slicing criteria.
We proposed the dynamic delta refinement algorithm which estimates significance of changes and then
uses the significance ranking of changes to guide the iterative history partitions for reaching a minimal
semantic history slice. The dynamic delta refinement algorithm produces shorter history slices than the
static history slicing algorithm. Our prototype implementation Definer was evaluated on a benchmark
of version history instances collected from GitHub.

History Slicing Framework. In order to unify different semantic slicing algorithms and provide
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software developers a flexible and ready-to-use tool for various evolution management tasks, we built
a Web-based history slicing service framework CSlicerCloud. The front-end of the tool chain is a
Web application closely integrated with the GitHub APIs to allow access to users’ repository meta data
and project version histories. The user interface visualizes various options and slicing results to allow
more user friendly interactions with the underlying techniques. The back-end runs on a central server
and implements a number of important optimizations including parallelization and caching of slicing
results. It also seamlessly switches between different history slicing algorithms according to specific usage
scenarios.

Applications in Evolution Management. We successfully applied the semantic history slicing
techniques in many evolution management tasks including creating more focused pull requests (Chapter 4),
back-porting bug fixes (Chapter 4), locating feature implementations and building feature models to
assist evolution understanding (Chapter 7).

• Creating Focused Pull Requests. The first use case of semantic slicing is creating logically clean and
easy-to-merge pull requests. This directly addresses the “history restructuring challenge”. Often, a
developer works on multiple functionalities at the same time which could result in mixed commit
histories concerning different issues. However, when submitting pull requests for review, contributors
should refrain from including unrelated changes as suggested by many project contribution guidelines.
Despite the efforts of keeping the development of each issue on separate branches, isolating each
functional unit as a self-contained pull request is still a challenging task. For a particular pull
request, the test cases created for validation can be used as slicing criteria to identify relevant
commits from the developers’ local histories in their forked repositories.

• Porting Functionalities Across Versions. Another important use case of semantic slicing is to
identify the set of commits required for back-porting a functionality to earlier versions of a software
project. This directly addresses the “change isolation and migration challenge”. Even in very
disciplined projects, when such commits can be identified by browsing their associated log messages,
the functionality of interest might depend on earlier commits in the same branch. To ensure correct
execution of the desired functionality, all change dependencies have to be identified and migrated
as well, which is a tedious and error-prone manual task. Given test cases for the functionalities to
be ported, semantic slicing techniques can automatically compute the required changes and, at the
same time, effectively avoid including unnecessary changes.

• Identifying Features and Feature Relationships. Finally, to address the “variability reverse engineer-
ing challenge”, we applied semantic history slicing for identifying features and feature relationships
in cloned product line variants. This is important for a variety of software development tasks such as
sharing features between variants and refactoring cloned variants into single-copy software product
line (SPL) representations. The results show that semantic slicing can be an effective way of locating
feature-implementing changes in software version histories with the presence of feature tests. In
addition, the generated feature relationship graph is useful for understanding dependencies and
connections between features from an evolutionary view point. Each valid product has to respect
the inferred depends-on relationships in order to function correctly. The relates-to relationships
indicate connections between features. They often reveal underlying hidden dependencies which
are essential across the system.
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1.4 Organization

The rest of this dissertation is organized as follows:

• In Chapter 2, we formalize the main concepts required for describing our contributions.

• In Chapter 3, we look at the challenge of identifying semantically-related changes in histories from
an evolution management angle and provide a formal definition for the problem of semantic history
slicing.

• In Chapter 4, we present a static approach, CSlicer, for computing semantic history slices based
on change dependency analysis. (Based on [LRC15, LZRC17b].)

• In Chapter 5, we present a dynamic approach, Definer, for computing semantic history slices
based on delta refinement. (Based on [LZRC16].)

• In Chapter 6, we describe the design and implementation of CSlicerCloud, a Web-based
framework which unifies our semantic history slicing algorithms and implements many important
optimizations. (Based on [LZRC18].)

• In Chapter 7, we present a case study of applying semantic history slicing for improving one of the
most important evolution management tasks – feature location. (Based on [LZRC17a].)

• Finally, in Chapter 8, we summarize our contributions and discuss open problems and future
research directions.

Appendix A contains details about a dataset of version controlled histories for dynamic discovery of
semantic changes, which is used in various parts of this dissertation. (Based on [ZLRC17].)



Chapter 2

Background

In this chapter, we present a number of core concepts required for describing our contributions in the
rest of this dissertation.

2.1 Programs

To keep the presentation of algorithms concise, we step back from the complexities of the full Java
language and concentrate on its core object-oriented features. We adopt a simple functional subset of
Java from Featherweight Java [IPW01], denoting it by P .

2.1.1 Language Syntax

The syntax rules of the language P are given in Figure 2.1. Many advanced Java features, e.g., interfaces,
abstract classes and reflection are stripped from P , while the typing rules which are crucial for the
compilation correctness are retained [KA08].

P ::= L

L ::= class C extends C{C f; K M}

K ::= C(C f){super(f); this.f = f;}

M ::= C m(C x){return e;}

e ::= x | e.f | e.m(e) | new C(e) | (C)e

Figure 2.1: Syntax rules of the P language [IPW01].

We say that p is a syntactically valid program of language P , denoted by p ∈ P , if p follows the syntax
rules. A program p ∈ P consists of a list of class declarations (L), where the overhead bar L stands for a
(possibly empty) sequence L1, . . . , Ln. We use 〈〉 to denote an empty sequence and comma for sequence
concatenation. We use |L| to denote the length of the sequence. Every class declaration has members
including fields (C f), methods (M) and a single constructor (K). A method body consists of a single

13
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return statement; the returned expression can be a variable, a field access, a method lookup, an instance
creation or a type cast.

C <: C C <: D D <: E
C <: E

class C extends D{...}
C <: D

Figure 2.2: Subtyping rules of the P language [IPW01].

The subtyping rules of P , shown in Figure 2.2, are straightforward. We write C <: D when class C is
a subtype of D. As in full Java, subtyping is the reflexive and transitive closure of the immediate subclass
relation implied by the extends keyword. The field and method lookup rules are slightly different from
the standard ones (see Figure 2.3) – field overshadowing and method overloading are not allowed while
method overriding is allowed in Featherweight Java [IPW01]. For example, when resolving a method call
C.m, the method list M of class C is first consulted. If m is defined in C then its type and body are
returned as a pair (B → B, x.e). Otherwise, the lookup continues recursively on the super class of C.
Note that Methods(m,C) is a partial function. Since in P , the special class Object is assumed to have
no method, Methods(m, Object) is undefined.

Fields(Object) = 〈〉

class C extends D{C f; K M} Fields(D) = D g

Fields(C) = D g, C f

class C extends D{C f; K M} B m(B x){return e;}∈M
Methods(m,C) = (B → B, x.e)

class C extends D{C f; K M} m /∈M
Methods(m,C) = Methods(m,D)

Figure 2.3: Fields and methods lookup rules of the P language [IPW01].

2.1.2 Abstract Syntax Trees

A valid program p ∈ P can be parsed as an abstract syntax tree (AST), denoted by Ast(p). We adopt
a simplified AST model where the smallest entity nodes are fields and methods. Formally, r = Ast(p)
is a rooted tree with a set of nodes V (r). The root of r is denoted by Root(r) which represents the
compilation unit, i.e., the program p. Each entity node x has an identifier and a value, denoted by id(x)
and ν(x), respectively. In a valid AST, the identifier for each node is unique (e.g., fully qualified names
in Java) and the values are canonical textual representations of the corresponding entities. We denote
the parent of a node x by Parent(x).

For example, Figure 2.4 shows an AST for the program Foo.java. The following facts are true about
the node f,

id(f) = “foo.B.f(int)”,
ν(f) = “static int f(int x){return x-1;}”,

Parent(f) = B.



Chapter 2. Background 15

1 class A {

2 int x;

3 int h()

4 {return B.f(x);}

5 // hunk deps

6 int g()

7 {return (new B()).y;}

8 }

9 class B {

10 int y = 0;

11 static int f(int x)

12 {return x - 1;}

13 }

foo

B A

x:inty:int h() g()f(int)

Figure 2.4: Foo.java and its AST representation.

The children are unordered – the ordering of child nodes is insignificant. Therefore, each program has
its unique AST representation.

2.2 Program Semantics

This dissertation mainly concerns about the behavioral semantics of programs, which can be effectively
captured by test executions.

2.2.1 Tests and Test Suites

We assume that semantic functionalities can be captured by tests and the execution trace of a test is
deterministic [RH96]. For simplicity, a test can be abstracted into two parts – the setup code which
initializes the testing environment and executes the target functionalities using specific inputs, as well as
the oracle checks which verify that the produced results match with the expected ones. A test execution
succeeds if all checks pass.

Definition 1. (Test). A test t is a predicate t : P 7→ B such that for a given program p, t(p) is true if
the test succeeds, and false otherwise.

Definition 2. (Test Suite). A test suite is a collection of tests that can exercise and demonstrate the
functionality of interest.

Let test suite T be a set of test cases {ti}. We write p |= T if and only if program p passes all tests in
T , i.e., ∀t ∈ T · t(p).

2.2.2 Dynamic Invariants

Dynamic invariants [PE04] are likely invariants that are discovered from program executions. They
assert predicates that hold during the execution at specific program points including procedure entries
and exits, and aggregate program points of multiple class instances. We are particularly interested in
three types of predicates:

• method preconditions asserting values of input parameters,
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• method postconditions asserting returned values, and

• all values taken by fields throughout the execution.

A wide range of dynamic invariants is detected and reported by Daikon [EPG+07], but only a subset
of the invariants are used in this dissertation. In particular, we consider a subset of the invariants which
involve a single program variable, including comparisons with constants (e.g., x == K, x == K1 (mod

K2), K1 <= x <= K2, x != null), single-valuedness (e.g., x has only one value), and value range
(e.g., x one of {a,b}).

Given two invariant sets I and I ′, the invariant delta, I \ I ′, consists of all invariants in I that are
not implied by any invariant in I ′. Formally, I \ I ′ = {i ∈ I|¬(∃i′ ∈ I ′ · i′ ⇒ i)}.

2.3 Changes and Change Histories

Based on the program representations used, changes and change histories can be defined as differences
between either structured ASTs or unstructured plain texts.

2.3.1 AST-Based View

Let Γ be the set of all ASTs. Now we define changes, change sets and change histories as AST
transformation operations.

Definition 3. (Atomic Change). An atomic change operation δ : Γ 7→ Γ is a partial function which
transforms r ∈ Γ producing a new AST r′ such that r′ = δ(r). It can be either an insert, delete or update
(see Figure 2.5).

An insertion Ins((x, n, v), y) inserts a node x with identifier n and value v as a child of node y. A
deletion Del(x) removes node x from the AST. An update Upd(x, v) replaces the value of node x with
v. A change operation is applicable on an AST if its preconditions are met. For example, the insertion
Ins((x, n, v), y) is applicable on r if and only if y ∈ V (r). Insertion of an existing node is treated the
same as an update.

y ∈ V (r)
Ins((x, n, v), y)

V (r′)← V (r) ∪ {x} Parent(x)← y

id(x)← n ν(x)← v

x ∈ V (r)
Del(x)

V (r′)← V (r) \ {x}
x ∈ V (r)

Upd(x, v)
ν(x)← v

Figure 2.5: Types of atomic changes [FG06]. Refer to Section 2.1.2 for AST-related symbols.

Definition 4. (Change Set). Let r and r′ be two ASTs. A change set ∆ : Γ 7→ Γ is a sequence of atomic
changes 〈δ1, . . . , δn〉 such that ∆(r) = (δn ◦ · · · ◦ δ1)(r) = r′, where ◦ is standard function composition.

A change set ∆ = ∆−1 ◦ δ1 is applicable to r if δ1 is applicable to r and ∆−1 is applicable to δ1(r).
Change sets between two ASTs can be computed by tree differencing algorithms [CRGW96]. For instance,
in Figure 2.6, the change set C3 consists of an insertion of a new node y to B followed by an update of
the node g.
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foo

B A

y:int g()f(int)

foo

B A

g()f(int)

INS(y:int, B)

UPD(A.g)

C
3

Figure 2.6: Visualizing C3 as a sequence of atomic changes applied on ASTs.

Definition 5. (Change History). A history of changes is a sequence of change sets, i.e., H =
〈∆1, . . . ,∆k〉.

Definition 6. (Sub-history). A sub-history is a sub-sequence of a history, i.e., a sequence derived by
removing change sets from H without altering the ordering.

We write H ′ C H indicating H ′ is a sub-history of H and refer to 〈∆i, . . . ,∆j〉 as Hi..j . The
applicability of a history is defined similar to that of change sets. We use SH(H) to denote the set of all
sub-histories of H.

2.3.2 Text-Based View

Another view of changes used by text-based SCM tools is called hunk [FAW09, LRC15]. A hunk is
a group of adjacent or nearby line insertions or deletions with surrounding context lines which stay
unchanged. Let P be the set of all program texts.

Definition 7. (Hunk). A hunk δ̂ : P 7→ P is a partial function which transforms p ∈ P producing a new
program text p′ such that p′ = δ̂(p).

For example, Figure 2.7 shows a hunk of one line deletion and two line insertions, marked by “-” and
“+”, respectively. The context (the lines not marked by “-” or “+” in Figure 2.7) that comes with a hunk
is useful for ensuring that the hunk can be applied at the correct location even when the line numbers
change for the target program texts.

// hunk deps

int g()

- {return 0;}

+ {return (new B()).y;}

}

class B {

+ int y = 0;

static int f(int x)

{return x - 1;}

Figure 2.7: Hunk representation of C3.

A conflict happens if the context cannot be matched when applying a hunk. In the current example,
the maximum length of the contexts is four lines: up to two lines before and after each change.
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A commit is a collection of hunks, in no particular order, which takes a program text p and transforms
it to produce a new program text ∆̂(p). Applying a commit is equivalent to composing its corresponding
hunks, each representing a set or line changes with an approximate locality. More formally, a commit ∆̂
is defined as follows.

Definition 8. (Commit). Let p and p′ be two program texts. A commit ∆̂ : P 7→ P is a set of hunks
{δ̂0, . . . , δ̂n} such that ∆̂(p) = (δ̂0 ◦ · · · ◦ δ̂n)(p) = p′, where ◦ is standard function composition.

Definition 9. (Commit History). A commit history is a sequence of commits, i.e., H = 〈∆̂1, . . . , ∆̂k〉.

For simplicity, in the rest of this thesis, we use the same notations for both AST-based and text-based
changes where the context is clear.



Chapter 3

Semantic History Slicing – the
Evolution Management Challenge

3.1 Introduction

In Chapter 1, we argued that the sequential and manually-managed organization of changes is inflexible
and lacks support for many tasks that require high-level, semantic understanding of program functionality
such as locating feature implementations and porting hot fixes. To address these challenges, we propose
to use well-organized tests as identifiers for corresponding software functionalities.

In this chapter, we first present a prestudy of the evolution management practices observed in
open-source software project development, which emphasizes the necessity of bringing semantics to
analyzing version histories (Section 3.2). Then we give a formal definition of semantics-preserving slice,
and discuss a few general approaches for finding such history slices (Section 3.3). We conclude this
chapter in Section 3.4.

3.2 Prestudy

In this prestudy, we investigate the common practices followed in a series of software evolution management
tasks including preparing candidates for new releases and submitting pull requests for review. To
understand how developers approach those tasks, the recommended best practices as well as the gaps
between the two, we analyzed qualitatively data from multiple sources including developer conversations,
project contribution guidelines and change histories of several open-source software projects. The main
findings are summarized as follows.

3.2.1 The Pitfalls of Cherry-Picking

We start with a conversation among a team of Bazel [Baz17] developers which took place on their GitHub
issue page.1 Bazel is an open-source multi-language build system backed by Google. The project team
has a convention of releasing a new version of the build tool every month and opening a new issue for the
release on GitHub. This particular release, v0.4.3, happened in December 2015. The conversation was

1Accurate as of September 22, 2017: https://github.com/bazelbuild/bazel/issues/2246
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among three team members, “damienmg”, “iirina” and “petemounce”, discussing the preparation of a
release candidate.

damienmg: Filing the release bug for this month since I haven’t seen it yet.
iirina: Created RC: ... and pushed to GitHub: ... waiting for ci.bazel.io to finish.
damienmg: Release failed. Might be because of my last changes investigating.
damienmg: Filed #2256.
petemounce: Please ping me when rc is up and I’ll publish to chocolatey.
damienmg: The RC is up but the mail wasn’t send because of a bug in the debian publishing :(.

You can do the chocolatey package from the 0.4.3rc2 URL at ...
petemounce: ok - published and available at ...
iirina: Damien commited a fix for #2256 which I have cherry picked when creating and pushing

RC2 on Friday evening. However the release still failed and @katre identified the commit as
breaking the normal build process for non-releases, so the change got reverted.

damienmg: The reason for the breakage is because the manifest is empty. Easy enough to fix and
rollforward. I think the release is safe without it because it’s only breaking the CI pipeline on
non release trigger.
However this did not fixed the underlying issue: the section is empty in the DSC file. I need
more investigation to fix it.

damienmg: To be cherry-picked: 4a75349.
damienmg: 4a75349 55c97bc are to be cherry-picked. Still one change that is being submitted

plus the fix for the distribution artifact.
damienmg: Ok so far the remaining bug seems like just tests setup fixes. I think we can go

forward with another RC with the following fixes: 4a75349 4a75349 55c97bc
39e5a46 4fb378c.

iirina: I tried to create the new RC: ... but it failed: ...
iirina: There was a conflict in src/test/shell/bazel/bazel_coverage_test.sh. I merged

the file and ... However the script exited before and the release didn’t finish. The cherry-picks
added after the one with the merge conflict were not added to the release.

iirina: Did “$ cherry-pick –continue; exit”, after already cherry-picking and it accidentally deleted
the release branch: ... Re-did the whole RC creation and this time it was successfully and it
includes all cherry picks, only now it is marked again as RC1 :( ...

iirina: Fixed candidate name: ...
iirina: Pushing now “$ scripts/release/release.sh push”, waiting for ci.bazel.io to finish.
iirina: Email was sent to bazel-discuss. The release notes in the email are wrong, they just

include the commit message of the last cherry pick. The web release notes seem nicer,
although the cherry picks are not nicely formatted and it still seems 2/6 cherry picks are
missing.

damienmg: missing cherry-pick: acbcbc2 (forgot it).
iirina: Creating new candidate with additional cherry-pick acbcbc2 ... Created 0.4.3rc4

on branch release-0.4.3. Pushed: ...
iirina: New email was sent to bazel-discuss. The release notes look really good in the email, including

almost all (7/9) cherry-picks (except 4a75349 and 39e5a46). The web release notes are still
not nicely formatted.
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iirina: Should we also cherry-pick 4975760? It fixes #2247 (someone accidentally added a
usage of Java8-only code and some users can’t built bazel on a Linux system with JDK7). The
culprit is ca99bb7 which is included in the candidate, but the fix isn’t. However we
should actually release today since I’ll be OOO starting tomorrow.

damienmg: We cannot release before Friday or at least before tomorrow. The JDK breakage is on
the test right? In which case is not really important.

damienmg: Oh it is not on the test so we should cherrypick it. Strange it was able to
bootstrap...

iirina: OK then I will cherry pick it now and will release Friday evening from home.
damienmg: Don’t do the release from home. We’ll find someone to take over.
iirina: Created and pushed RC5 including cherry-pick 4975760.
iirina: Seems like bazel-install failed with Jenkins errors: ... will re-run.
iirina: The email was sent to bazel-discuss. All is well except there are still 2/10 cherry picks

missing (the same as before).
iirina: I re-run the build and got the same Jenkins errors: ... platform is linux-x86_64
damienmg: Let’s finally cherry-pick 05fd076 today and do the release tomorrow evening

so we still have one working day before Christmas ...

The central issue in this conversation is that “iirina” failed to create a new release candidate by
manually cherry-picking commits from the development branch to the release branch. Later, even with
the help from another team member, “damienmg”, who has much better expertise in the project, they
still experienced many difficulties such as accidentally causing merge conflicts, losing log messages, and
missing essential commits due to negligence. After many attempts (highlighted in bold and lasting about
10 days), the new version was finally released before Christmas.

This developer conversation is a good demonstration of the common frustrations faced by many
developers who rely on the cherry-picking functionality of version control tools for evolution management
tasks. The pitfalls of cherry-picking are rooted in the lack of semantic understanding of changes. For
example, it is very difficult for developers who are not familiar with the project and its change histories
(such as “iirina”) to identify all the changes relevant to a maintenance task. The lack of semantic
understanding is also reflected in how difficult it is to discover relationships between commits. For
instance, without knowing that the commit #4975760 is a fix to the culprit commit #ca99bb7 which
causes a JDK breakage, “iirina” missed the fix commit at the beginning and the cherry-picked release
candidate ended up being buggy.

Interestingly, to get a working release candidate, the team took a trial-and-error approach. For them,
there is a well-defined standard for a successful release candidate. That is, all intended features should
be included, there should not be any merge conflict, the tests have to pass, and the release notes should
be formatted correctly. Their release creation process is as follows:

Step 1 Cherry-pick commits to a new release branch.

Step 2 Run the release publishing script which tests the release candidate.

Step 3 If the release candidate does not meet the requirements, go back to Step 1 and try a different
set of commits.
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Notice that this resembles an algorithm for automatically finding a set of commits for a successful
release, except that there is human involved at Step 1. An omniscient expert may pick the correct
commits and the process will finish in one go. A naïve person may make mistakes all the time, but
eventually he/she will find the correct ones after enough attempts. If we are to design an algorithm
mimicking this process and eliminate a human from the loop, there is always a trade-off between spending
effort in making smart choices in Step 1, and being lazy in Step 1 and waiting for more iterations. We
will come back to the discussion of this trade-off many times in the rest of this dissertation.

3.2.2 Tests as Semantic Indicators

We saw in the Bazel team case that the passing of tests is one of the criteria of success for a release
candidate. Tests are also commonly used as semantic indicators in many other evolution management
tasks. For example, in regression testing [FRC81], tests are used to check if a new change to the software
breaks already established system properties. In dynamic feature location [WS95], tests are used to
identify the place where a feature is implemented in the code base. These techniques rely on the ability
of tests in exercising and validating semantics of the software.

Tests are also widely available in well-organized software projects. It is often a strict requirements
for all new functionalities implemented to be accompanied by test cases. For example, the “Guide to
Developing Maven [Mvn16]” requires all patches relating to functionalities to be associated with tests:

“It is expected that any patches relating to functionality will be accompanied by unit tests
and/or integration tests.”

and the Git contribution guidelines [Git16c] also emphasize the adequacy of tests in terms of the ability
of triggering new behaviors:

“Make sure that you have tests for the bug you are fixing. When adding a new feature, make
sure that you have new tests to show the feature triggers the new behavior when it should, and
to show the feature does not trigger when it shouldn’t.”

Therefore, using tests as semantic indicators in evolution management is very practical in well-
organized large projects, where the needs for better semantic understanding of version histories are also
the greatest.

Generally speaking, for the purpose of exercising and validating program behaviors, we do not
impose restrictions on the types of tests, as long as they meet the requirements in Section 2.2.1 – being
deterministic and producing Pass/Fail results. For example, unit tests, integration tests, and system tests
can all be used as semantic indicators. However, unit tests which exercise more fine-grained program
behaviors are more suitable for identifying functionality-related changes in practice. Ultimately, the
quality of a test as a semantic indicator is decided by how complete and focused it is in exercising the
intended behaviors. This coincides with the guidelines for writing good unit test cases [Git16c].

3.2.3 Patches Should Always Be Focused

Let us look at another conversation between two JUnit [JUn16] developers, “PeterWippermann” and
“kcooney”, regarding a pull request from the former.2

2https://github.com/junit-team/junit4/pull/1348

https://github.com/junit-team/junit4/pull/1348
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peterwippermann: As discussed in #1338 I refactored some of runners to be able to reuse their
functionality. This mainly included the conversion of private instance methods to public
(static) class methods. When functionality was hidden in other methods I also introduced new
methods (e.g. Parameterized.normalizeParameter(Object)).

kcooney: Could you please remove all the unnecessary reformatting? It makes it hard
to review...

peterwippermann: @kcooney How should I remove the formatting? Sorry, but Eclipse always formats
the whole file and it’s not my fault that this file wasn’t formatted accordingly before :-/

kcooney: Tell Eclipse to not format files on save (or, if possible to only reformat changes lines). I
realize the files might not follow the current formater settings, but reviewing code that is
reformatted in the same pull is painful.

After working on refactoring of some code, “PeterWippermann” submitted the changes as a pull
request in order for the changes to be reviewed and merged into the shared repository. However, the
code reviewer suggested that all changes unrelated to the topic of the pull request be dropped, because
they make the reviewing “painful”. In fact, it is a common practice to keep the changes as logically
concentrated as possible, as specified in many project contribution guidelines.

For example, such requirements can be found in “Microsoft Azure: Ways to Contribute [Azu16]”:

“In order to speed up the process of accepting your contributions, you should try to make your
checkins as small as possible, avoid any unnecessary deltas and the need to rebase.”

in “How to Contribute to BitCoin Core [Bit16]”:

“Patchsets should always be focused. For example, a pull request could add a feature, fix a
bug, or refactor code; but not a mixture. Please also avoid super pull requests which attempt
to do too much, are overly large, or overly complex as this makes review difficult.”

and in “Submitting Patches: the Essential Guide to Getting Your Code into the Kernel [Lin17]”:

“Separate each logical change into a separate patch. For example, if your changes include both
bug fixes and performance enhancements for a single driver, separate those changes into two
or more patches. If your changes include an API update, and a new driver which uses that
new API, separate those into two patches.”

These guidelines strongly urge that patches (or pull requests) should be focused: a patch should make
changes in exactly one logical unit. For instance, a patch adding a new feature should never be mixed
with a bug fix, and a patch on feature A should never touch feature B, etc. The reasons for doing so
are to keep things small and simple. Small patches are less prone to conflicts and thus easier to merge.
Simple patches are easier to review and can speed up the progress of the development.

To create small and simple patches, we need ways to separate unrelated changes according to certain
standards. In the JUnit case, the culprits were reformatting changes and they are easy to track with
the help of code editors. However, in many other cases, there is no simple solution for us to logically
separate changes according to their semantics. In Section 3.3, we propose a new semantics-based view of
version histories as an attempt to address this issue.
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3.2.4 Study Summary

To summarize, developers constantly need to pick and move functionalities, and most of the time they do
so by moving commits in version histories. For example, this happens when they create release candidates
and submit pull requests for review. Yet, SCM systems nowadays fail to support these maintenance tasks
with semantic understanding of changes, which makes the process very time consuming and error prone.

On the other hand, tests are used and strictly required in many software projects to exercise and
validate new functionalities. This makes them very good semantic indicators for identifying changes
relevant to a functionality – a set of changes are said to preserve a functionality if they pass the
corresponding tests.

Finally, in many practical evolution management settings, one needs to locate changes which preserve
a target functionality and at the same time are as focused as possible. Therefore, to support these tasks
of finding semantically relevant changes, we need to design techniques which are precise and include as
little irrelevant changes as possible.

3.3 Problem Definitions

Inspired by the concept of program slicing [Tip95], we refer to a sub-history which preserves certain
semantic properties of the original history as a semantics-preserving slice. The preserved semantic
properties are referred to as slicing criteria. In this dissertation, we focus on using tests as one concrete
instantiation of the slicing criteria.

3.3.1 Semantics-Preserving Slices

Consider a program p0 and its k subsequent versions p1, . . . , pk such that pi ∈ P and pi is well-typed
for all integers 0 ≤ i ≤ k. Let H be the change history from p0 to pk, i.e., H1..i(p0) = pi for all integers
0 ≤ i ≤ k. Let T be a set of tests passed by pk, i.e., pk |= T ; T is fixed once chosen.

Definition 10. (Semantics-preserving Slice). A semantics-preserving slice of history H with respect to
T is a sub-history H ′ C H such that the following properties hold:

1. H ′(p0) ∈ P ,

2. H ′(p0) is well-typed,

3. H ′(p0) |= T .

The problem of semantic history slicing is to identify such a semantics-preserving slice given change
history H and target tests T . We sometimes refer to semantics-preserving slice as semantic slice for
short. A trivial and uninteresting solution to this problem is the original history H itself. Shorter slicing
results are preferred over longer ones, and the optimal slice is the shortest sub-history that satisfies the
above properties.

However, the optimality of the sliced history cannot always be guaranteed by polynomial-time
algorithms. Since the test case can be arbitrary, it is not hard to see that for any program and history,
there always exists a worst case input test that requires enumerating all 2k sub-histories to find the
shortest one. The naïve approach of enumerating sub-histories is not feasible as the compilation and
running time of each version can be substantial. Even if a compile and test run takes just one minute,
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SH(H): all sub-histories of H

H
(non-minimal)

semantics-
preserving slices

H∗

minimal slices

1-minimal
H ′ ⊆T H

Figure 3.1: Relationships between various history slices.

enumerating and building all sub-histories of only twenty commits would take approximately two years.
In fact, it can be shown that the optimal semantic slicing problem is NP-complete by reduction from the
set cover problem. We omit the details of this argument [LZRC17b] here.

An optimal algorithm which runs the test only once cannot exist in any case: in order to determine
whether to keep a change set or not, it needs to at least be able to answer the decision problem, “given
a fixed program p and test t, for any arbitrary program p′, will the outputs of t be different on both?”
which is known to be undecidable [RH94].

Therefore, we are often more interested in an approximation to the optimal solution, which can
be efficiently computed in practice. We say a sub-history H∗ of H is a minimal semantic slice if H∗

is semantics-preserving and it cannot be further shortened without losing the semantics-preserving
properties (see Definition 10).

Definition 11. (Minimal semantics-preserving slice). Let H∗ be semantics-preserving, i.e., H∗ CT H.
H∗ is a minimal semantic slice of H if, ∀Hsub ⊂ H∗ ·Hsub 6|= T .

Definition 12. (1-Minimal Semantic Slice). Let H∗ be semantics-preserving, i.e., H∗ CT H. H∗ is a
1-minimal semantic slice of H if, ∀δ ∈ H∗ · (H∗ \ {δ}) 6|= T .

As shown in Figure 3.1, there are several special kinds of semantics-preserving slices. First, H is a
semantics-preserving slice of itself, but it may not be minimal. Second, minimal semantic slices (H∗)
are slices which are semantics-preserving and cannot be reduced further. Finally, computing minimal
semantics-preserving slices is expensive, so we often compute an approximation known as the 1-minimal
semantic slice – a slice which cannot be further reduced by removing any single commit. In practice,
1-minimal slices are often minimal.

3.3.2 Finding Semantics-Preserving Slices

Since optimal solutions are often intractable for the problem of finding semantics-preserving slices, this
dissertation explores two types of semantic history slicing techniques which trade-off optimality for
efficiency, namely the static and dynamic history slicing approaches. We briefly introduce them here and
leave the details for Chapters 4 and 5, respectively.
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Static Slicing Based on Dependency Analysis

The static approach mostly relies on static analysis of dependencies between change sets and is therefore
much cheaper in terms of running time. CSlicer (see Chapter 4) is an efficient static slicing algorithm
which requires only a one-time effort for compilation and test execution.

The actual slicing process consists of two phases, a generic history slicing algorithm which is inde-
pendent of any specific SCM system in use, and an SCM adaptation component that adapts the output
produced by the slicing algorithm to specifics of SCM systems. The slicing algorithm conservatively
identifies all atomic changes in the given input history that contribute to the functional and compilation
correctness of the functionality of interest. The SCM adaptation component then maps the collected set
of atomic changes back to the commits in the original change history. It also takes care of merge conflicts
that can occur when cherry-picking commits in text-based SCM systems such as SVN and Git. CSlicer
is designed to be conservative in the first phase and thus can be imprecise, producing non-minimal slices.

Dynamic Slicing Through Delta Refinement

In contrast, the dynamic approach executes tests multiple times and directly observes the test results
while attempting to shorten the history slices iteratively. The semantic slices found by the dynamic
approach are guaranteed to be minimal, but the running time is usually much longer.

Definer (see Chapter 5) derives a small and precise semantic slice through the more expensive
repeated test executions in a divide-and-conquer fashion that is very similar to delta debugging [Zel99].
The high-level idea is to partition the input history by dropping some subset of the commits and
opportunistically reduce the search space when the target tests pass on one of the partitions, until a
minimal partition is reached. To speed up the process, Definer also uses observed test pass/fail signals
and dynamic program invariants to predict the significance of change sets with respect to the target tests.

Definer operates on the commit-level, and the history slices produced by Definer are guaranteed to
be 1-minimal [ZH02] – removing any single commit from the history slice will break the desired semantic
properties.

3.4 Summary

In this chapter, we studied the common practices followed in managing software evolution with existing
SCM systems. We identified a number of challenges faced by developers such as creating release candidates
through manual cherry-picking and submitting logically focused pull requests. We then proposed semantic
history slicing in order to address those challenges by bringing version histories and program semantics
together. We formally defined the concept of semantics-preserving history slices and briefly described
two possible approaches of finding such history slices.



Chapter 4

Static History Slicing Based on
Dependency Analysis

“You show the world as a complete,
unbroken chain, an eternal chain, linked
together by cause and effect.”

Hermann Hesse

4.1 Introduction

As discovered in the prestudy presented in Section 3.2, text-based version histories are cumbersome
for many evolution management tasks which require good understanding of the high-level program
semantics. The problem of identifying the exact minimal subset of a version history that implements
a particular functionality of interest is referred to as semantic history slicing. Computing the optimal
semantics-preserving history slice requires enumerating all sub-histories and is not scalable in practice.

One can make the problem more tractable by designing algorithms which compromise on slice
optimality but still produce sound and reasonably small approximations of the optimal slice. In this
chapter, we look at a efficient static approach for finding semantics-preserving history slices, called
CSlicer. CSlicer has two main phases. The first phase is generic and independent of any specific
SCM system in use. It relies on change dependency analysis techniques to conservatively identify all
atomic changes in the given history that contribute to the functional and compilation correctness of the
functionality of interest. The second phase adapts the output produced in the first one to specifics of
SCM systems. More precisely, it maps the collected set of atomic changes back to the commits in the
original change history. It also takes care of merge conflicts that can occur when cherry-picking commits
in text-based SCM systems, e.g., SVN [SVN16] or Git [Git16b]. This phase can optionally be skipped
when using language-aware merging tools [Sem16] or in semantic-based SCM systems [Cow16]. However,
such systems are not dominant in practice yet.

The use cases of the CSlicer system include but are not limited to porting functionalities; it can
also be used for refactoring existing branches, e.g., by reorganizing branches as functionality-related ones.

27
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Contributions

We summarize this chapter’s contributions as follows:

• We propose a generic static semantic slicing algorithm that is independent of underlying SCM
infrastructures and tools.

• We extend the generic algorithm to bridge the gap between language semantic entities and text-based
modifications, thus making it applicable to existing text-based SCM systems.

• We instantiate the overall approach, CSlicer, by providing a fully-automatic semantic slicing tool
applicable for Git projects implemented in Java. The source code of the tool, as well as binaries
and examples used in this paper, are available at https://bitbucket.org/liyistc/gitslice.

• We evaluate the tool on a number of real-world medium- to large-scale software projects. The
results show that our approach allows to identify functionality-relevant subsets of original histories
that (a) correctly capture the functionality of interest while being (b) substantially smaller than
the original ones.

Organization

This chapter is organized as follows:

• In Section 4.2, we illustrate CSlicer with a simple example.

• In Section 4.3, we formalize the static history slicing approach and prove its correctness.

• In Section 4.4, we describe implementation and optimization details.

• In Section 4.5, we report on our experimental findings.

• Finally, we discuss related work and conclude the chapter in Sections 4.6 and 4.7, respectively.

4.2 CSlicer by Examples

In this section, we illustrate CSlicer on a simple schematic example inspired by the feature migration
case in the Elasticsearch project [Ela15] mentioned earlier in Section 1.2.3.

Example 1

Figure 4.1 shows a fragment of the change history between versions v1.0 and v1.1 for the file Foo.java.
Based on this, we introduce a few concepts used in the rest of this chapter.

Input History

Initially, as shown in version v1.0, the file contains two classes, A and B, each having a member method g

and f, respectively.
Later, in change set C1, a line with a textual comment was inserted right before the declaration of

method A.g. Then, in change set C2, the body of B.f was modified from {return x+1;} to {return

https://bitbucket.org/liyistc/gitslice
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v1.1

 class A {
+  // hunk deps
   int g()
   {return 0;}

 class B {
   static int f(int x)
-  {return x + 1;}
+  {return x - 1;}
 }

   // hunk deps
   int g()
-  {return 0;}
+  {return (new B()).y;}
 }
 class B {
+  int y = 0;
   static int f(int x)
   {return x - 1;}

 class A {
+  int x;
   // hunk deps
   int g()

 class A {
   int x;
+  int h()
+  {return B.f(x);}
   // hunk deps
   int g()

C5

C4

C3

C2

C1

1  class A {
2    int g()
3    {return 0;}
4  }
5  class B {
6    static int f(int x)
7    {return x + 1;}
8  }

v1.0

Figure 4.1: Change history of Foo.java in Example 1.

x-1;}. In change set C3, the body of A.g was updated to return the value of a newly added field y in
class B. In change set C4, a field declaration was inserted in class A and, finally, in change set C5, a new
method h was added to class A. The resulting program in v1.1 is shown in Figure 4.2a on the left.

Each dashed box in Figure 4.1 encloses a commit written in the unified format (the output of command
diff -u). The lines starting with “+” are inserted while those starting with “-” are deleted. Each bundle
of changed lines is called a hunk and comes with a context – a certain number of lines of surrounding text
that stay unchanged. In Figure 4.1, these are the lines which do not start with “+” or “-”. The context
that comes with a hunk is useful for ensuring that the change is applied at the correct location even when
the line numbers change. A conflict is reported if the context cannot be matched. In Example 1, the
maximum length of the contexts is four lines: up to two lines before and after each change.

Slicing Criteria

Suppose the functionality of interest is that the method A.h() returns “−1”. This functionality was
introduced in C5 and now needs to be back-ported to v1.0. Simply cherry-picking C5 would result in
failure because,

• the body of method B.f was changed in C2 and the change is required to produce the correct result;

• the declaration of field A.x was introduced in C4 but was missing in v1.0, which would cause
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1 class A {

2 int x;

3 int h()

4 {return B.f(x);}

5 // hunk deps

6 int g()

7 {return (new B()).y;}

8 }

9 class B {

10 int y = 0;

11 static int f(int x)

12 {return x - 1;}

13 }

(a) Foo.java at v1.1.

1 class A {

2 int x;

3 int h()

4 {return B.f(x);}

5 // hunk deps

6 int g()

7 {return 0;}

8 }

9 class B {

10 static int f(int x)

11 {return x - 1;}

12 }

(b) Foo.java at v1.0 with the sliced sub-
history 〈C1, C2, C4, C5〉.

Figure 4.2: Foo.java before and after semantic slicing in Example 1.

compilation errors; and

• a merge conflict would arise due to the missing context of C5 – the text that appears immediately
after the change. This text was introduced in C1.

Computing Semantic Slice

In fact, the change histories form a dependency hierarchy with respect to the target functionality (see
Figure 4.3). At its core, the functional set contains program components which directly participate in
the test execution to deliver the target functionality, e.g., methods A.h and B.f.

Textual Contexts

Compilation
Set

Functional
Set

Correctness

Well-formedness

Applicability
C1

Examples

C4

C2 , C5

Hunk

Compilation

Functional

Dependency
Types

Figure 4.3: Change dependency hierarchy.

Step 1: Functional Dependencies. To start with, CSlicer examines the history and identifies
functional dependencies that are essential for the semantic correctness of the functional set, e.g., C2, C5.

Step 2: Compilation Dependencies. In addition, CSlicer computes the compilation set which
connects the functional core with its structural supporting components, i.e., classes A, B and the field
declaration int x in A. Similarly, the corresponding contributing changes are called the compilation
dependencies, e.g., C4. They are necessary to guarantee program well-formedness including syntactic
correctness and type safety.
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Step 3: Hunk Dependencies. Finally, to ensure the selected changes can be applied using a text-
based SCM system, some additional changes which provide textual contexts should be included as well.
We call these changes the hunk dependencies, e.g., C1. In the semantic slicing phase, our proposed
algorithms compute a set of commits that are required for porting the functionality of interest to v1.0
successfully: {C1, C2, C4, C5}. This process is formalized in Section 4.3.

Slicing Result

Applying the set of commits in sequence on top of v1.0 produces a new program shown in Figure 4.2b on
the right. It is easy to verify that the call to A.h in both programs returns the same value. Changes
introduced in commit C3 – an addition of the field B.y and a modification of the method A.g – do not
affect the test results and are not part of any other commit context. Thus, this commit can be omitted.
The final semantic slicing result is a sub-history of four commits 〈C1, C2, C4, C5〉.

4.3 The CSlicer Approach

In this section, we present the static history slicing algorithms in detail.

4.3.1 Overview of the Workflow

We start with the high level overview of our approach.

         …

H

p0 pk

T

t1 … tm

Compute 

Functional Set

Compute 

Compilation set

AST Diff

pipi-1
Slicing

ΛΠ

∆i

∆1
’, …, ∆k

’

H’∆i
’

SCM 

Adaptation

H’

Hunk
Dependencies

History Slice

Figure 4.4: High-level overview of the semantic slicing algorithms.

Figure 4.4 illustrates the high-level workflow of the semantic slicing algorithms. First, the functional
set (Λ) and compilation set (Π) are computed based on the latest version pk and the input tests T .
The original version history H is then distilled as a sequence of change sets 〈∆1, . . . ,∆k〉 through AST
differencing. This step removes cosmetic changes (e.g., formatting, annotations, and comments) and
only keeps in ∆i atomic changes over code entities. Each such set ∆i then goes through the core slicer
component which decides whether to keep a particular atomic change or not. This component outputs a
sliced change set ∆′i, which is a subsequence of ∆i. Finally, the sliced change sets are concatenated and
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returned as a sub-history H ′. Optionally, a post-processing step (SCM Adaptation) of H ′ is needed if
the sliced history is to be applied using text-based SCM systems. Below we describe each step in turn,
illustrating them through the running example presented in Section 4.2.

Step 1: Computing Functional Set

CSlicer executes the test on the latest version of the program (left-hand side of Figure 4.2a), which
triggers method A.h. It dynamically collects the program statements traversed by this execution. These
include the method bodies of A.h and B.f. The set of source code entities (e.g., methods or classes)
containing the traversed statements is called the functional set, denoted by Λ. The functional set in
the current example is {A.h, B.f}. Intuitively, if (a) the code entities in the functional set and (b) the
execution traces in the program after slicing remain unchanged, then the test results will be preserved.
Special attention has to be paid to any class hierarchy and method lookup changes that might alter the
execution traces, as discussed in more detail in Section 4.4.2.

Step 2: Computing Compilation Set

To avoid causing any compilation errors in the slicing process, we also need to ensure that all code entities
referenced by the functional set are defined even if they are not traversed by the tests. Towards this end,
CSlicer statically analyzes all the reference relations based on pk and transitively includes all referenced
entities in the compilation set, denoted by Π. The compilation set in our case is {A, A.x, B}. Notice that
the classes A and B are included as well since the fields and methods require their enclosing classes to be
present.

Step 3: Change Set Slicing

In the change set slicing stage, CSlicer iterates backwards from the newest change set ∆k to the oldest
one ∆1, collecting changes that are required to preserve the “behavior” of the functional and compilation
set elements. Each change is divided into a set of atomic changes (see Definition 3). Having computed
the functional and compilation set (highlighted in Figure 4.1), CSlicer then goes through each atomic
change and decides whether it should be kept in the sliced history (H ′) based on the entities changed
and their change types. In our example, C2 and C5 are kept in H ′ since all atomic changes introduced
by these commits – B.f and A.h – are in the functional set. C4 contains an insertion of A.b which is in
the compilation set. Hence, this change is also kept in H ′. C3 can be ignored since the changed entities
are not in either set.

During the slicing process, CSlicer ensures that all entities in the compilation set are present in the
sliced program, albeit their definitions may not be the most updated version. Because the entities in the
compilation set are not traversed by the tests, differences in their definitions do not affect the test results.

Optional: SCM Adaptation

In the SCM adaptation phase, change sets in H ′ are mapped back to the original commits. As some
commits may contain atomic changes that sliced away by the core slicing algorithm, including these
commits in full can introduce unwanted side-effects and result in wrong execution of the sliced program.
We eliminate such side-effects by reverting unwanted changes. That is, we automatically create an
additional commit that reverts the corresponding code entities back to their original state. In addition,
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we compute hunk dependencies of all included commits and add them to the final result as well. For
example, the comment line added in C1 forms a context for C5. Therefore, C1 is required in the sliced
history to avoid merge conflicts when cherry-picking C5. The details of this process are discussed in
Section 4.3.3.

4.3.2 The Semantic Slicing Algorithm

Now we present in detail the semantic slicing algorithm which is independent from the underlying SCM
systems and it follows essentially the workflow depicted in Figure 4.4. The optional SCM adaptation
phase will be discussed in Section 4.3.3.

Algorithm Descriptions

Algorithm 1 The semantic slicing algorithm.
Require: |H| > 0 ∧H(p0) ∈ P ∧H(p0) |= T
Ensure: H ′ ⊆ H ∧H ′(p0) ∈ P ∧H ′(p0) |= T
1: procedure SemanticSlice(p0, H, T )
2: H ′, k ← 〈〉, |H| . initialization
3: pk ← H(p0) . pk is the latest version
4: Λ← FuncDep(pk, T ) . functional set
5: Π← CompDep(pk,Λ) . compilation set
6: for i ∈ [k, 1] do . iterate backwards
7: ∆′i ← 〈〉 . initialize sliced change set
8: for δ ∈ ∆i do
9: if ¬Lookup(δ,H1..i(p0)) then . keep lookup

10: if δ is Del ∨ id(δ) /∈ Π then
11: continue . skip non-comp and deletes
12: if δ is Upd ∧ id(δ) /∈ Λ then
13: continue . skip non-test updates
14: ∆′i ← ∆′i, δ . concatenate the rest
15: end for
16: H ′ ← H ′,∆′i . grow H ′

17: end for
18: return H ′

19: end procedure

The main SemanticSlice procedure is shown in Algorithm 1. It takes in the base version p0, the
original history H = 〈∆1, . . . ,∆k〉 and a set of test cases T as the input. Then it computes the functional
and compilation set Λ and Π, respectively (Lines 4 and 5).

FuncDep(pk, T ). Based on the execution traces of running T on pk, the procedure FuncDep returns
the set of code entities (AST nodes) traversed by the test execution. This set (Λ) includes all fields
assigned and all methods (and constructors) called during runtime. Although not allowed in Featherweight
Java, field declarations with explicit inline initializations are also included when analyzing real Java code,
because these also involve assignments to fields.

CompDep(pk,Λ). The procedure CompDep analyzes reference relations in pk and includes all code
entities referenced by the elements of Λ into the compilation set Π. We borrow the set of rules for
computing Π from Kästner and Apel [KA08], where the authors formally prove that their rules are
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C <: D C ∈ Π [L.1]
D ∈ Π

f : C ∈ Π [L.2]
C ∈ Π

C(D f){super(f);this.f = f;} ∈ Π
[K1]

C ∈ Π D ∈ Π f ∈ Π
C m(D x){return e;} ∈ Π

[M1]
C ∈ Π D ∈ Π

...{return e.f;} ∈ Π
[E1]

f ∈ Π
...{return e.m(e);} ∈ Π

[E2]
m ∈ Π

...{return new C(e);} ∈ Π
[E3]

C ∈ Π
...{return (C)e;} ∈ Π

[E4]
C ∈ Π

x ∈ Π [P1]
Parent(x) ∈ Π

x ∈ Λ [T1]
x ∈ Π

Figure 4.5: CompDep reference relation rules.

complete and ensure that no reference without a target is ever present in a program. Applying these
rules, which are given in Figure 4.5 and described below, allows us to guarantee type safety of the sliced
program.

L1 a class can only extends a class that is present;

L2 a field can only have type of a class that is present;

K1 a constructor can only have parameter types of classes that are present and access to fields that
are present;

M1 a method declaration can only have return type and parameter types of classes that are present;

E1 a field access can only access fields that are present;

E2 a method invocation can only invoke methods that are present;

E3 an instance creation can only create objects from classes that are present;

E4 a cast operation can only cast an expression to a class that is present;

P1 an entity is only present when the enclosing entities are present;

T1 an entity is in the compilation set if it is in the functional set.

We iterate backwards through all the change sets in the history (Lines 6-17) and examine each atomic
change in the change set. An atomic change δ is included into the sliced history if it is an insertion or
an update to the functional set entities, or an insertion of the compilation set entities. Updates to the
compilation set entities (that are not in the functional set) are ignored since they generally do not affect
the test results.

Our language P does not allow method overloading or field overshadowing, which limits the effects of
class hierarchy changes. Exceptions are changes to subtyping relations or casts which might alter method
lookup (Line 9). Therefore we define function Lookup to capture such changes,
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Lookup(δ, p) , ∃m,C ·Methods(m,C) 6= Methods′(m,C),

where Methods and Methods′ are the method lookup function for p and δ(p), respectively. Finally,
the sliced history H ′ is returned at Line 18.

Correctness of Algorithm 1

Assume that every intermediate version of the program p is syntactically valid and well-typed. We show
that the sliced program p′ produced by the SemanticSlice procedure maintains such properties.

Lemma 1. (Syntactic Correctness). H ′(p0) ∈ P .

Proof. From the assumption, every intermediate version p0, . . . , pk is syntactically valid. As a result,
their ASTs are well-defined and every change operation δ ∈ H is applicable given all preceding changes.
Updates on tree nodes do not affect the tree structure and, therefore, do not have any effect on the
preconditions of the changes. We can safely ignore updates when considering syntactic correctness.

We prove the lemma by induction on the loop counter i. The base case is when i = k and
H ′ = 〈〉. By definition, H ′(pk) = pk is in P . Assume that H ′ ◦ H1..i(p0) ∈ P . We must show that
(H ′,∆′i) ◦H1..i−1(p0) ∈ P . From the condition on Lines 10 and 12, we know that changes affecting only
the entities outside of Π are ignored. So for any change δ ∈ H ′, we have id(δ) ∈ Π. Depending on the
change type of δ, the precondition of δ is either id(δ), or its parent should be present (see Figure 2.5 in
Chapter 2). Because of the CompDep rule (P1), i.e., x ∈ Π⇒ Parent(x) ∈ Π, changes to entities in Π
and their parents are kept. Therefore, any change δ ∈ H ′ remains applicable.

Lemma 2. (Type Safety). H ′(p0) is well-typed.

Proof. Entities outside of compilation set stay unchanged, except for method lookup changes (which
might be kept and do not affect type soundness); and their referenced targets are preserved since deletions
are omitted. Thus, non-compilation set entities remain well-typed. By similar inductive argument as in
Lemma 1 and the completeness of the CompDep rules, we have that the compilation set entities also
stay well-typed after the slicing. Thus, H ′(p0) is well-typed.

Theorem 1. (Correctness of Algorithm 1). Let 〈p1, . . . , pk〉 be k consecutive subsequent versions of a
program p0 such that pi ∈ P and pi is well-typed for all indices 0 ≤ i ≤ k. Let H = 〈∆1, . . . ,∆k〉 such
that ∆i(pi−1) = pi for all indices 1 ≤ i ≤ k. Let T be a test suite such that pk |= T . Then the sliced
history H ′ = SemanticSlice(p0, H, T ) is semantics-preserving with respect to T .

Proof. According to Definition 10, we need to show that H ′ satisfies the following properties,

1. H ′(p0) ∈ P ,

2. H ′(p0) is well-typed,

3. H ′(p0) |= T .

From Lemma 1 and Lemma 2 we know that (H ′ ◦H1..i)(p0) satisfies (1) and (2) is an invariant for the
outer loop (Lines 6-17) of Algorithm 1. The original history H has a finite length k, so upon termination,
we have H ′(p0) satisfies (1) and (2). Since all functional set insertions and updates are kept in H ′, any
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functional set entity that exists in H(p0) can be found identical in H ′(p0). Because all changes that alter
method lookups are also kept (Line 9), the execution traces do not change either. Due to that reason,
and by the definition of functional set, (3) also holds. Thus, H ′(p0) satisfies (1), (2) and (3).

4.3.3 SCM Adaptation

The proposed semantic slicing algorithm operates on the atomic change level and can directly be used
with semantic-based tools, such as SemanticMerge. As an optional step, SCM adaptation integrates the
generic Algorithm 1 with text-based SCM systems such as Git.

Eliminating Side-Effects

To make the integration with text-based SCM systems easier, each atomic change has to be mapped
back to a commit in the original history. The sub-history H ′ = δi = 〈∆′1, . . . ,∆′k〉 (∆′i is possibly
empty) returned by SemanticSlice is a sequence of atomic changes labeled by indices indicating their
corresponding original commits. A non-empty sliced change set ∆′i can thus be mapped to its counterpart
in the original history, i.e., ∆i.

However, original commits may contain changes that are sliced away by Algorithm 1. These changes
might create unwanted side-effects which break the type safety of the compilation set entities. We deal
with this issue by restoring entities that are outside of the compilation set to their original state as in the
initial version of the program, thereby “selectively” ignoring these unwanted changes and eliminating
the side-effects. We do that by creating an additional commit that reverts unwanted changes on the
corresponding code entities.

Calculating Hunk Dependencies
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Figure 4.6: Illustration of direct hunk dependencies. Commit ∆i directly hunk-depends on a previous
commit ∆j . Hunk δ4 provides contexts for hunk δ1. Hunk δ5 provides contexts for hunk δ3.

Algorithm 1 treats changes between versions as tree edit operations. Another view of changes used
by text-based SCM tools is called hunk (Section 2.3.2). A hunk is a group of adjacent or nearby line
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insertions or deletions with surrounding context lines which stay unchanged. For simplicity, we reuse the
notations of tree change operations for hunk changes. For example, Figure 4.6 shows an abstract view of
the changes made between pi−1 and pi, where blocks with “-” represent lines removed and blocks with
“+” represent lines inserted. Grey blocks surrounding the changed lines represent the contexts. From the
text-based view, the difference between pi−1 and pi consists of three hunks, i.e., δ1, δ2 and δ3. We define
two auxiliary functions, left(δ) and right(δ), which return the lines involved before and after the hunk δ,
respectively. Special cases are right(δ) when δ is a deletion and left(δ) when δ is an insertion: in both
cases, the functions return a zero-length placeholder at the appropriate positions.

In order to apply the sliced results with text-based SCM tools where changes are represented as
hunks, it is needed to ensure that no conflict arises due to unmatched contexts. Informally, a commit
∆i directly hunk-depends on another commit ∆j , denoted by ∆i  ∆j , if and only if ∆j contributes to
the hunks or their contexts in ∆i. In contrast, if ∆i does not directly hunk-depend on ∆j , we say they
commute [Dar16], i.e., reordering them in history does not cause conflict. The procedure HunkDep(H ′)
returns the transitive hunk dependencies for all commits in H ′, i.e.,

HunkDep(H ′) ,
⋃

∆i∈H′

{∆j ∈ H/H ′|∆i  
∗ ∆j}.

Once a sub-history H ′ is computed and returned by Algorithm 1, we augment H ′ with HunkDep(H ′)
and the result is guaranteed to apply to p0 without edit conflicts.

Algorithm 2 The DirectHunk procedure.
1: procedure DirectHunk(Bi, H1..i)
2: D ← ∅
3: Bi−1 ← Li
4: for δ ∈ ∆i−1 do
5: if δ is Del ∧ right(δ) ∈ range(Bi) then
6: D ← D ∪ {∆i−1}
7: else if δ is Ins ∧ right(δ) ∩Bi 6= ∅ then
8: D ← D ∪ {∆i−1}
9: Bi−1 ← Bi−1 \ right(δ)
10: end for
11: D ← D ∪DirectHunk(Bi−1, H1..(i−1))
12: return D
13: end procedure

Given a commit ∆i, we collect a set of text lines Bi which are required as the basis for applying ∆i.
For example, Bi for ∆i includes left(δ) for all δ ∈ ∆i and their surrounding contexts (all shaded blocks
under pi−1 in Figure 4.6). Algorithm 2 describes the algorithm for computing the set of direct hunk
dependencies ( ) by tracing back in history and locating the latest commits that contribute to each
line of the basis. Starting from ∆i−1, we iterate backwards through all preceding commits. If a commit
∆ contains a deletion that falls in the range of the basis (Line 5) or an insertion that adds lines to the
basis (Line 7), then ∆ is added to the direct dependency set D. In Figure 4.6, ∆i  ∆j because ∆j has
both an insertion (δ4) and a deletion (δ5) that directly contribute to the basis at pi−1. When the origin
of a line is located in the history, the line is removed from the basis set (Line 9). The algorithm then
recursively traces the origin of the remaining lines in Bi−1. Upon termination, D contains all direct hunk
dependencies of ∆i. In the worst case, HunkDep calls DirectHunk for every change set in H ′. Thus,
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the running time of HunkDep is bounded above by O(|H ′| × |H| ×max∆∈H(|∆|)).

4.4 Implementation and Optimizations

In this section, we describe the implementation details of our semantic slicing tool – CSlicer, and
discuss practical issues as well as some optimizations applied.

4.4.1 Implementation

Change
Distiller

CSLICER

JGitJaCoCoBCEL

         …
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p0 pk
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Figure 4.7: Architecture of the CSlicer implementation.

Figure 4.7 shows the high-level architecture of our CSlicer implementation. We implemented
CSlicer in Java, using the JaCoCo Java Code Coverage Library [Jac16] for byte code instrumentation
and collecting execution data during runtime. We modified the Java source code change extraction tool
ChangeDistiller [FWPG07] for AST differencing and change classification. We also used the Apache Byte
Code Engineering Library (BCEL) [BCE15] for entity reference relation analysis. The hunk dependency
detection component HunkDep was developed based on the Java-based Git implementation, JGit [JGi16].
The HunkDep component can also be used as a stand-alone hunk dependency analysis tool for Git
repositories. Given a set of commits, HunkDep generates a hunk dependency graph which visualizes the
hunk-level relationship among commits and can be used to reorder commit histories without causing
conflicts.

Our CSlicer implementation works with Java projects hosted in Git repositories. The test-slice-verify
process is fully-automated for projects built with Maven [Mvn15]. For other build environments, a user
is required to manually build and collect test execution data through the JaCoCo plugins. When the
analysis is finished, CSlicer automatically cherry-picks the identified commits and verifies the test
results. CSlicer can also run in the minimization mode where all cherry-pickable sub-histories are
enumerated for further investigation.
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The implementation of CSlicer takes about 20 KLOC, and the source code is made available online
at: https://bitbucket.org/liyistc/gitslice.

4.4.2 Optimizations and Adaptations

In order to deal with real-life software projects, we implemented a number of techniques and adaptations
on top of the CSlicer algorithm which address specific challenges in practice. We describe them below.

Handling Advanced Java Features

We presented our algorithms based on the simplified language P . When dealing with full Java, advanced
language features including method overloading, abstract class and exception handling need to be taken
into account. For example, various constructs such as instanceof and exception catch blocks test
the runtime type of an object. Therefore, class hierarchy changes may alter runtime behaviors of the
test [RST+04]. To address this, we treat class hierarchy changes as an update to the methods that check
the corresponding runtime types, to signal possible behavior changes. Changes that may affect method
overloading and field overshadowing are detected and included in the sliced history to keep our approach
sound. Since reflection related changes are rare in practice, e.g., none of our case studies contained such
changes, we disregard them in this work.

Handling Changes in Non-Java Files

Real software version histories often contain changes to non-Java files, e.g., build scripts, configuration
files and binary files. Sometimes changes to non-Java files are entangled with Java file changes in the same
commits. To avoid false hunk dependencies, we ignore non-Java changes in the analysis and conservatively
update all non-Java files to their latest versions unless they are explicitly marked irrelevant by the user.
In extremely rare cases, this may cause compilation issues, when older Java components are incompatible
with the updated non-Java files. Then the components which cause the problem should be updated or
reverted accordingly. None of these affects the target functionalities.

Additional Configurability

We noticed in the experiments that domain knowledge that users have about their projects can enhance
the precision of the slicing results. To make the technique more configurable, we allow users to encode
their domain knowledge during both the analysis and the cherry-picking processes. Specific packages,
files, classes and methods can be included or excluded following user guidance. By default, all changes
in the test files, which are not part of the target system, are ignored, as are changes to the internal
debugging code.

Another easy-to-implement optimization is ignoring a commit and its revert, if these are found in the
history, since removing such a pair does not affect the correctness of the approach.

4.5 Evaluation

In this section, we measure the effectiveness and applicability of CSlicer through both case studies and
empirical evaluations. Specifically, we evaluate CSlicer from two different angles:

https://bitbucket.org/liyistc/gitslice
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1. Qualitative assessment of CSlicer in practical settings (Section 4.5.1). We carried out a number
of case studies to test the applicability of our techniques in practice, for software maintenance tasks
such as porting patches, creating pull request, etc.

2. Quantitative evaluation of CSlicer (Section 4.5.2). We conducted several experiments to get
deeper insights on the proposed algorithm to answer questions such as “how much reduction can
CSlicer achieve”, “how well does CSlicer scale with increasing history length”, etc.

4.5.1 Qualitative Assessment of CSlicer

We have conducted three case studies and thoroughly investigated the results produced by CSlicer, to
better understand its applicability, effectiveness, and limitations. In particular, we looked at six open-
source software projects of varying sizes, different version control workflows, and disparate committing
styles – Apache Hadoop [Had15], Elasticsearch [Ela15], Apache Maven [Mvn15], Apache Commons
Collection [Col16], Apache Commons Math [Mat16], and Apache Commons IO [IO16]. We chose one
target functionality from each project based on the criterion that the functionality should be well-
documented and accompanied by deterministic unit tests.

Table 4.1: Statistics of the case study subjects used in the evaluation of CSlicer.

Case Project #Files LOC |H| Changed |T |
f + −

1 Hadoop 5,861 1,291K 267 1,197 111,119 14,064 58
2 Elasticsearch 3,865 616K 51 75 1,755 304 2

3

Maven 967 81K 50 16 1,012 250 7
Collections 525 62K 39 46 1,678 323 13
Math 1,410 188K 33 34 1,531 359 1
IO 227 29K 26 59 975 468 13

Statistics of the subjects are given in Table 4.1 grouped by their case numbers (Column “Case”).
Columns “#Files” and “LOC” list the number of Java files and lines of code in the respective projects.
Column “|H|” lists the number of commits within the chosen history fragment. Column “Changed” shows
the number of files changed (f), lines added (+) and lines deleted (−) for the chosen range. Column “|T |”
shows the number of test cases in the target test suites. For example, the Hadoop project has 6,608 files,
out of which 5,861 are Java files. The selected history segment covered changes to 1,197 files where over
100 KLOC were added and about 14 KLOC were deleted.

All of the following studies were conducted on a desktop computer running Linux with an Intel i7
3.4GHz processor and 16GB of RAM. Now we describe each case study in detail.

Experiment 1: Branch Refactoring

We applied CSlicer to Hadoop for branch refactoring. The feature “HDFS-6581” was developed in
a feature branch (also called a topic branch) which was separated from the main development branch.
However, when the development cycle of a feature is long, it is reasonable to merge changes from the
main branch back to the feature branch periodically, in order to prevent divergence and resolve conflicts
early. And that is exactly the workflow followed by the Hadoop team on their feature branches. As a
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result, not all commits on the feature branch are logically related to the target feature or required to
pass the feature tests. That is, the branch “origin/HDFS-6581” is mixed with both feature commits and
merge commits from the main branch. Using CSlicer, we were able to re-group commits according to
their semantic functionalities and reconstruct a new feature branch that is fully functional and dedicated
to the target feature.

We started with the original feature branch which consists of 42 feature commits and 47 merge
commits (each can be expanded into one or more commits from the source branch). There are 34
auto merges (“fast-forward merges” in Git terms) which are simply combinations of commits from both
branches without conflicts or additional edits. The other 13 are conflict resolution merges which contain
additional edits to resolve conflicts. To achieve higher granularity when analyzing merge commits, we
kept the resolution merges and expanded the auto merges by replaying (cherry-picking) the corresponding
commits from the main branch onto the feature branch. Effectively, we converted the branched history
into an equivalent expanded linear history by splitting bulk merge commits (see Figure 4.8). This was all
done automatically as a preprocessing step. The expanded feature branch has 267 commits in total.

ch
er

ry
-p

ic
ki

ng

main feature main feature’

   

auto merge

Figure 4.8: Illustration of expanding auto merges through cherry-picking of corresponding commits from
the main branch to the feature branch. The auto merge commit is in double circle. The dashed arrows
represent cherry-picking of commits. The feature branch after branch refactoring is labeled as feature’.

We executed 58 feature-related unit tests specified in the test plan, which took about 750 seconds
to finish. CSlicer identified 65 commits which are required for preserving the test behavior as well as
compilation dependencies, and additional 26 commits for hunk dependencies. Note that some commits
from the main branch are actually required by the target feature. The refactored feature branch passed the
feature test suite and it only contains 91 commits in total, which achieves ∼66% reduction of unnecessary
commits.

Experiment 2: Back-porting Commits

The second use case of CSlicer is to identify the set of commits required for back-porting a functionality
to earlier versions of a software project. We took a fragment of history between v1.3.6 to v1.3.8 of
Elasticsearch and a feature enhancement on the “Groovy interface”. There are 2 unit tests clearly marked
by the developers in the commit messages intending to test the target functionality introduced in v1.3.8.
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As discussed in Section 4.3, there is no efficient algorithm that returns the optimal solution in general.
Finding the shortest semantics-preserving sub-history for a given set of tests is a highly challenging
task even for programmers with expertise within the software projects. Yet, we manually identified the
optimal solutions for this case, which requires 4 out of 51 commits to be ported to v1.3.6 in order for the
functionality to work correctly.

CSlicer identified 17 commits achieving a 67% reduction of the unrelated commits. However,
compared with the optimal solution, CSlicer reported 13 false positives. We examined all the false
alarms and concluded that the main reason causing them is that the actual test execution exposes
more behaviors of the system than what were intended to be verified. For instance, the test case
“DynamicBlacklist” invoked not only the components implementing the “dynamic black list” but also
those that implement the logging functions for debug purposes. Obviously, changes to the logging
functions do not affect the test results. But without prior knowledge, CSlicer would conservatively
classify them as possibly affecting changes. We investigate common sources causing such false alarms in
Section 4.5.3.

Experiment 3: Creating Pull Requests

Another important use case of CSlicer is creating logically clean and easy-to-merge pull requests. Often,
a developer works on multiple functionalities at the same time which could result in mixed commit
histories concerning different issues. Despite the efforts of keeping the development of each issue on
separate branches, isolating each functional unit as a self-contained pull request is still a challenging task.

Table 4.2: Pull requests recreating results in Experiment 3.

Project ID Status |H∗| CSlicer
|H ′| P (%) R(%)

Maven #74 Open 3 3 100.0 100.0
Collections #7 Merged 8 5 100.0 62.5
Math #10 Open 2 2 100.0 100.0
IO #17 Accepted 9 8 87.5 77.8

To assess the effectiveness of CSlicer in assisting and automating the process of creating pull
requests, we selected four public pull requests1 from four different software projects (see Table 4.2).
Columns “ID” and “Status” show the ID and status of the corresponding pull requests. Column “|H∗|”
shows the length of the pull requests created and submitted by the developers. Columns “|H ′|”, “P (%)”,
and “R(%)” list the length, precision, and recall of the pull requests created by CSlicer, respectively.

We browsed the pull request lists available from the project repositories and selected the most recent
pull requests which are non-trivial (containing more than one commit) and accompanied by unit tests.
We used the test cases submitted along with the pull requests as our target tests and used CSlicer to
identify the closely related commits from the developers’ local histories in their forked repositories.

Two pull requests (#7 in Commons Collections and #17 in Commons IO) have already been finalized
(accepted) or merged into the public repositories. The other two are still awaiting approval. For the
pull requests #74 in Maven and #10 in Commons Math Library, CSlicer successfully recreated the

1The pull requests are subject to future modifications. The pull requests used in this study were taken from the projects’
public repositories on Sep 10, 2016.



Chapter 4. Static History Slicing Based on Dependency Analysis 43

exact same results as the ones submitted by the developers. For Commons IO, CSlicer included one
extra commit (#bccf2af) and missed two commits (#62535cc and #3b71609). For Commons Collections,
CSlicer missed three commits.

After a detailed analysis, we discovered a few reasons for CSlicer to miss certain commits. First,
several commits in pull request #17 simply reorganize Java import statements, i.e., remove unused
imports (#3b71609) and replace groups of imports by wild card (#62535cc). CSlicer currently ignores
all changes to import statements since they do not affect test executions when every version of the
program compiles. Second, CSlicer ignores commits which only modify comments and Javadoc. This is
currently a limitation of our tool. In fact, accurate identification of changes to relevant documentation is
an interesting open research problem. Finally, CSlicer correctly ignores a merge commit (#4cc49d78)
introducing unnecessary changes in pull request #7 which was included by the developer.

4.5.2 Quantitative Evaluation of CSlicer

To have more insights of the internals of our algorithm, we also empirically evaluated the efficiency and
applicability of CSlicer by measuring its performance and the history reduction rate achieved when
applied on a benchmark set obtained from real-world software projects. Specifically, we aimed to answer
the following research questions:

RQ 1: How effective is the CSlicer slicing algorithm, in terms of the number of irrelevant commits
identified?

RQ 2: How efficient is CSlicer when applied to histories of various lengths?

Experiment 4: CSlicer on Benchmark

Experiment 4 aims to address both RQ 1 and RQ 2 by running CSlicer using the “normal” mode
(without minimization).

Subjects and Methodology. In addition to the five projects introduced before, we selected one more
project, i.e., Apache ActiveMQ [Act17]. The selected benchmark projects cover a variety of sizes, qualities,
objectives, collaboration models, and project management disciplines. For example, Hadoop has the
largest code base (∼1,300 KLOC) among the six; Elasticsearch is the most collaborative project which
has over 830 contributors; and ActiveMQ has the largest number of sub-projects (36 in total).

From each project, we randomly chose three to four functionalities (e.g., a feature, an enhancement
or a bug fix) that are accompanied by good documentation and unit tests. All of the selected projects
have, to a certain extent, requirements concerning test adequacy – a patch must be adequately tested
before being merged into the repository.

It is also often possible to link specific commits with on-line issue tracking documentation via ticket
numbers embedded in the commit messages. For each functionality, we referred to the log messages and
ticket numbers to locate the target commit where the functionality was completed and tested. The set of
tests are either explicitly mentioned in the accompanied test plan or implicitly enclosed within the same
commit as the functionality itself.

The description and target commit for each functionality are shown in Table 4.3. Column “Project”
shows the names of the projects where the functionalities were chosen from. Columns “ID”, “Type”,
“Description” and “Commit” represent the identifiers, functionality types (i.e., either feature, bug fix, or
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Table 4.3: Target functionalities used in Experiment 4.

Project ID Type Description Commit Test Class # Test Methods |T |

Hadoop

H1 Feature Add NodeLabel operations in help command e1ee0d4 TestRMAdminCLI # {testHelp} 1
H2 Bug Fix FileContext.getFileContext can stack overflow if de-

fault fs is mis-configured
b9d4976 TestFileContext #

{testDefaultURIWithoutScheme}
1

H3 Feature LazyPersistFiles: add flag persistence, ability to
write replicas to RAM disk, lazy writes to disk, etc.

3f64c4a TestLazyPersistFiles # {...} 11

H4 Enhance HDFS inotify: add defaultBlockSize to CreateEvent 6e13fc6 TestDFSInotifyEventInputStream # {testBasic} 1

Elastic

E1 Feature Calculate Alder32 Checksums for legacy files in
Store#checkIntegrity

b2621c9 StoreTest # {testCheckIntegrity} 1

E2 Enhance Make groovy sandbox method blacklist dynamically
additive

64d8e2a GroovySandboxScriptTests #
{testDynamicBlacklist}

1

E3 Feature Adding parse gates for valid GeoJSON coordinates 418de6f GeoJSONShapeParserTests #
{testParse_invalidPolygon}

1

E4 Enhance Enable ClusterInfoService by default 4683e3c ClusterInfoServiceTests #
{testClusterInfoServiceCollectsInformation}

1

ActiveMQ
A1 Enhance Add trace level log to shared file locker keepAlive c17b7fd SharedFileLockerTest # {...} 4
A2 Bug Fix Fix MQTT virtual topic queue restore prefix 4a8fec4 PahoMQTTTest #

{testVirtualTopicQueueRestore}
1

A3 Enhance Only start connection timeout if not already started
the rest of the monitoring

e5a94bf DuplexNetworkTest # {testStaysUp} 1

Maven

M1 Bug Fix ToolchainManagerPrivate.getToolchainsForType()
returns toolchains that are not of expected type

2d0ec94 DefaultToolchainManagerPrivateTest # {...} 3

M2 Feature Add DefaultToolchainsBuilder and Toolchains-
BuildingException

99f763d DefaultToolchainsBuilderTest # {...} 6

M3 Bug Fix Fix: execution request populate ignores plugin repos-
itories

d745f8c DefaultMavenExecutionRequestPopulatorTest
# {testPluginRepositoryInjection}

1



C
hapter

4.
Static

H
istory

Slicing
B
ased

on
D
ependency

A
nalysis

45

M4 Enhance Fail, rather than just warning, on empty entries b8dcb08 DefaultModelValidatorTest #
{testEmptyModule}

1

IO
I1 Enhance Add ByteArrayOutputStream.toInputStream() 8960862 ByteArrayOutputStreamTestCase # {...} 3
I2 Enhance FieUtils: broken symlink support b9d4976 FileUtilsCleanSymlinksTestCase #

{testIdentifiesBrokenSymlinkFile}
1

I3 Bug Fix FilenameUtils should handle embedded null bytes 63cbfe7 FilenameUtilsTestCase # {...} 37

Math
L1 Enhance Add estimation types and NaN handling strategies

for Percentile
afff37e MedianTest # {testAllTechniquesSingleton} 1

L2 Bug Fix Using diagonal matrix to avoid exhausting memory b07ecae PolynomialFitterTest # {testLargeSample} 1

More details can be found at: http://www.cs.toronto.edu/~liyi/tse/data.html.

http://www.cs.toronto.edu/~liyi/tse/data.html
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enhancement), descriptions and commit IDs of each target functionality. Column “Test Class # Test
Methods” shows the test class and method names separated by “#”, where some of the method names
are omitted when they cannot be fit into the space. Column “|T |” lists the number of test cases in the
corresponding test suites. For example, H1 (“Add nodeLabel operations in help command”) is a feature
which adds a new label in the help option of the resource manager administration client command line
interface of the Hadoop project. There was one test case (TestRMAdminCLI#testHelp) introduced at
revision “#e1ee0d4” to validate the implementation of this functionality.

The lifetime of a functionality typically spans a period of 1-4 months which corresponds to around 100
commits for a mid-sized project under active development [LZRC16]. In order to evaluate the effectiveness
and performance of CSlicer under different contexts, we took three sets of histories of lengths 50 (short),
150 (medium) and 250 (long) tracing back from the target commits. We separated project source code
from test code and used CSlicer to perform the semantic slicing on source code only. After applying
the sliced histories on top of the base version, we then verified that the resulting programs compile
successfully and pass the original tests (precompiled into binaries) selected as the slicing criteria.

Results. The slice compositions for medium-length histories are reported in Figure 4.9. Left y-axis
represents percentage of functional (FUNC), compilation (COMP) and hunk (HUNK) dependencies over
|H| (%). Right y-axis represents sizes of the functional set (|Λ|). The history slices returned by CSlicer
consist of functional, compilation and hunk dependencies. Each stacked bar in Figure 4.9 represents the
percentage of all three types of dependencies within the original histories. The dotted line rising from left
to right represents the sizes of functional sets, i.e., the number of source code entities traversed by the
test execution. For example, the functional set size for H4 is 4,846. Its sliced history consists of 20.0%
functional, 0.7% compilation, and 11.3% hunk dependencies of the original history commits.
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Figure 4.9: Compositions of sliced histories for all benchmarks shown in the order of increasing functional
set sizes.

The first observation is that simpler and clear-cut functionalities tend to produce smaller slices. The
sizes of functionalities are reflected by the functional set sizes. In general, increasing functional set size
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leads to increasing size of the history slice (without considering hunk dependencies).
Another interesting observation is that the number of hunk dependencies for Hadoop and Maven is

much larger than those of the other projects. The functional set sizes have no obvious relationship with
the number of hunk dependencies, which corroborates our conjecture that the level of text-level coupling
among commits is project specific.

Answer to RQ 1. CSlicer effectively reduces irrelevant commits given a target test suite.
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Figure 4.10: Average time taken by CSlicer when running on short, medium and long histories.

Finally, we compare the average time taken by each CSlicer component, i.e., the functional set
computation, the compilation set computation, the core slicing component and the hunk dependency
computation, when analyzing short, medium and long histories on all the 23 benchmarks. The results are
shown in Figure 4.10. Each vertical bar plots the average time taken by the functional set computation
(FUNC), compilation set computation (COMP), core slicing component (SLICE) and the hunk dependency
computation (HUNK) when running on histories with different lengths. For example, the core slicing
component takes 2.9, 6.0, and 8.7 seconds on average to finish for short, medium and long histories,
respectively.

Overall, CSlicer takes on average under 10 seconds to finish without computing hunk dependencies.
The corresponding minimum and maximum times are 2.6 and 27.0 seconds, respectively. The time spent
for FUNC and COMP stays almost constant across different history lengths while the SLICE time grows
linearly. The majority of time is spent in computing HUNK which also grows linearly over history length.

Answer to RQ 2. CSlicer scales well on real-world software projects and histories of moderate
lengths.

Threats to Validity

Due to limitations of the tool, we only selected software projects which could be configured and built using
Maven. The reduction rate, however, depends on many factors – the committing styles, the complexities
of the test (how many components it invokes), and coding styles (how closely the components are coupled),
etc. While our results are encouraging, we do not have enough data to conclude that they will generalize
to all software projects.
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As an assumption of our technique, functionalities of interest should be accompanied by appropriate
test suites in order to get intended results. Although we were able to identify the corresponding unit
tests for all the target functionalities in our selection of the experiment subjects, we understand that this
may not always be possible for other, less disciplined, projects. In the absence of well-designed tests,
additional expert knowledge might be necessary for refining the slicing results.

4.5.3 Analysis: Sources of Imprecision

Algorithm 1 presented in Section 4.3 assumes that any change on the functional set can potentially alter
the final test results and thus all functional changes are kept during slicing. But this assumption is
often found to be too conservative in practice. We observed many cases of false positives during change
classification in our experiments which can be divided into two groups, namely (1) refactoring changes,
and (2) oracle-unobservable changes.

1 class Dog {

2 int age;

3 Set<Dog> enemies = new HashSet<Dog>();

4 public Dog (int a) { age = a; }

5 void barking() {

6 System.out.println("bark!");

7 }

8 boolean fighting(Dog other) {

9 barking();

10 enemies.add(other);

11 return !(age<1 || age>5) && age>other.age;

12 }

13 }

14

15 class TestDog {

16 @Test

17 public testFight() {

18 Dog d1 = new Dog(2);

19 Dog d2 = new Dog(1);

20 assertTrue(d1.fighting(d2));

21 }

22 }

Line Descriptions
δ1 3 new HashSet<Dog>() → new HashSet<>()
δ2 6 bark! → bark!bark!
δ3 11 !(age<1||age>5) → age>0&&age<6

Figure 4.11: Illustration of different types of false positives in Example 2.

Example 2

Figure 4.11 shows an example illustrating the two types of false positives. The fighting method of the
Dog class is tested using two newly created instances. The executed code entities include initialization
of the field enemies, class constructor, the barking and the fighting methods. However, none of the
changes (δ1, δ2, and δ3) has any influence on the asserted result (Line 20). Specifically, δ1 is a syntactic
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rewriting which does not change the semantics of the program at all; δ2 updates the barking method to
produce a different console output, but the output is never checked against an oracle; δ3 changes the
returned expression of method fighting, but the returned value is not affected at runtime.

Refactoring Changes. Refactoring changes [Fow99] are program transformations that change the
structure or appearance of a program but not its behavior (e.g., δ1). Refactoring is important for
improving code readability and maintainability. However, refactoring changes create problems for text-
based SCM systems, especially during merging. Based on the study by Dig et al. [DMJN08], merging
changes along with code refactoring causes significantly more merge conflicts, compilation and runtime
errors. The common practice is thus separating refactoring from functional changes [DMJN08] which
gives developers the flexibility to replay the refactoring changes after merging is done. Therefore, if we
can successfully isolate refactoring changes from other changes, then we will be able to produce logically
clean and easy-to-merge history slices.

Renaming code entities is one type of commonly seen refactoring change. In fact, existing code
refactoring detection techniques [DCMJ06, GW05, KR11] focus on renaming and movement of structural
nodes, i.e., packages, classes, methods and fields. However, such changes would alter AST structures
as well as node identifiers and thus often have a repercussion on later changes. For instance, once
a class renaming change is applied, all successive references to that class have to use the updated
name. To preserve correctness of Algorithm 1, we should only consider self-contained local and low-level
refactorings [MHPB12] as candidates to be dropped. For example, one common change pattern that can
be ignored is the usage of syntactic sugars and updated language features. In the Apache Maven [Mvn15]
change history, we observe the adoption of new Java 7 features try-with-resources statement [Try16]
and the diamond operator [Dia16] in a massive scale.

Oracle-Unobservable Changes. Execution results of a test suite depend on both the explicit and
implicit checks embedded in the tests. In the case of Java, a JUnit [JUn16] test case fails either due to
assertion failures (explicit checks defined by developers) or runtime errors (implicit checks performed
by runtime system) [SZ11]. Some changes, even if may alter the program behaviors, are unobservable
to the test oracle and therefore they are referred to as oracle-unobservable changes. The reason is that
the updated behaviors are not checked either explicitly or implicitly and therefore would not affect test
results in any way (e.g., δ2 and δ3). Algorithm 1 does not distinguish such changes from the ones that do
affect test results, and this may cause inclusion of undesired changes.

Yet, in some cases, oracle-unobservable changes may be desirable and should be kept in the history slice,
even if the given tests are inadequate as slicing criteria to distinguish the target semantic functionalities.
For example, performance enhancement changes which only improve the execution efficiency and do
not affect the functional aspect of the program, are unobservable with respect to pure functional tests.
Performance tests [Mol09] can be used instead to capture the performance aspect of the programs.
Algorithm 1 is conservative in design and always includes oracle-unobservable changes in the slicing
results.

4.5.4 Evaluation Summary

To summarize, we analyzed CSlicer both qualitatively and quantitatively. We demonstrated that apart
from assisting developers in porting functionalities, CSlicer can also be applied for other maintenance
tasks such as branch refactoring and creating logically focused pull requests. Furthermore, the results of



Chapter 4. Static History Slicing Based on Dependency Analysis 50

quantitative studies suggest that CSlicer is able to achieve good reduction of irrelevant commits at a
relatively low cost when applied to real-world software repositories, which justifies its value in practice.

4.6 Related Work

To the best of our knowledge, the software history semantic slicing problem was first defined in our prior
work [LRC15]. However, the approach of finding semantic slices using change dependency analysis does
intersect with many areas spanning history understanding and manipulation, code change classification,
change impact analysis (reviewed in Section 1.2) and software product line variants generation. We
compare CSlicer with the related work below.

4.6.1 History Understanding and Manipulation

There is a large body of work on analyzing and understanding software histories. The basic research goals
are retrieving useful information from change histories to help understand development practices [MHPB12,
BHEN13], localize bugs [Zel99, ZH02], and support predictions [ZWDZ04, HZ13].

An interesting take on history analysis is history transformation [HOZ+12, MSBE15]. Muşlu et
al. [MSBE15] introduced a concept of multi-grained development history views. Instead of using a fixed
representation of the change history, they propose a more flexible framework which can transform version
histories into different representations at various levels of granularity to better facilitate the tasks at hand.
Such transformation operators can be combined with CSlicer to build a history view which clusters
semantically related changes as high-level logical groups. This semantics summarization view [MSBE15]
is a much more meaningful representation for history understanding and analysis.

4.6.2 Change Classification

The CSlicer algorithm relies on sophisticated structural differencing [CRGW96, FMB+14, Bil05] and
code change classification [FG06, FWPG07, HM08] algorithms. We use the former to compute an optimal
sequence of atomic edit operations that can transform one AST into another, and the latter to classify
atomic changes according to their change types.

The most established AST differencing algorithm is ChangeDistiller [FWPG07]. It uses individual
statements as the smallest AST nodes and categorizes source code changes into four types of elementary
tree edit operations, namely, insert, delete, move and update. We use a slightly different AST model
in which all entity nodes are unordered. For example, the ordering of methods in a class does not
matter while the ordering of statements in a method does. Hence, the move operation is no longer
needed and thus never reported by CSlicer. We also label each AST node using a unique identifier to
represent the fully qualified name of each source code entity. The rename of an entity is thus treated as a
deletion followed by an insertion. This modification helps avoid confusion in functional set matching
using identifiers. Finally, deletion is only defined over leaf nodes in ChangeDistiller. In contrast, we
lift this constraint and allow deletion of a subtree to gain more flexibility and ensure integrity of the
resulting AST.
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4.6.3 Product Line Variant Generation

The software product line (SPL) [CN01, PBL05] community faces similar challenges in ensuring well-
formedness of programs. An SPL is an efficient means for generating a family of program variants from
a common code base [KA08, KAT+09]. Code fragments can be disabled or enabled based on product
configurations, for example, using “#ifdef” statements in C’s preprocessor. However, out of the large
number of variants that can be generated, many are ill-formed due to syntax and type errors. Therefore,
variant generation algorithms need to check the implementation of SPL to ensure that the generated
variants are well-formed.

Kästner et al. [KAT+09] introduced two basic rules for enforcing syntactic correctness of product
variants, namely, optional-only and subtree. The optional-only rule prevents removal of essential language
constructs such as class name and only allows optional entities, e.g., methods or fields, to be removed.
The subtree rule requires that when an AST node is removed, all of its children are removed as well, Our
field- and method-level AST model and the syntactic correctness assumption over intermediate versions
together automatically guarantee the satisfaction of the two rules.

Kästner and Apel [KA08] proposed an extended calculus for reasoning about the type-soundness of
product line variant programs written in Featherweight Java [IPW01]. They formally proved that their
annotation rules on SPL are complete. Our CompDep reference relation rules are directly inspired by
theirs. We are, however, able to discard some of the rules since we only deal with code entities at the
field- and method-level granularity.

Despite the similarities in syntactic and type safety requirements on the final products, the inputs
for both problems differ. Unlike the SPL variant generation problem where a single static artifact is
given, the semantic slicing algorithm needs to process a sequence of related yet distinct artifacts under
evolution. And on top of low-level requirements on program well-formedness, semantic slices also need to
satisfy high-level semantic requirements, i.e., some functionality as captured by test behaviors.

4.7 Summary

In this chapter, we proposed CSlicer, an efficient semantic slicing algorithm which resides on top of
existing SCM systems. Given a functionality exercised and verified by a set of test cases, CSlicer is
able to identify a subset of the history commits such that applying them results in a syntactically correct
and well-typed program. The computed semantic slice also captures the interested functional behavior
which guarantees the test to pass.

We have also implemented a novel hunk dependency algorithm which fills the gap between language
semantic entities and text-based modifications. We identified a number of sources that can cause
imprecision in the slicing process. We carried out several case studies and empirically evaluated our
prototype implementation on a large number of benchmarks obtained from open-source software projects.
We conclude that CSlicer is effective and scales in practical applications.



Chapter 5

Dynamic History Slicing Through
Delta Refinement

“History doesn’t repeat itself, but it does
rhyme.”

— Mark Twain

5.1 Introduction

In Chapter 4, we presented CSlicer which analyzes the latest program version to collect test coverage
information and then computes an over-approximated set of commits that include changes to the
exercised code elements. CSlicer trades accuracy for efficiency: it executes the test suite only once,
but it conservatively assumes that all changes traversed by the test execution can potentially alter the
test results. This assumption results in potential inclusion of unnecessary or irrelevant changes into the
history slice (see Section 4.5.3).

On the other hand, Git-bisect [Git16a] and delta debugging [ZH02] isolate failure-inducing changes in
version histories through divide-and-conquer, where a set of commits is partitioned and tested separately
until a minimal subset that exposes the test failures is found. Although solving a slightly different
problem than CSlicer, their approaches can also be applied to semantic history slicing and they have
better guarantees in result accuracy. Yet, they can be very expensive to run as they execute the test
suite multiple times, depending on the way history is partitioned and on the order in which partitions
are tested.

The biggest challenge for precisely solving the semantic slicing problem lies in the very large number
of possible programs in the search space, i.e., those that are induced by all subsets of commits in the
history. A valid semantic history slice has to be efficiently discovered from the exponential number of
candidates.

Dynamic Delta Refinement

In this chapter, we propose a precise semantic history slicing technique based on iterative refinement and
change significance ranking. We discover relevance of changes to the target tests through successive test

52
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runs and utilize this information to guide the history partition and speed up the refinement process. We
refer to this technique as dynamic delta refinement. Its key insight is that by comparing the runtime
executions of two program versions – before and after a change, we can extract information about the
precise impact of the changes at various program points. By combining impact information with test
outcomes (pass or fail), we are able to accurately infer the significance of changes with respect to the
target tests. In particular, if the tests still pass after removal of a change, then the removed change and its
family of related changes are insignificant to the tested functionalities. We give more details on how such
families of changes can be detected using dynamic program invariants generated by Daikon [EPG+07] in
Section 5.3.

Partition

Execute Learn

History

Tests

Minimal
Slice

Sub-history Change

Significance

Dynamic Invariants

Signals✔

Figure 5.1: Overview of the dynamic delta refinement loop.

Figure 5.1 shows an overview of the delta refinement loop. Using the significance measurements of
changes, dynamic delta refinement is able to efficiently find minimal semantic history slices through well
informed partition schemes. With much higher confidence, changes of less significance are removed first
and, upon success, the analysis scope is reduced and the refinement continues recursively. The results of
test executions, either success or failure, are used to update significance ranking of the remaining changes.
The ranking accuracy is improved with each execution, and the refinement loop terminates when the
minimality condition is met. Note that the algorithm maintains a valid semantic slice throughout this
process, so it can be interrupted at any time and return a valid best-effort result.

Contributions

We summarize this chapter’s contributions as follows:

• We show how dynamic delta refinement can learn significance of changes with respect to a specific
high-level functionality.

• We define minimal semantic slices and describe an algorithm for computing them based on dynamic
delta refinement.

• We report on an implementation of a fully-automated precise semantic history slicing tool that
operates on Java projects hosted in Git repositories.
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• We compare our technique with previous work in terms of precision and efficiency. Based on
empirical evaluation, our technique achieves ∼46% precision improvement in terms of the number of
commits identified, compared with CSlicer. We also demonstrate the advantage of using change
significance to speed up the basic partition scheme used by delta debugging.

Organization

This chapter is organized as follows:

• In Section 5.2, we use two examples to illustrate how dynamic invariants are used for learning
change significance and how significance ranking is used to guide history partition.

• In Section 5.3, we formalize the delta refinement algorithm for finding minimal semantic slices and
prove its correctness.

• In Section 5.4, we describe our implementation details.

• In Section 5.5, we discuss evaluation setups and experimental results.

• Finally, we discuss related work and conclude in Sections 5.6 and 5.7, respectively.

5.2 Definer by Examples

In this section, we illustrate our approach on two simple examples.

5.2.1 Changes and Dependencies

Example 3

Figure 5.2a shows two versions of a Java program Foo.java: “base” and “final”. The “final” version
introduces a few modifications to the class B through a series of atomic changes. Atomic changes are
defined over the abstract syntax trees (ASTs) of the program as insertions (Ins), deletions (Del), or
updates (Upd) of AST nodes (e.g., fields, methods, etc.) Specifically, there are six atomic changes between
the “base” and the “final” versions (listed in no particular order), 1 : an update to the field B.x; 2 : an
insertion of a new field y into the class B; 3 : an update to the field B.s; 4 : an update to the method
B.g(), which adds an additional statement “z = lib(*) ? z : m()”, conditionally assigning the
returned value of m() to the local variable z; 5 : an update to method B.h(), which replaces “==” by
“!=”; and 6 : an insertion of a new method m() into the class B.

The lib(*) method called in g() represents an external library whose returned value is only known
during runtime. We do know that the library method behaves deterministically across multiple executions,
but cannot predict its return value without executing it. The desired functionality of the program is
captured by a unit test for Foo.java which asserts that the returned value of the method A.f() should
be equal to 3 (see Figure 5.2b). We denote this test by T . Note that the test assertion holds in the final
version of the program but fails in the base one.

A semantic history slice is a subset of the changes which produces a well-formed and fully functional
program that can still pass the test. Since we only care about a subset of the program behaviors captured
by the test, some atomic changes are unnecessary. In Example 3, the minimal set of changes which
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Final:Base:

class A {                                                                                                                                                                                                

  int f() {return (new B).g();}

}                                                                                                                                                                                        

                                                                                                                                                                                                            

class B {                                                                                                                                                                                                  

  int x = 1;                                                                                                                                    

  String s = null;                                                                                                                                                                                        

                                                                                                                                                                                                            

  int g() {                                                                                                                                                                                               

    int z = h(s, x);                                                                                                                                                                                    

    return z;                                                                                                                                                                                           

  }                                                                                                                                                                                                       

                                                                                                                                                                                                            

  int h(String v, int t) {                                                                                                                                                                                

    return v == null ? 0 : t;                                                                                                                                                                           

  }                                                                                                                                                                                                       

} 

1: UPD(B.x)

class A {                                                                                                                                                                                                

  int f() {return (new B).g();}

}      

                                                                                                                                                                                                        

class B {                                                                                                                                                                                                   

  int x = 2;                                                                                                                                                                                              

  int y = 2;                                                                                                                                                                                              

  String s = "abc";                                                                                                                                                                                       

                                                                                                                                                                                                            

  int g() {                                                                                                                                                                                               

    int z = h(s, x);                                                                                                                                                                                    

    z = lib(*) ? z : m();                                                                                                                                                                                

    return z;                                                                                                                                                                                           

  }                                                                                                                                                                                                       

                                                                                                                                                                                                            

  int h(String v, int t) {                                                                                                                                                                                

    return v != null ? 0 : t;                                                                                                                                                                  

  }                                                                                                                                                                                                       

   

  int m() {return ++y;}

} 

3: UPD(B.s)

2: INS(B.y)

4: UPD(B.g)

5: UPD(B.h)

6: INS(B.m)

(a) Atomic changes.

Test:

class TestFoo {  

  @Test                                                                                                                                                                                              

  void test() {

    A a = new A();

    assertEquals(3, a.f());

  }

}

(b) Target test.

62

51 3

4 ✔

(c) Atomic changes between the “base” and
“final” versions of Foo.java.

Figure 5.2: Illustration of changes and their dependencies.

qualifies as a valid semantic slice is { 2 , 4 , 6 }. The test T fails when any of these three changes is
missing and passes whenever all of them are present. Other changes are either never executed or do not
alter the asserted values. Interestingly, the test passing property is not monotone in general, i.e., adding
modifications to a valid semantic history slice may change the tests from passing to failing. This makes
computing minimal semantic history slices rather challenging.

Change Dependencies

Atomic changes are not completely independent from each other. In order to construct a well-formed
program, some changes have to be applied as prerequisites for others [RST+04, LRC15]. For example,
Ins(B.m) depends on Ins(B.y) since the method B.m() accesses the field B.y and requires the declaration
of the field in order to compile; and Upd(B.g) depends on Ins(B.m) since the new version of the method
B.g() invokes B.m() (see Figure 5.2c).
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We are only interested in producing well-formed programs. The partition of changes thus has to obey
the dependency relations. That is, reverting a subset of atomic changes results in a well-formed program
only if the remaining changes have all their dependencies satisfied. The change dependencies can be
computed systematically, as we describe in Section 5.4.

5.2.2 Learning Change Significance

We now show how delta information observed from successive test runs can be used to learn significance
of atomic changes with respect to a target test suite.

In Example 3, the target test T passes in the final version. We can use this information to establish
facts about the program variables at various program points by generating dynamic invariants [EPG+07]:
likely invariants that may not generalize but that hold for the exercised test executions. For simplicity, we
refer to them as invariants from now on. For instance, “B::x == 2” is a field invariant which indicates that
the value of the field B.x equals to 2 during the initial execution. Another example is “A.f()::return

== 3” which is a method post-condition asserting that the return value of A.f() is 3.
We denote by H− the set of reverted changes, I the initial set of invariants for the final version of the

program, and I ′ the invariants after changes are reverted. The row H− of Figure 5.3 shows four possible
cases of reverted changes in Example 3. The deltas in the generated invariants before and after reverting
changes is shown in row “I \ I ′” of the table. The rows “T (H+)” and “Signals” show the test outcomes
and significance signals learned for each case, respectively. We discuss each case in turn below.

Case 1 Case 2 Case 3 Case 4
H− 1 1 3 4 3 4

I \ I ′ B::x == 2
B::x == 2

B::s != null
B.h(I,S)::return ==

0

B::y one of {2, 3}
B.g()::return == 3
B.m()::return == 3
A.f()::return == 3

B::s != null
B.h(I,S)::return ==

0
B::y one of {2, 3}
B.g()::return == 3
B.m()::return == 3
A.f()::return == 3

T (H+) 4 4 8 8

Signals 1 ↓ 1 ↓ 3 ↓ 5 ↓ 2 ↑ 4 ↑ 6 ↑

Figure 5.3: Change significance learning case by case.

Case 1: Test Passing without Extra Signal

Suppose a singleton atomic change set H− = { 1 } is reverted during the first partition step, and the new
program is now equivalent to applying H+ = { 2 , 3 , 4 , 5 , 6 } to the base version. The declarations
and initializations of x are reverted to the base version: x initialized to 1 instead of 2.

Static analysis is unable to determine whether this change would affect the test results due to the
undetermined returns of lib(*). But we are able to precisely detect the impact of reverting 1 by
comparing the new set of invariants I ′ generated during the actual execution of the new program to
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the original invariants I. In this case, we observe that only one invariant disappears after reverting 1 ,
namely, “B::x == 2” (see row “I \ I ′” in Figure 5.3). This likely shows that the impact of reverting 1

is local to the change itself and does not flow into other program points.
In fact, lib(*) returns false at runtime and thus the change on B.x does not propagate through – the

returned value from h(s,x) is overwritten by m() which is independent of the change. The test outcome
is unchanged and therefore the value of B.x is considered insignificant. We decrease the significance score
of 1 (denoted by ↓ in Figure 5.3 row “Signals”).

Case 2: Test Passing with Extra Signals

Now suppose that two atomic changes, H− = { 1 , 3 }, are reverted together. The initial values of both
x and s are affected: x taking value 1 instead of 2 and s being initialized to null instead of "abc".
This time, we observe three invariants disappearing after the revert: “B::x == 2”, “B::s != null” and
“B.h(I,S)::return == 0”, which involve an additional method h(I,S) whose return value is affected
by the revert.

Since the test passes again, none of the three invariants in I \ I ′ is consequential for the target func-
tionality. These include the return of B.h(I,S). Apart from 1 and 3 which are obviously insignificant,
we could also infer that 5 is insignificant – a local impact analysis shows that 5 only affects the return
of B.h(I,S), At this point, we have determined that the change set { 1 , 3 , 5 } is insignificant for the
target test. This information can be used to guide the partition in the next iteration by prioritizing
reverting 5 over the rest.

Case 3: Test Failing by Determined Causes

When 4 is reverted, the conditional assignment statement “z = lib(*) ? z : m()” in g() is removed.
The test fails because now the value from h(s,x) flows through, which is different from the old value
from m(). Since an atomic change is already the smallest unit in our analysis, we can pinpoint 4 as the
definite cause of the test failure.

All invariants violated by the revert are directly impacted by the change and most likely cause the
failure. They are as follows: “B::y one of {2, 3}” which asserts that the field y used to take both 2
and 3 (now y can only be 2), and “B.m()::return == 3” which asserts that the return of m() used to
be 3 (now m() does not return at all). Therefore, we consider both 2 and 6 , which are associated with
B.y and B.m(), respectively, significant for the test.

Case 4: Test Failing by Undetermined Causes

When the test fails after reverting multiple atomic changes, as happens in this case, the causes for the
failure are undetermined. The actual cause can be any one in the reverted changes or their arbitrary
combination. For example, when H− = { 3 , 4 } is reverted, the test fails only due to the absence of 3

but we cannot infer useful significance information in this case.

5.2.3 History Partition by Significance Ranking

The basic idea of history partition is inspired by delta debugging [ZH02]. In the first iteration, the history
is split into two halves which are then tested individually. If one of the partitions passes the test, then
the process continues recursively on the successful partition. Otherwise, less aggressive partitions are
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produced by reverting fewer changes and keeping more. For example, we can split the history into four
similar-size change sets and revert each of them, one at a time. If none of the attempts are successful,
then finer-grained partitions are produced until we reach a point where only a single atomic change is
reverted at a time. Then we are able to classify the change precisely according to the test results. The
process terminates when a 1-minimal [ZH02] history slice is found: reverting any single change in the
slice fails the test.

n Partition (H+, H−) T Signals

1 1 2 3 4 5 6 7 8 -
1 2 3 4 5 6 7 8 -

2

1 2 3 4 5 6 7 8 -
1 2 3 4 5 6 7 8 8

1 2 3 4 5 6 7 8 -
1 2 3 4 5 6 7 8 4 3 ↓ 5 ↓ 7 ↓ 8 ↓

3 1 2 3 4 5 6 ∗ ∗ 4 3 ↓ 5 ↓

4 1 2 ∗ 4 ∗ 6 ∗ ∗ -
1 2 ∗ 4 ∗ 6 ∗ ∗ 8

5 1 2 ∗ 4 ∗ 6 ∗ ∗ 4 1 ↓

6
∗ 2 ∗ 4 ∗ 6 ∗ ∗ -
∗ 2 ∗ 4 ∗ 6 ∗ ∗ 8 2 ↑ 4 ↑ 6 ↑
∗ 2 ∗ 4 ∗ 6 ∗ ∗ -

Figure 5.4: Enhanced history partition scheme.

In our technique, we make two enhancements to the basic partition scheme:

• before attempting basic partitions, we prioritize removal of low significance changes whenever
possible, and

• by precisely analyzing dependencies between changes, we predict compilation errors without needing
to compile the program.

Example 4

We use another example with a slightly more complex change history to illustrate our enhanced history
partition scheme. In this example, there are eight atomic changes { 1 , . . . , 8 }, adding two non-essential
changes 7 and 8 on top of the history in Example 3. The set of essential changes is still { 2 , 4 , 6 }. The
code and detailed changes for Example 4 can be found at: https://bitbucket.org/liyistc/gitslice/

wiki/ase16-e2.
The actual steps taken when analyzing this example are shown in Figure 5.4. During the first step

(n = 1), the history is partitioned into two equal halves, i.e., { 1 , 2 , 3 , 4 } and { 5 , 6 , 7 , 8 }. We keep
one set and revert the other but only to find that the dependencies 6 → 2 and 4 → 6 are violated. In
Figure 5.4, change dependency violations are represented by “-” in column “T”. No test run is needed so
far.

https://bitbucket.org/liyistc/gitslice/wiki/ase16-e2
https://bitbucket.org/liyistc/gitslice/wiki/ase16-e2
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During the second step (n = 2), we increase the partition granularity and revert two changes at a
time. Reverting { 3 , 4 } produces a well-formed program, but the test fails (8) since 4 is an essential
change. No significance signal is learned since the cause of the failure is not determined. The test passes
(4) when { 7 , 8 } is reverted. The extra signals for 3 and 5 that we learn from the passing test allow
us to lower their significance as well.

During the third step (n = 3), we revert { 3 , 5 } as suggested by their significance measurements and
successfully reduce the scope down to only four atomic changes. Similarly to the first step, neither half
of the partition produced during Step 4 is a valid semantic slice. Therefore, we increase the partition
granularity again in Step 5, reverting a single change at a time. This time, 1 can be reverted which
leaves a valid 1-minimal history semantic slice { 2 , 4 , 6 }. During the final step (n = 6), the delta
refinement loop terminates because none of the changes can be successfully reverted.

For this example, six test runs are needed for finding the minimal solution using the enhanced partition
scheme. In contrast, the basic partition scheme from [ZH02], without significance learning or change
dependency analysis, requires thirteen test runs and twelve additional (failed) compilations.

5.3 The Dynamic Delta Refinement Algorithm

In this section, we present the dynamic delta refinement algorithm for precise semantic history slicing in
detail.

5.3.1 Algorithm Descriptions
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Figure 5.5: Dynamic delta refinement overview.

Given a history H and a test suite T , to compute a 1-minimal semantic slice H∗, our algorithm
iteratively goes through three phases: partition, execution and learning, as shown in Figure 5.5. To
implement each phase, the delta refinement algorithm maintains three data structures:
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• H∗, the current minimal semantics-preserving history slice, which is always an over-approximation
of the 1-minimal solution and can be returned as a sub-optimal solution if the refinement process
terminates prematurely;

• I, the set of dynamic invariants generated from the last successful test execution and updated after
every successful run;

• S : ∆ → R, the change significance ranking – a function from atomic changes to real numbers,
updated according to the outcomes from the execution phase.

Algorithm 3 presents the dynamic delta refinement algorithm as a set of generic rules specifying the
minimal requirements for each phase.

Initialization

The Init rule executes tests on the final version H(p0) and collects dynamic invariants I = Inv(H,T ). It
also initializes H∗ to be the input history H, and initializes significance scores for all atomic changes in
H to zero.

Algorithm 3 The dynamic delta refinement algorithm.

Initialization:
Init(H,T )

H∗ ← H ∀δ ∈ H · S(δ)← 0 I ← Inv(H,T )

Partition:

|H∗| > 1
Par-Rand(H∗)

H+ 6= ∅ H− 6= ∅ H+ ∪H− = H∗

H+ ∩H− = ∅

∃δi, δj ∈ H∗ · S(δi) > S(δj) Par-Sig(H∗,S)
H+ ←

⋃
S(δ)≥S(δi) δ H− ← H∗ \H+

Execution and Learning:

H+ |= T I ′ = Inv(H+, T )
Pass((H+, H−), T )

(I \ I ′) ↓ H∗ ← H+ I ← I ′

H+ 6|= T I ′ = Inv(H+, T ) |H−| = 1
Fail-1((H+, H−), T )

(I \ I ′) ↑ H∗ ← H∗ I ← I

H+ 6|= T |H−| > 1
Fail-2((H+, H−), T )

H∗ ← H∗ I ← I

Partition

This phase receives a history H and splits it into two non-empty sub-histories, H+ and H−. The split
can be either random or guided by a significance ranking of atomic changes. The two rules for this phase,
Par-Rand and Par-Sig, govern the behaviors of two different partition schemes.
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The random partition splits the current minimal semantic slice H∗ into two non-empty sub-histories,
H+ and H−, randomly, when the length of H∗ is greater than one. Then H+ is kept while H− is
reverted. We adjust the relative sizes of H+ and H− to balance between progressions upon test success
and chances of successes. For example, a smaller H+ can reduce a larger chunk of non-essential changes
if the tests pass, but it usually has a lower chance of success assuming essential changes are uniformly
distributed. In the actual implementation, we gradually increase the size of H+ when test fails and
decrease it otherwise.

The significance-guided partition scheme splits the history according to significance ranking of changes,
such that all changes in H+ have higher or equal significance score than those in H−. With accurate
significance ranking, reverting non-essential changes can be very effective. In practice, we apply Par-Sig
first whenever possible, as it has a higher chance to produce more accurate splits.

Execution

The execution phase receives a valid partition (H+, H−) and executes tests T on H+(p0) (written as
H+ afterwards). The dynamic invariants I ′ generated from the execution are compared with I which is
generated from the last successful test run. An invariant delta I \ I ′ and a test signal (4 / 8) are passed
on to the learning phase.

Learning

The learning phase infers significance of individual atomic changes according to the invariant deltas
and the test signals. There are three rules for this phase: Pass, Fail-1 and Fail-2 controlling how the
significance ranking is updated under different circumstances.

When H+ passes T , the Pass rule applies. The invariant deltas indicate differences observed during
the current program execution compared with the last successful test run. We use the invariant deltas to
find atomic changes which are potentially related to the observed differences in test execution. This step
matching variables and program points in invariant deltas with other atomic changes is performed using
a simple local static change impact analysis [Arn96]. For each affected method postcondition, we collect
all statements within the method body that have potential impacts on the method return (e.g., changed
value flows into the return). For instance, using a simple backward data-flow analysis, the invariant
“B.g()::return == 3” in Example 3 is matched to 4 which directly updates the returned variable z.
Similarly, for each method precondition, we consider every call site and collect statements preceding the
method invocation which potentially impacts the corresponding input parameters. Finally, for invariants
on fields, we analyze all field access sites and perform a similar backward analysis. The significance of
each matched atomic change is decreased.

Note that the changes likely related to an invariant delta found in this local static analysis are not
definite or exhaustive. They are purely based on heuristics. But since they are only used to update
change significance, the correctness of Algorithm 3 is not affected. After that, we update H∗ to H+ and
recursively apply partition rules on H∗.

When H+ fails T , either Fail-1 or Fail-2 applies, depending on the size of H−. If |H−| is greater
than one, as discussed before, the cause of test failure is not determined. We do not infer change
significance in this case (Fail-2). Otherwise, we perform a similar analysis as in Pass and increase the
significance scores of the related changes (Fail-1).
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Termination Condition

The algorithm never attempts the same partition (H+) twice and it terminates whenever H∗ becomes
empty or the 1-minimal condition defined in Definition 12 is met – ∀δ ∈ H∗ · (H∗ \ {δ}) 6|= T .

5.3.2 Soundness and Completeness

The following theorem states that the algorithm is sound.

Theorem 2. (Soundness). Given a history H and a test suite T , if the delta refinement algorithm
terminates, then H∗ is a 1-minimal semantics-preserving slice of H with respect to T .

Proof. The soundness of the algorithm is straightforward. Since H∗ is only updated when T is passed,
H∗ is always a valid semantics-preserving slice. The termination condition guarantees that it is also
1-minimal.

As presented, the generic partition rules are non-deterministic. To ensure termination, we impose a
notion of fairness on partition schemes. A fair partition scheme guarantees that a singleton partition for
every atomic change in H∗ is eventually reverted after very update of H∗. The following theorem states
completeness of the algorithm.

Theorem 3. (Completeness). Given a history H and a test suite T , the algorithm using fair partition
schemes always terminates with finitely many rule applications.

Proof. To see this, suppose the algorithm does not terminate. Since H∗ has finite number of changes
initially and its length is monotonically decreasing, |H∗| has to eventually stay constant. Because of the
fairness condition, every atomic change in H∗ is eventually reverted and tested. If none of the tests pass,
then the 1-minimal condition is met. If one of the tests passes, then |H∗| should decrease. Both cases
lead to contradictions.

5.4 Implementation and Optimizations

In this section, we describe our implementation of a minimal semantic slicing tool based on the dynamic
delta refinement algorithm and some of the optimizations applied.

5.4.1 Implementation

We implemented the delta refinement algorithm as a fully-automated precise semantic history slicing
tool, Definer, for Java projects hosted in Git repositories.

We use JGit [JGi16], a Java implementation of Git, for repository manipulation and commit-level
hunk dependency analysis (see Section 4.3.3). We use a modified version of ChangeDistiller [FWPG07] for
extracting AST-level atomic changes from Git commits. We also use the Apache Byte Code Engineering
Library (BCEL) [BCE15] to analyze dependencies among atomic changes, Daikon [EPG+07] for dynamic
invariant detection, and Soot [VRCG+99] for performing local change impact analysis.

Definer is written in Java and yields fully-automated analysis of projects built with Maven [Mvn15].
The source code of Definer and all benchmarks used in our experiments are available online: https:

//bitbucket.org/liyistc/gitslice.

https://bitbucket.org/liyistc/gitslice
https://bitbucket.org/liyistc/gitslice
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5.4.2 Optimizations

We now describe the optimizations and adaptations applied specific to Definer for dealing with more
realistic cases.

Change Dependency Analysis

To avoid running into compilation errors, we perform a pre-analysis for each version in the history and
compute direct dependencies for all changed AST nodes. This analysis produces a multi-version change
dependency graph as shown in Figure 5.6.

p0 :

p1 :

p2 :

p3 :

A.f() A.g() B.h() B.g()

4: DEL

3: UPD

2: INS1: UPD

Figure 5.6: Illustration of change dependency analysis.

In this example, there are four program versions, i.e., p0, p1, p2 and p3, all of which are well-formed.
There are three changed nodes, i.e., methods A.f() and A.g() which belong to class A, as well as B.g()

which belongs to class B. There is also a fixed node B.h() which stays unchanged. Class B is a sub-class of
A. Each node has a separate time-line on which its changes are labeled. In particular, A.f() has an update
between p1 and p2; A.g() is inserted between p1 and p2; and B.g() is updated after p0 but deleted after
p2. In Figure 5.6, solid arrows represent necessary dependencies while empty arrows represent sufficient
dependencies. For instance, a method invocation of g() in B.h() makes B.h() necessarily depend on
B.g() before p2. But when g() is introduced in the super-class A in version p2, both definitions of g()

are sufficient dependencies of B.h(), i.e., existence of either one of them would satisfy the compilation
requirement due to method inheritance.

This graph is useful for predicting compilation failures without actually compiling the program, as
long as atomic changes for an AST node are reverted sequentially. For example, 2 cannot be reverted
from p3 alone because both A.f() and B.h() necessarily depend on it. But { 1 , 2 , 4 } can be reverted
together since A.f() no longer depends on A.g() and the recovered B.g() substitutes the dependency
for B.h().

We build the multi-version dependency graph incrementally. A complete dependency graph is built
by first analyzing the base version, and for subsequent versions it suffices to analyze only the changed
classes.

Git Adaptation

The generic algorithm discussed in Section 5.3 operates on the level of atomic changes. To work with Git,
we treat the set of atomic changes belonging to the same commit as a bundled group. The partition
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algorithm is adjusted such that changes in the same group always stay together and the significance score
for a group is computed as the sum of the scores of its members.

Apart from dependencies between atomic changes, we also analyze dependencies between commits
which are also known as the hunk dependencies (Chapter 4). Hunk dependencies for a commit are
prerequisites which have to be in place so that the target commit can be applied without causing a Git
merge conflict. Partitions of commits which do not comply with the hunk dependencies are discarded
immediately without running any tests.

Other Optimizations

Ranking by Heuristics. Non-essential commits are commits which contain only non-essential
changes [KR11], such as changes on test files, Javadocs and non-Java files including configuration
files, change logs, etc. We assign negative initial significance scores for non-essential commits according
to heuristics which gives higher priority for reverting them compared with other commits.

Lazy Dynamic Tracing. The software projects we experimented with are relatively large in size (30
to 190 KLOC). Instrumenting the entire project and tracing test execution end-to-end with Daikon is
often impractical. But since we are only interested in the local direct impacts of changes, which give
clearer signals for significance, we can simply trace classes that have changed during the input history.

5.5 Evaluation

In this section, we evaluate our implementation with respect to both its precision and performance
using a benchmark suite obtained from real open-source software repositories. The goal of our empirical
evaluation of Definer is to answer the following research questions:

RQ 3 How does the precision of history slices produced by Definer compare with those produced
by CSlicer?

RQ 4 How effective is change significance ranking for guiding history partitions when compared with
the basic partition scheme used by delta debugging?

RQ 5 How do different partition schemes affect the performance of Definer?

5.5.1 Subjects

Table 5.1: Statistics of the software projects used in the experimental evaluation of Definer.

Projects #Files LOC #C-1y #C-4m
io 227 29,173 127 42.3
collections 525 61,548 151 50.3
math 1,410 187,711 407 135.7

We tested Definer on a benchmark consisting of eight target functionalities selected from three
open-source projects, namely Apache Commons IO Library (io) [IO16], Apache Commons Collections
Library (collections) [Col16], and Apache Commons Mathematics Library (math) [Mat16]. These
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projects are all written in Java and their development histories are freely accessible online. They are
also actively developed and maintained so that there are an abundance of new functionalities (e.g.,
features, bug fixes and improvements) to choose from. Statistics about each project is shown in Table 5.1.
Columns “#Files” and “LOC” show the number of Java files and the total lines of code for each project,
respectively. Column “#C-1y” shows the number of commits between January 1, 2015 and January 1,
2016 for each project. Column “#C-4m” shows the average number of commits over four months during
the same period.

In order to test the history slicing capabilities of Definer, all of the experiments require an original
history segment (H) and a target test suite (T ) designated for certain high-level functionality. We
randomly selected target functionalities and manually identified corresponding history segments based on
commit messages and testing documents. In particular, we looked for commits which are accompanied
by test suites intending to validate a functionality and selected such commits as the end points of the
history analysis scopes.

According to our experience, the lifetime of a functionality typically spans around 100 commits which
correspond to a period of one to four months for a project under active development. Therefore, the
length of H was decided based on two factors:

• each program version in the chosen history should be well-formed and compilable as assumed by
our change dependency analysis, and

• the average history length of a subject matches the average number of commits during a 4-month
development period (∼76.1 commits).

Surprisingly enough, many versions in math and collections did not compile with the provided
Maven configuration files. Even though non-compilable code does not affect the correctness of Definer,
it could affect the soundness of the change dependency analysis and, thus, Definer’s efficiency. Because
of that, we test Definer under the well-formedness assumption and merge problematic commits with
their children whenever possible to form a larger commit that lead to compilable versions.

Table 5.2: Descriptions of the experimental subjects used in the evaluation of Definer.

Projects ID Functionality Descriptions End Point |H| |T | |H∗|

io
I1 byte array output stream 89608628 150 3 28
I2 identifies broken symlink files b9d4976 50 1 3
I3 file name utilities 63cbfe70 100 37 2

collections
C1 “index of” function in iterable utilities 90509ce8 100 1 12
C2 “union” function in set utilities 9314193c 100 1 5

math
M1 error conditions in continuous output field model 6e4265d6 50 1 13
M2 construct median with specific estimation type afff37e0 50 1 2
M3 large samples in polynomial fitter b07ecae3 100 1 2

The details about each experimental subject are given in Table 5.2. Column “ID” lists the subject
identifiers. Column “End Point” shows the target commits which correspond to the final version in our
analysis scope. Columns “|H|” and “|T |” show the length of the original history segments and the sizes
of the target test suites, respectively. Column “|H∗|” shows the length of the verified 1-minimal history
slice.
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5.5.2 Results

We conducted three experiments to address our research questions. The experiments were conducted on
a desktop computer running Linux with an Intel i7 3.4GHz processor and 16GB of RAM. The results of
the experiments are described below.

Experiment 5

Experiment 5 aims to compare Definer with CSlicer in terms of the precision of the produced history
slices. We use the default configuration of Definer (Default) which adopts a simple partition scheme
that reverts negative scored commits first whenever possible. The relative slice size for each subject is
computed as the length of the produced history slice divided by the original history length, i.e., |H∗|/|H|.
The results of the comparison are shown in Figure 5.7.
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Figure 5.7: Sizes of slices: Definer vs. CSlicer in Experiment 5.

The history slices found by Definer are always shorter or equal to those computed by CSlicer
(on average 45.6% shorter). In fact, all slices produced by Definer are verified to be 1-minimal while
CSlicer does not guarantee minimality. For example, out of 100 commits from the subject C2, Definer
finds a slice of length 5 which is much shorter than 31 reported by CSlicer. CSlicer took 51.6s to
finish on average, while Definer took 1,161.7s. We consider this performance overhead to be reasonable
since history slicing is often performed as an off-line maintenance task.

Experiment 6

Experiment 6 evaluates the effectiveness of using change significance ranking and change dependency
analysis in speeding up the delta refinement loop. We compared three configurations of Definer in
terms of the number of test runs needed to achieve 1-minimal solutions:

• Default as described before,

• Learn which only enables change significance learning and disables compilation failure prediction
based on change dependency analysis, and
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• Basic which also disables significance learning and thus is effectively equivalent to delta debugging
which applies the basic (random) partition scheme.1

All configurations still apply hunk dependency analysis which predicts Git merge failures without
actually picking the commits.
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Figure 5.8: History reduction per test run in Experiment 6.

The results of the comparisons are shown in Figure 5.8 where the length of H∗ (y-axis) is plotted as
a function of the number of test runs (x-axis) used so far. In general, Default and Learn require fewer
test runs than Basic to reach the minimal solution. In most of the cases, the advantage of significance
learning is obvious, especially for cases such as I1, M1 and M2 where Learn requires on average only
about 33% of test runs compared with Basic. In addition, change dependency analysis which prevents
test from running on non-compilable programs helped extend this advantage further – it only takes about

1We could not directly compare with the original implementation in [Zel99] which does not work with Git repositories.
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14% of test runs.
There is only a single case I3 for which the basic partition scheme performed much better: it was

able to reduce a large chunk of commits quickly at the 17th test while the other two configurations did
not reach minimal solution until the 88th test run. A closer look at I3 reveals that the minimal slice
contains only 2 out of 100 commits, and most of the random partitions ended up being successful. In
contrast, the Default partition scheme is more conservative and progresses more slowly in this case.
Yet when the minimal slice is relatively large, for example in I1 (28 out of 150) and M1 (13 out of 50),
the significance-guided partition is much more effective.

Experiment 7

We also experimented with three different partition schemes, namely Neg, NonPos, Low-3 and their
combination, Combined. Recall that commits with positive significance scores are likely relevant to the
target tests and vice versa; commits which do not have a score assigned cannot be classified until new
signals become available.

All schemes follow the general steps described in Section 5.2.3 with different partition priorities at
the beginning of each iteration. The Neg scheme only reverts commits which have negative scores. It
is the most conservative one among the three. NonPos is the most aggressive one which reverts all
commits with non-positive scores. Low-3 always reverts the lowest one third of the commits according
to their significance ranking. Combined attempts all three partitions whenever possible. The results of
Experiment 7 can be seen in Table 5.3, where each column lists the number of test runs required to reach
the minimal solution and the best configurations for each row are in bold. All three partition schemes
perform well on some of the subjects. For example, Low-3 required the smallest number of test runs for
I1, I2 and C2. The combined scheme achieved the best overall performance by winning in 5 out of 8
examples.

Table 5.3: Comparisons of different partition schemes in Experiment 7.

ID Neg NonPos Low-3 Combined
I1 258 258 168 168
I2 33 33 25 25
I3 89 60 89 89
C1 176 176 176 172
C2 72 72 57 57
M1 27 32 36 28
M2 7 8 11 7
M3 31 23 35 35

5.5.3 Evaluation Summary

To summarize, we evaluated the precision and performance of Definer empirically on a benchmark set
of real-world software projects. We demonstrated that Definer produces more precise history slices than
existing state-of-the-art techniques, such as CSlicer. Moreover, in the majority of cases, it outperforms
the basic partition scheme used by delta debugging, thanks to the change significance ranking learned
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during the refinement process. With all optimizations combined, Definer achieves precise slicing results
in an efficient manner.

5.6 Related Work

In this section, we compare our dynamic delta refinement algorithm with related work. We compare
Definer with dynamic behavioral analysis and fault localization techniques.

5.6.1 Dynamic Behavioral Analysis

Through program instrumentation and execution tracing, dynamic analysis techniques [HL02, PE04,
OX08] allow the comparison of precise runtime program behaviors. Daikon [EPG+07] is one example of
such techniques which discover likely program invariants from runtime executions. Daikon instruments the
target program, traces variables of interest, and infers likely invariants for them. It has been widely used for
many software developing tasks including debugging [BE04, DLE03], regression testing [XN05, PMH+14],
bug prevention [ECGN99] and more.

DIDUCE [HL02] is another tool for dynamic invariant detection. It trains a model for the target
program by formulating hypotheses of invariants obeyed by the program and refining hypotheses
dynamically through “presumably-good” runs. The produced model can be used to check for potential
errors in other test runs. We use a similar idea of forming and updating hypotheses dynamically with
multiple test executions. The key difference is that our goal is to infer change significance rather than
program invariants. Therefore, we can exploit useful information from both passing and failing runs to
improve the accuracy of our significance model.

Our work is also related to behavioral regression testing [OX08, JOX10] with respect to the usage of test
executions for exposing behavioral differences across program versions. We differ in how the differences
are used in the analysis: behavioral regression testing reports the results of behavioral comparison to users
in order to help them complete and improve the quality of existing regression test suites [OX08, JOX10],
whereas our goal is to speed up history slicing by identifying significant changes with the guidance from
the behavioral differences.

5.6.2 Fault Localization

Delta debugging [Zel99] uses divide-and-conquer-style iterative test executions to narrow down the causes
of software failures. It has been applied to minimize the set of changes which cause regression test
failures. This problem can be considered as finding minimal semantic history slices with respect to
the failure-inducing properties. However, in contrast to Definer which extracts semantic information
from test results to guide its subsequent partition, delta debugging does not exploit this information
and its partition scheme is fixed. Regarding slice quality, Zeller and Hildebrandt [ZH02] consider an
approximated version of minimality, i.e., 1-minimal, which guarantees that removing any single change
set breaks the target properties. This trade-off on solution quality enables the authors to use an efficient
divide-and-conquer search method.

Selective bisection debugging [SG17] is an enhancement over the traditional bisection debugging
approaches based on binary search over software version history (e.g., Git-bisect [Git16a]). Bisection
debugging is widely used in practice to identify bug introducing commits, but it can be expensive due
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to costly compilation and test execution process. Selective bisection debugging uses test selection and
commit selection to reduce the number of tests to run and the number of commits to consider. In
particular, commit selection uses test coverage information to predict if a certain commit in a bisection
step is likely to be irrelevant to failing tests and skip the commit to save time. This is similar to Definer
as they both rely on test signals to make predictions in the hope to reduce overall computational costs.
Conceptually, selective bisection debugging tries to find which commit makes the test fail, while Definer
tries to find which commits make the test pass. Another difference is that bisection debugging tries to
locate a certain version while Definer attempts to find a 1-minimal history slice which is much harder
(O(logn) vs. O(n2)).

5.7 Summary

In this chapter, we proposed the dynamic delta refinement algorithm for finding minimal semantic history
slices. We have implemented the algorithm as a prototype tool, Definer, which operates on Java
projects hosted in Git. Definer largely improves the precision of the history slices over state-of-the-art
techniques. The change significance learning techniques are also shown to be effective in speeding up the
slicing process when applied to large scale software projects.



Chapter 6

Implementing a History Slicing
Framework

“Practice is the sole criterion of truth.”

— Fuming Hu

6.1 Introduction

Chapters 3–5 introduced the semantic history slicing problem and two different semantic slicing algorithms
each having its pros and cons. In the process of experimenting with and evaluating our algorithms, we
designed, developed, and refined a history slicing framework called CSlicerCloud. CSlicerCloud
is a Web-based service tailored for Java projects hosted on GitHub. It has a user friendly front-end
accessible from Web browsers and its server-side back-end unifies a collection of semantic history slicing
techniques including CSlicer, Definer, and an approach combining both static and dynamic history
slicing algorithms, called Combine.

In this chapter, we describe the architecture of CSlicerCloud, its user interface, prominent
optimizations, and its evaluation on a dataset collected from open-source software projects. The main
features of CSlicerCloud are:

• CSlicerCloud is a Web-based application built upon the Node.js JavaScript runtime [Nod17].
It requires no downloading, installation, or configuration. All parameters for performing history
slicing can be configured through a graphical user interface.

• CSlicerCloud supports Java projects hosted on GitHub. For projects using Maven as their build
system, the history slicing process is completely automated. It may require further configurations
for other types of projects.

• The CSlicerCloud framework unifies both the static (Chapter 4) and the dynamic (Chapter 5)
history slicing algorithms, which makes it precise and efficient at the same time.

• CSlicerCloud employs a number of important optimizations on both the slice quality and the
slicing performance. The most prominent ones include hunk-level minimization, parallelization,
and change significance indexing.

71
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We evaluated CSlicerCloud and its many different configurations on a dataset [ZLRC17] of
change histories collected from 10 open-source software projects. CSlicerCloud is accessible at: http:

//www.cs.toronto.edu/~liyi/cslicer. Its source code and configuration instructions are available at:
https://bitbucket.org/cslicer/cslicer-node.

Organization

This chapter is organized as follows:

• In Section 6.2, we describe the architecture and implementation details of CSlicerCloud.

• In Section 6.3, we discuss the important optimizations implemented in the CSlicerCloud
framework.

• In Section 6.4, we present the evaluation of the proposed optimizations.

• Finally, in Section 6.5, we conclude this chapter.

6.2 Architecture and Implementation

CSlicerCloud consists of a client-side front-end and a server-side back-end. The front-end is accessible
from Web browsers and is implemented on top of the Node.js JavaScript runtime [Nod17]. The back-end
handles user requests from the front-end, performs the actual history slicing jobs, and sends back responses
with the slicing results. See Figure 6.1 for an architectural overview.

Client-Side

git-flow-vis.js jsTree.js DataTables.js

History View Test View Entity View

Server-Side

DatabaseCSlicer DefinerRepositories

Repo Driver Slicing Engine DB Driver

GitHub
Server

oauth

credential

HTTPclone

Figure 6.1: Architecture of CSlicerCloud.

From the high level, the client-side running on browsers obtains user credentials from GitHub [Git17b]
server through the OAuth protocol [Har12]. Then the GitHub credentials are used to identify users and

http://www.cs.toronto.edu/~liyi/cslicer
http://www.cs.toronto.edu/~liyi/cslicer
https://bitbucket.org/cslicer/cslicer-node
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access their repository meta data. The client-side also provides graphical user interfaces and handles
user interactions. The requests from users are then sent to the server-side through HTTP connections.
The server-side retrieves repository data from the GitHub server, and the slicing engine performs history
slicing as per the users’ requests. The slicing results are then communicated back to the client-side with
HTTP messages. The server-side also performs indexing of version histories and caching of slicing results,
storing them in the database. Sections 6.2.1 and 6.2.2 discuss the implementation details of the front-end
and the back-end, respectively.

6.2.1 Front-End Implementation

The front-end interacts with users through three different views – namely, the history view, test view and
entity view. We now describe each view in detail.

History View

The history view visualizes the version histories of a given software repository and allows users to define
a history range for the subsequent history slicing tasks. Figure 6.2 is a screen shot of the history view
displaying the version histories of the Apache Common CSV project [CSV17]. The left pane depicts the
branches and commits graphically, while the right pane lists other meta data including the log messages,
authors, and the SHA-1 commit IDs of the corresponding commits. Each item in the commit list is
clickable such that a range can be defined by selecting a start commit and an end commit. The history
view also displays slicing results when the history slicing process is finished. The commits of a computed
history slice are highlighted as feedback to the users (see Figure 6.2).

Figure 6.2: The history view of CSlicerCloud. Slicing results are highlighted.

The graphical visualization of Git version histories is powered by the JavaScript library GitFlowVisu-
alize [Git17a]. GitFlowVisualize accepts commit and branch data as JSON [JSO17] objects, which are
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parsed from the target project Git repositories. We have modified the library to enable history selection
and results highlighting.

Test View

The test view visualizes the unit tests of a Java projects, and users can select the tests they want to use
as criteria for the history slicing tasks. Figure 6.3 is a screen shot of the test view showing the test cases
organized as an expandable tree structure. Each top-level node represents a Java test file, for example,
“CSVFileParserTest.java” (Figure 6.3). The leaf nodes visible when a test file node is expanded
represent the test methods contained in the test file. For example, the “CSVFileParserTest.java” has
two test methods – namely, “testCSVFile” and “testCSVUrl” (Figure 6.3). Each method node also
comes with a check box which allows it to be selected as one of the slicing criteria.

Figure 6.3: The test view of CSlicerCloud.

The test view is built on top of another library, jsTree [JST17], which provides an interactive tree in
JavaScript. The data sources are provided by the server-side as JSON objects. We will explain how the
test cases are automatically extracted from project repositories in Section 6.2.2.

Entity View

The entity view displays the code entity-level significance scores (see Section 5.3) inferred from running
the dynamic history slicing algorithm using “CSVFileParserTest.testCSVFile” as the slicing criterion.
The significance score indicates the estimated relative importance of a code entity with respect to the
target tests for a particular input history.

Figure 6.4 shows an example entity view which displays the significance scores in a table. For instance,
the first row in the table shows that the method “CSVParser.getFirstEndOfLine()” has a significance
score of about 2.67. Since the score represents the relative importance of an entity compared with the
others, the absolute value here carries little meaning except that a positive score indicates that the
changes on the entity can potentially affect the test results. The other five code entities modified within
the analyzed history range have the same significance score.

The entity view is implemented based on a JavaScript data visualization library DataTables [Dat17].
It supports flexible viewing options such as sorting, searching, and multi-page views. The outputs from
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Figure 6.4: The entity view of CSlicerCloud.

the slicing engine are parsed as JSON objects and then used as the data source.

6.2.2 Back-End Implementation

The server-side back-end consists of three components: the slicing engine which accepts history slicing
tasks and dispatches them to the appropriate history slicing techniques, namely CSlicer and Definer.
The slicing engine also delegates the repository related jobs such as retrieving and processing project
version histories, compiling source code, and running tests to the Repo driver. On the other hand, the
DB driver acts as a middleware between the slicing engine and the database which provides a persistent
storage for previously computed results.

Slicing Engine

The slicing engine is the core of the server-side. It acts as a wrapper of the underlying history slicing
techniques, not to simply dispatch slicing job requests coming from multiple users, but to choose the best
strategy of combining the slicing algorithms for the best precision and efficiency. Based on the size of the
job request, influenced by factors such as the length of the input history and the complexity of the target
tests, the slicing engine decides whether to run CSlicer and Definer exclusively, or to run them in a
combined way as will be discussed in Section 6.3.2.

When in idle, the slicing engine indexes cached version histories in order to speed up future history
slicing computation. The significance score of changes with respect to a test case can also be precomputed
and stored for future use. Details on history indexing and results caching will be discussed in Section 6.3.4.
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Repo Driver

The Repo driver hides the low-level details of repository-related operations and provides an abstracted
interface for the slicing engine. The supported high-level operations include cloning repositories from the
GitHub server, duplicating repositories for parallel test execution (see Section 6.3.3), compiling source
code with Maven, building test case lists, running tests with Surefire [Sur17] and processing test results.
The Repo driver uses an asynchronous model which does not block the progress of the clients and allows
callbacks to be registered for time consuming operations.

In order to extract the list of available test cases and display it in the test view, we first check out
the repository to the selected “end commit”. We then compile the tests into byte code and use the
BCEL [BCE15] library to analyze the byte code and output the fully qualified test method names as
JSON objects.

DB Driver

Similarly, the DB driver supports writing to and querying from the database. There are two tables
maintained in the database – namely, the “runs” and “significance” tables. The “runs” table records the
parameters as well as results for each history slicing run, and has the following fields:

• repo_path: the local path to the repository on the server-side,

• start_commit: the SHA-1 ID of the first commit of the chosen history range,

• end_commit: the SHA-1 ID of the last commit of the chosen history range,

• tests: the fully qualified names of the chosen target tests (we assume these are unique),

• engine: the strategy used for performing the slicing task,

• result: the slicing result.

The “significance” table records the significance scores of all analyzed code entities and has three
fields:

• test: the fully qualified name of the target test,

• entity: the name of the changed entity,

• score: the accumulated significance score of the changed entity with respect to the target test.

If a subsequent slicing request matches with one of the entries in the “runs” table, the slicing result is
directly returned as cached in the database. Otherwise, the significance scores of the relevant entities are
queried from the “significance” table to initialize a new slicing run. The value stored in the score field is
an estimation of the importance of a code entity based on all previous slicing runs.

6.3 Prominent Optimizations

In this section, we present the optimizations which we applied for improving both the precision and
the performance of the history slicing algorithms. The optimizations on slicing quality include bringing
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the history slicing algorithms to the hunk level which yields much better precision and applying slice
minimization which guarantees true minimality of the produced history slices. The optimizations on
slicing performance include the parallelization of test runs and the indexing of change histories.

6.3.1 Hunk-level History Slicing

Using commit as the smallest unit for doing history slicing has the benefit of preserving the traceability
from the high level semantic property to its corresponding commit-level meta information such as
authors, change dates, and log messages. This information can be useful in supporting other downstream
maintenance tasks.

In practice, commits usually contain changes to many files and multiple classes and methods, organized
as hunks. A hunk is the smallest unit of code change in language-agnostic version control systems [FAW09].
Different hunks in the same commit are not necessarily logically related or relevant to the same feature.
Thus, considering a commit as an atomic unit does not allow us to remove many unnecessary changes for
the target features.

File A
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File C
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!d
!f

!g
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Figure 6.5: An illustration of the sources of imprecision in commit-level history slicing.

Example 5

Figure 6.5 shows a diagram illustrating the sources of imprecision in commit-level history slicing. The
history segment H contains four commits, i.e., H = 〈∆1,∆2,∆3,∆4〉. Each commit can be further broken
into a set of hunks potentially spanning over multiple files. For instance, ∆1 has two hunks, δa and δb,
over files A and B, respectively.

The only feature-related changes in this example are δb and δe, shaded in gray. However, when
performing history slicing on a commit level, we have to inevitably include unnecessary changes due to
commit dependencies – two hunks in the same commit are commit-dependent on each other. For example,
δa is included because of δb, and δf is included because of δe (commit bundles are depicted as dashed
boxes in Figure 6.5).
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Unnecessary changes introduced by commit dependencies can induce further imprecisions. For
example, δf relies on an earlier hunk δd in order to function correctly (shown as a dashed arrow in
Figure 6.5). This is known as a code dependency – including dependencies between a child and parent
code entities, between a variable usage and definition, etc. The inclusion of δf therefore forces us to
include δd as well, due to code dependency.

Thus, with commit-level history slicing, the best result achievable is a sub-history of length three:
〈∆1,∆2,∆3〉. In contrast, hunk-level history slicing allows us to reduce the number of unnecessary
changes, resulting in δb and δe, as intended.

Implementing Hunk-level History Slicing

To implement hunk-level history slicing, the only change we need to make to the original history slicing
algorithms (Algorithms 1 and 3) is to add an additional preprocessing step which splits commits into
hunks. It is necessary to keep the mapping from the original commits to the corresponding set of hunks
so that the traceability of historical meta-data can be restored.

Algorithm 4 An algorithm for splitting commits into hunks.
Require: H 6= 〈〉
Ensure: H(p0) = Hhunks(p0)
1: procedure SplitCommits(p0, H)
2: m,Hhunks ← ∅, 〈〉
3: for ∆i in H do
4: m(∆i)← SplitOneCommit(pi−1, pi,∆i)
5: Hhunks ← Hhunks,m(∆i)
6: end for
7: return (m,Hhunks)
8: end procedure

Require: ∆(p) = p′

Ensure: hunks(p) = p′

9: procedure SplitOneCommit(p, p′,∆)
10: hunks← 〈〉
11: Checkout program version p′ . git checkout p′

12: Unstage all hunks of commit ∆ . git reset p
13: while there is unstaged change do
14: Stage a single hunk . git add -p
15: Commit the hunk as δi, with a log message indicating its origin . git commit
16: hunks← hunks, δi
17: end while
18: return hunks
19: end procedure

Algorithm 4 outlines the process of splitting a change history H into an equivalent history Hhunks

which contains only hunks (see the procedure SplitCommits). A mapping m from commits in H to
hunks in Hhunks is also returned. The procedure iterates through all the input commits in sequence
(Line 3 to 6) and calls a sub-routine SplitOneCommit for the actual splitting.

The procedure SplitOneCommit splits a single commit into a sequence of commits each containing
only a single hunk. The effects of applying the hunks in sequence is equivalent to applying the original
commit. To process the target commit ∆, we first check out the version p′ right after its application
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(Line 11). Then we use “git reset” to unstage all hunks of the commit in order to make them separate
commits afterwards (Line 12). The Git command “git add -p” provides a way of staging individual
hunks (Line 14) and they can then be committed individually. Finally, the sequence of hunks is returned
(Line 18).

6.3.2 Minimizing Slicing Results

As discussed in Section 3, enumerating all sub-histories of a history H is highly unrealistic when the
length of H is large (requiring in worst case 2|H| − 1 test runs). In contrast, a minimal slice of H can be
derived more efficiently from a much shorter sub-history, e.g., a semantic slice H ′ returned by Algorithm 1
(now requiring in worst case 2|H′| − 1 test runs). However, the cost of a direct enumeration of H ′ can
still be prohibitive. We propose two heuristic-based techniques that can be applied in combination to
reduce false positives in H ′ and minimize H ′ much more efficiently: (S1) change pattern matching which
analyzes changes statically and filters out common false positives according to predefined patterns; and
(S2) sub-history enumeration which takes hunk dependencies into consideration and efficiently examines
only cherry-pickable sub-histories, i.e., sequence of commits that can be applied without causing merge
conflicts.

The overall minimization workflow is given as the procedure Minimize in Algorithm 5. Minimize
takes as input a base version program p0, a semantics-preserving history slice H and the target test
suite T . Since the static pattern matching approach is much cheaper than enumerating all sub-histories,
we first use MatchPattern as a pre-processing step to opportunistically shorten H by filtering out
commits containing only “insignificant” changes (Lines 3-4). Then the intermediate result HS1 is verified
against the tests. If tests pass, then the procedure Enumerate is called to enumerate and verify all
cherry-pickable sub-histories of HS1 (Line 6). Otherwise, we enumerate the original input history H
instead (Line 7). The enumeration procedure can be terminated prematurely based on the available
resources and still return a valid slice with best-effort.

Static Pattern Matching (S1)

The AST differencing algorithm used in Algorithm 1 (see Chapter 4) treats each method as a single
structural node. To detect local refactorings and unobservable changes within method bodies, we apply a
finer-grained differencing algorithm at the statement-level granularity and then categorize atomic changes
according to their significance level [FG06]. Similar to the definition in Fluri and Gall [FG06], we consider
an atomic change as less significant if the likelihood of it affecting the test results or other code entities is
low. We opportunistically drop low-significance changes if they happen to match predefined patterns.

Some examples of the patterns include local refacotring/rewriting, low impact modifier changes
such as removal of the final keyword and update from protected to public, as well as white list
statement updates such as modifications to printing and logging method invocations. We also allow
users with domain knowledge to provide insights on which components (such as classes, methods, fields
and statements) do not affect the test results to further prune the functional sets. These patterns are
generally applicable to different code bases. More project-specific rules and white lists can also be devised
with insights from the project developers. The low significance changes are processed separately, and we
provide users with the options to keep or exclude them as they wish.
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Algorithm 5 An algorithm for finding minimal semantic slice of a given history H.
Require: H(p0) |= T
Ensure: ∀Hsub C H∗ · (|Hsub| < |H∗|) =⇒ ¬(Hsub CT H)
1: procedure Minimize(p0, H, T )
2: HS1 ← H
3: for all ∆ ∈ HS1 do
4: if MatchPattern(∆) then HS1 ← HS1/{∆}
5: if HS1(p0) |= T then
6: H∗ ← Enumerate(p0, HS1, T )
7: else H∗ ← Enumerate(p0, H, T )
8: return H∗

9: end procedure

10: procedure Enumerate(p0, HS2, T )
11: L← Sort(Pickable(HunkGraph(HS2)))
12: for all Hsub ∈ L do
13: if Hsub(p0) |= T then return Hsub

14: return HS2 . no shorter history found
15: end procedure

Require: (V,E) is a DAG
Ensure: ∀Hsub ∈ L ·Hsub is cherry-pickable on p0
16: procedure Pickable(V,E)
17: if |V | = 1 then return {〈〉}
18: L← ∅
19: R← RootNodes(V,E)
20: for r ∈ R do
21: V ← V/{r} . remove a root
22: E ← E/Out(r) . remove out edges
23: L← L ∪ ({V } ∪Pickable(V,E))
24: end for
25: return L
26: end procedure

Dynamic Sub-history Enumeration (S2)

Several types of oracle-unobservable changes cannot be matched using predefined patterns. More
sophisticated static analysis such as program slicing [Tip95] is able to identify more precisely the set of
program statements (a program slice) which have the potential to affect the test oracle. However, in
practice, a program slice does not always subsume an oracle-observable set, namely, a change outside of
the program slice can still affect the test results. This is because traditional program slicing often fails to
detect dependencies outside the control of the program itself, such as dependencies due to configuration
files [BGH+15].

The most precise and reliable approach for minimizing history slices is through the exhaustive
enumeration and verifying the test results directly when the number of candidates is small. When
hunk dependencies are present, not all sub-histories are cherry-pickable on text-based SCM systems.
Instead of enumerating all sub-histories of H, which is exponential to the length of H, we only consider
cherry-pickable sub-histories that can be verified through test runs. This insight enables us to find
minimal solutions for many examples in our benchmark (cf. Section 6.4.1). The procedure Pickable in
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Algorithm 5 uses an approach similar to the Kahn’s topological sorting algorithm [Kah62] to generate all
cherry-pickable proper sub-histories for a given history slice.

The idea behind the procedure Pickable (Lines 16-26) is as follows. The hunk dependencies among
commits can be represented using a directed acyclic graph (DAG) where V is the set of vertices (commits)
and E is the set of edges (hunk dependencies). There is an edge pointed from v1 to v2 if and only if v1

directly or indirectly hunk-depends on v2. A commit is not cherry-pickable if any of its hunk dependencies
is missing. The algorithm prevents this from happening by starting from V and only removing vertices
that have no incoming edge (Line 19). After a vertex is removed, the remaining history is added to the
current set of cherry-pickable sub-histories L, and the remaining graph is processed recursively.

Lemma 3. (Soundness of Pickable). Pickable(V,E) returns all cherry-pickable proper sub-histories
of HS2.

Proof. The proof is by induction. Considering the base case where |V | = 1, the only proper sub-history is
〈〉. Now suppose Pickable(V,E) returns all cherry-pickable proper sub-histories for |V | ≤ k. At any stage,
only root nodes (vertices with no outgoing edges) can be removed without breaking the hunk dependencies.
When |Vk+1| = k+1, removing either one of the root nodes produces a cherry-pickable proper sub-history,
Vk+1/r, where the overhead bar stands for a sequence of change set derived from the vertices. Taking the
union of each case gives us

⋃
r∈RootNodes(Vk+1,Ek+1){Vk+1/r} ∪Pickable(Vk+1/r,Ek+1/Out(r)).

Theorem 4. (Correctness of Algorithm 5). Minimize(p0, H, T ) returns a minimal semantic slice H∗

such that ∀Hsub C H∗ · (|Hsub| < |H∗|) =⇒ ¬(Hsub CT H).

Proof. Assume only cherry-pickable sub-histories are considered.1 The theorem trivially holds given
Lemma 3 and the fact that the sub-histories are traversed in increasing order of their lengths.

Algorithm 5 always terminates since there are only finitely many sub-histories. However, in practice,
enumerating all combinations can still be time consuming even with the preprocessing step. We report
our empirical findings in Section 6.4.1.

6.3.3 Parallelizing Test Runs

Apart from improving the quality and precision of the slicing results, we also applied several optimizations
to scale the computation of semantic history slices. Algorithm 3 presented in Chapter 5 gives a general
framework of the dynamic delta refinement characterized as a set of generic rules. The execution of the
algorithm alternates between two major stages:

• a partition stage which produces history slices to be tested for the preservation of the desired
semantic properties, and

• an execution and learning stage which runs tests on the partitioned history slices and infers change
significance.

The key insight used in this optimization is that the majority of the running time of Algorithm 3
is spent repeatedly executing tests and waiting for the test results. By parallelizing test runs, we can
significantly speed up the overall slicing computation given more computing resources. In fact, Algorithm 3
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Figure 6.6: Illustration of the parallelization of test runs.

does exhibit inherent parallelism in its structure, which can be exploited in a MapReduce-like [DG04]
fashion.

Figure 6.6 illustrates the high-level work flow of Algorithm 3 with parallelization enabled. During
the map stage, the current minimal semantics-preserving slice (H∗) is partitioned into several candidate
history slices (H1, H2, . . . ,Hn−1, Hn). The produced candidates are then processed by multiple execution
and learning threads simultaneously in the reduce stage. We make n copies of the repository to avoid
conflicts between threads. Depending on the outcome of the tests, we either redo partition of H∗ (with
a finer granularity) if all tests fail (not shown in Figure 6.6), or update the current minimal semantic
slice to the candidate passing the test (H∗∗). The algorithm keeps iterating and performing the map
and reduce stages until a 1-minimal semantic slice is found. Empirical evaluation of the optimization is
presented in Section 6.4.

6.3.4 Indexing and Caching

CSlicerCloud uses its offline time to index version histories in which the user is most likely to be
interested in the future. The precomputed change significance scores are indications of the correlation
between individual code entities and test results; the scores can be used to guide the initial partition of
subsequent runs of Algorithm 3.

Figure 6.7 depicts the history indexing work flow. The dashed arrows represent taking a specific item
from the collection. First, as mentioned in Section 6.2.2, the result of each history slicing run is cached
in the database. When the slicing engine is idle, it takes a single test t and an individual atomic change
δ, and checks if the removal of δ affects the result of t. If t passes without δ, the database is updated
with the decreased significance score of the changed code entity, and vice versa. Previous user requests

1This assumption can be relaxed in semantic-based SCM systems.



Chapter 6. Implementing a History Slicing Framework 83

Database

Repository

Histories

Tests t

!

Slicing 
Engine

prediction
User 

Requests

initialization

Figure 6.7: Illustration of the history indexing and results caching.

are used for predicting future ones – tests previously chosen by users as slicing criteria and changes of
close proximity with previously chosen commits are given high priority when indexing.

6.4 Evaluation

In this evaluation of our optimization techniques, we aim to answer the following research questions:

RQ 6 How effective are the slice minimization techniques in CSlicerCloud?

RQ 7 How does CSlicerCloud perform comparing with delta debugging?

In order to better understand the benefits and limitations of the slice minimization techniques, we
used a version of CSlicerCloud which has two phases, with Phase 2 performing minimization on top
of the results from Phase 1:

Phase 1 CSlicer without optimizations introduced in Chapter 4; and

Phase 2 slice minimization introduced in Section 6.3.2.

6.4.1 Experiment 8: Slice Minimization

Experiment 8 is designed to answer RQ 6 by running CSlicerCloud in the minimization mode. We are
interested in the number of false positives that can be reduced by both the static pattern matching and
the dynamic sub-history enumeration techniques.

Subjects and Methodology. In order to study the effectiveness of our slice minimization techniques,
we chose a subset (10 out of 20) of the benchmarks used in Experiment 4 (see Chapter 4), which have
relatively short semantic slices (the number of FUNC and COMP commits is smaller than or equal to
11) so that we could exhaustively enumerate all sub-histories to establish the ground truth. For each
of them, we exhaustively enumerated all cherry-pickable sub-histories and found at least one minimal
semantic slice. The length of slices before and after minimization is given in Table 6.1.
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For each of the subjects, we first applied static pattern matching (S1) to identify and eliminate
change sets with low significance. This includes two local code refactorings, seven white list statement
updates, and four low significance changes. Then we applied dynamic sub-history enumeration (S2)
on the remaining history slices to find a minimal solution. Note that in our experiments, all minimal
solutions were found after the S1 step. In a more general case, no solution might exist after this stage
because S1 could eliminate an essential commit. Then we need to exhaustively enumerate all sub-histories
of the original slice before the S1 reduction (see Algorithm 5 for details).

Table 6.1: Sizes of history slices produced at various stages in Experiment 8.

Subject |H ′| |H∗| S1 S2 T1 T2
H1 3 2 1 0 2 2
H2 2 2 0 0 3 3
A2 4 2 1 1 7 5
E2 9 1 6 2 5 2
M3 3 3 0 0 6 6
M4 4 2 0 2 3 3
I2 2 1 0 1 3 3
I3 6 2 1 3 12 8
L1 2 2 0 0 3 3
L2 6 2 0 4 8 8

Results. The detailed experimental results are reported in Table 6.1. Columns “|H ′|” and “|H∗|” show
the lengths of slices produced in Experiment 4 and the minimal slices, respectively. Columns “S1” and
“S2” list the number of reduced commits by each technique. Columns “T1” and “T2” list the number
of test runs required in order to find the minimal sub-history with and without using S1, respectively.
For instance, the original slice for E2 has nine commits. Applying S1 allows us to remove six commits
and to minimize the remaining three commits using S2 we enumerate all singletons, then all pairs, and
so on. The actual number of test runs used for this case is two: one failed test on the empty history
slice, and one successful test on the first try of the singleton slices. In contrast, without applying S1, the
minimization needed five test runs.

As a result of our experiment, we were able to prove that the slices produced for H2, M3 and L1
are already minimal by enumerating all their candidate sub-histories with three, six and three failed
executions, respectively. For the rest, we found minimal solutions on the first few tries.

Also, comparing Columns S1 and S2, we conclude that the heuristic-based change filtering patterns are
both effective and generally applicable to different subjects in reducing false positive commits. Notably,
six commits were filtered out during the S1 step for E2. In addition, applying S1 significantly reduced
the number of sub-histories which need to be enumerated for S2.

Finally, taking into account hunk dependencies existing inherently among commits in the input slices
helps mitigate the exponential explosion in sub-history enumeration. The number of combinations to
verify for E2 is reduced from 29 − 1 down to 54.

Answer to RQ 6. The two types of slice minimization techniques are complementary to each other –
the heuristic-based static pattern matching technique (S1) reduces the search space with little performance
overhead, and the dynamic sub-history enumeration technique (S2) guarantees minimality of the results.
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6.4.2 Experiment 9: Comparison with Delta Debugging

In order to answer RQ 7, we compare CSlicerCloud with delta debugging to evaluate the performance
of the slice minimization optimization. Delta debugging can be considered a form of semantic slicing with
respect to the failure-inducing properties. Therefore, it is natural to apply the same idea for minimizing
semantic slices.

We implemented delta debugging within our tool framework to allow a fair end-to-end comparison
between the two approaches. Delta debugging follows a divide-and-conquer-style history partition process.
In each iteration, a subset of the commits was reverted and if the resulting program passed the tests,
the process was continued recursively on the remaining sub-history. Otherwise, a different partition was
attempted. We applied both delta debugging and CSlicerCloud on 10 benchmarks for which we have
established the ground truth (see Table 6.1). We looked at both the total running time and the number
of tests required to reach the minimal solution.
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Figure 6.8: End-to-end comparison results of delta debugging and CSlicerCloud.

The detailed results are shown in Figure 6.8. The left and right y-axes represent the number of
tests and the total running time required by delta debugging to find a minimal solution, respectively.
The bottom and top x-axes represent the number of tests and the total running time required by
CSlicerCloud to finish, respectively. All axes use the logarithmic scale. The solid diagonal line
represents the cutoff where CSlicerCloud performs the same as delta debugging. The two dashed
diagonal lines represent the cutoffs where CSlicerCloud has a 10x and 100x speedup, respectively.

CSlicerCloud performs better than delta debugging for points above the solid diagonal line which
was observed for all examples we ran. There were three examples (H1, H2, and M3) where delta debugging
could not find a minimal solution within the two-hour time limit (points lying on the top x-axis). On
average, CSlicerCloud took only 143.7 seconds to finish while delta debugging took over 2,331.0 seconds
(not including the ones where it ran out of time). The main reason behind CSlicerCloud’s win is
that repeated test executions are rather expensive and Phase 1 of CSlicerCloud can effectively reduce
the search space. Moreover, Phase 1 is relatively inexpensive, taking only 37.4% of the total running
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time. Overall, CSlicerCloud performs constantly better than delta debugging, with the majority of the
cases seeing a 10X to 100X speedup. Finally, in cases where both CSlicerCloud and delta debugging
finished, they also found the same solutions.

Answer to RQ 7. CSlicerCloud in the minimization mode outperforms delta debugging while
maintaining the same slicing quality.

6.5 Summary

In this chapter, we described our experience of implementing a semantic history slicing framework,
CSlicerCloud. The flexible architecture of CSlicerCloud enables the integration of many different
history slicing algorithms as well as optimizations, and its Web-based interface allows users to access
the history slicing service within a browser. The various optimizations on both the slicing quality and
performance are shown effective in our experiments.



Chapter 7

History Slicing in Evolution
Management – a Study of Feature
Location

“Study the past if you would define the
future.”

Confucius

7.1 Introduction

Feature location techniques aim to locate pieces of code that implement a specific program functionality,
also known as a feature. These techniques support developers during various maintenance tasks, e.g.,
locating code of a faulty feature that requires fixing, and are extensively studied in the literature [DRGP13,
RC13b]. The techniques are based on static or dynamic program analysis, information retrieval (IR),
change set analysis, or some combination of the above.

Identifying features in cloned software product variants is important for a variety of software devel-
opment tasks. For example, developers often need to share features between variants. That becomes
a challenging task as it is often unclear which commits correspond to the particular feature of inter-
est [RKBC12, AJB+14, LRC15]. Refactoring cloned variants into single-copy SPL representations also
relies on the ability to identify and extract code that implements each feature [RKBC12, RC13a, RCC13,
RCC15, AJB+14].

As a step towards addressing these problems, we propose a dynamic technique, called FHistorian,
for locating features in software version histories. Our technique differs from other work in that it,

• traces features to historical information about their evolution,

• leverages version histories to improve the accuracy of feature location, and

• is efficient even if the number of available product variants is small.

87
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Being dynamic, FHistorian relies on the availability of a test suite Tf exercising a feature of interest
f ; such test suites are commonly provided by developers for validating features. Starting from Tf , our
technique “slices” the history to identify the commits relevant for f . It also analyzes the slices produced
for multiple features f1, . . . , fn in order to identify relationships between these features and build a
feature model that represents the extracted information. The generated feature model guarantees that
all product variants it describes are well-formed, as it captures runtime dependencies between features.

Example 6

Feature Relationship Graph

Release

f1

f2

f3

relates-to

history

depends-on

∆1 ∆2 ∆3 ∆4

Figure 7.1: A schematic feature relationship graph extracted from commons-csv v1.3.

We take a history fragment from the release version 1.3 of an open-source software project commons-csv

[CSV17] and the simplified commit history is shown in Figure 7.1 as a sequence of commits 〈∆1,∆2,∆3,∆4〉.
There are three features implemented in this fragment: features “CSV-159” (f1: add IgnoreCase option
for accessing header names), “CSV-179” (f2: add shortcut method for using first record as header to
CSVFormat), and “CSV-180” (f3: add withHeader(<Class? extends Enum>) to CSVFormat).

FHistorian identifies a minimal set of commits required by each feature and generates a feature
relationship graph depicting the relationships between the features as shown in Figure 7.1. The commits
implementing f1, f2 and f3 are {∆1}, {∆1,∆2,∆3}, and {∆2,∆3,∆4}, respectively. Since the commit
implementing f1, namely, ∆1, is required by f2 to execute correctly, we say that f2 depends on f1.
Similarly, since f2 and f3 both require commits ∆2 and ∆3, we say that they relate to each other.

The resulting feature model annotated with feature-implementing changes (or feature changes for
short) is useful for understanding dependencies and connections between features from an evolutionary
view point. Each valid product has to respect the inferred depends-on relationships in order to function
correctly. The relates-to relationship indicates connections between features. They often reveal underlying
hidden dependencies which are essential across the system.

These relationships indeed exist among the analyzed features. The correct behaviors of CSV-179,
“using first record as headers to CSVFormat” requires the “IgnoreCase option” (CSV-159) being enabled
to produce correct headers. Both CSV-179 and CSV-180 add new functionalities to the CSVFormat class
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and thus are connected to each other.

Contributions

We summarize this chapter’s contributions as follows:

• We define FHistorian– a dynamic approach for locating multiple features in version histories.
In contrast, the semantic history slicing techniques presented in Chapter 4 and 5 locate feature-
implementing changes for a single feature at a time.

• We present history-based techniques for building light-weight feature models which represent
runtime relationships of features.

• We evaluate the proposed technique on five real-world examples and show its accuracy and
effectiveness.

Organization

The rest of this chapter is structured as follows:

• In Section 7.2, we introduce our history-based feature analysis technique FHistorian and describe
its feature location and feature relationship inference capabilities.

• In Section 7.3, we present the evaluation of FHistorian on real-world case studies.

• In Section 7.4, we discuss related work.

• Finally, we conclude this chapter in Section 7.5.

7.2 Our Approach

We now present FHistorian, a dynamic feature location technique based on the analysis of commit
histories.

7.2.1 Overview

We start by defining the notion of a feature. While there is no universal agreement on what a feature is
(and what it is not), we adopt the definition by Kang et al. [KKL+98]:

Definition 13. (Feature [KKL+98, CR00]). A feature is a distinctively identifiable functional abstraction
that must be implemented, tested, delivered, and maintained. A feature consists of a label and a short
description that identifies its behavior. For conciseness, either the label or the feature description can be
dropped when clear from the context.

As mentioned in Section 2.2.1, we assume that the functionalities of features can be captured by tests
and the execution trace of a test is deterministic.

Software version histories are often organized not in terms of features, but as a sequence of incremental
development activities, ordered by timestamps. This usually results in a history mixed with changes to
multiple features which may or may not be related to each other. Given a piece of history H which is
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known to implement a set of features F , and each feature f ∈ F exercised by a test suite Tf , we would
like to identify a set of relevant changes for each of the features.

FHISTORIAN

Input History: H

Tfn

Tf1

FL
O

C
AT

E

…

Hfn

Hf1

…

FH
G

R
A

PH Feature Model:
(F, Er , Ed , h)

Figure 7.2: Overview of FHistorian architecture.

Figure 7.2 gives an overview of the FHistorian work flow. FHistorian is built on top of the
semantic history slicer Definer (Chapter 5). First, we recognize that semantic history slicing, as
described in Chapters 4 and 5, is directly applicable for dynamically locating single features, one at a
time. An improved version, with hunk-level minimization, is implemented by the FLocate component
shown in Figure 7.2. It receives an input history H and a feature test Tf and produces a 1-minimal set
of changes relevant to this feature. Then, by consolidating history information of all the target features,
the FHGraph component is able to produce a feature model capturing inter-feature relationships such
as the runtime dependencies between features. We describe these components below.

7.2.2 Flocate: History Slicing with Hunk-Minimization

The Flocate component of FHistorian is inspired by the existing history slicing technique Definer,
extended with hunk-level minimization.

Instead of stopping at the minimal history slices at the commit-level, we zoom into individual hunks of
commits, to obtain minimal hunk slices through hunk-level minimization (see Section 6.3.1). This process
yields a set of feature-implementing hunks which are potentially much smaller than the corresponding
original commits and contain significantly fewer unrelated changes. In Section 7.3, we empirically show
that hunk-level minimization significantly improves the precision of FLocate in locating feature changes.

7.2.3 FHGraph: Inferring Feature Relationships

In addition to locating features in version histories, we also utilize the obtained feature-change information
to understand the underlying relationships between features within the same history segment. In particular,
we infer two types of feature relationships: relates-to and depends-on, and represent them in a feature
relationship graph. The identified relationships respect well-formedness and functionalities of target
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features – satisfying feature dependencies is the prerequisite of producing a fully functional product
variant. The produced feature model can also assist developers in recognizing interactions between
software components by revealing underlying hidden connections.

Feature Relationship Graph

A feature relationship graph with respect to a set of features F implemented within a history H is a tuple
(F,Er, Ed, ν), where (F,Er) is an undirected graph whose nodes are features and edges are relates-to
relationships. Similarly, (F,Ed) is a directed graph for depends-on relationships. ν : F 7→ H is a map
from features to feature changes.

Relates-To Relationship. We say that a feature f1 relates to another feature f2 if they both rely on
the presence of the same set of non-empty changes H(f1,f2) ⊆ H in order to function correctly. Formally,
we write f1 ↔ f2 when

∀H ′ ⊆ H · (H ′ |= Tf1 ∧H ′ |= Tf2)⇒ H(f1,f2) ⊆ H ′, (H(f1,f2) 6= ∅).

Depends-On Relationship. Similarly, a feature f1 depends on another feature f2 if f1 functions
correctly only when f2 does so as well. More formally, we write f1 → f2 if

∀H ′ ⊆ H · (H ′ 6|= Tf2)⇒ (H ′ 6|= Tf1).

More generally, a product variant defined by the history Hv for features Fv = {f1, . . . , fn} is semantics-
preserving (i.e.,

∧
fi∈Fv

Hv |= Tfi
) only when Fv is closed under their feature dependencies. In other

words, satisfying all of the dependencies is the prerequisite for the product variant to behave as expected.

IDs Descriptions

Feature Changes

δ1 i: int f1(){return 1;}
. . . . . .
δ2 j: int f2(){return f1()+1;}
. . . . . .
δ3 k: int f3(){return f1()-1;}

Feature Tests
Tf1 f1()==1
Tf2 f2()==2
Tf3 f3()==0

Figure 7.3: An example illustrating feature relationships.

Example 7. Figure 7.3 shows an example of a history H = 〈δ1, δ2, δ3〉 containing changes adding three
new features in sequence: F = {f1, f2, f3}. During the given history, three lines of code are inserted
one after another – Line i, Line j and then Line k – each reflecting a feature implementation change δ1,
δ2, and δ3, respectively. The corresponding feature tests {Tf1 , Tf2 , Tf3} are shown at the bottom. For
example, the feature f1 is implemented as a function f1() which is expected to return an integer 1.

It is easy to see that f2 depends on f1 and f3 depends on f1, since both functions f2() and f3()

require the definition of f1() introduced in the change δ1. Likewise, we also have that f2 is related to f3,
and their witness change H(f2,f3) is δ1.
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Discovering Feature Relationships

To infer relationships for the target features, we consolidate all the history slicing results returned by
FLocate and determine pairwise feature relationships by comparing their minimal semantics-preserving
slices.

For example, when the semantic slice of f1 is subsumed by that of f2, i.e., Hf1 ⊆ Hf2 , we would say
f2 depends on f1 and also factor out Hf1 from the semantic slice of f2. The resulting feature changes
identified for f2 would be Hf2 \Hf1 . More formally, the algorithm for inferring feature relationships is
based on the following theorem.

Theorem 5. Suppose the minimal semantics-preserving slices for f1 and f2 are both unique in H, denoted
by Hf1 and Hf2 , respectively. We have (f1 ↔ f2)⇔ (Hf1 ∩Hf2) 6= ∅, and (f2 → f1)⇔ Hf1 ⊆ Hf2 .

Proof. The key for proving this theorem lies in realizing that if the minimal semantics-preserving slice
Hf for a feature f is unique, then Hf is essential for passing the feature test Tf , i.e., ∀H ′ ⊆ H ·H ′ |=
Tf ⇒ Hf ⊆ H ′. Hence, Hf1 ∩Hf2 serves as the witness for f1 ↔ f2, i.e., H(f1,f2) = Hf1 ∩Hf2 . Similarly,
when Hf1 ⊆ Hf2 , Hf1 is essential for both f1 and f2.

Algorithm 6 An algorithm for constructing a history-based feature relationship graph.
1: procedure FHGraph(F,H)
2: Er, Ed, ν ← ∅, ∅, ∅
3: for f ∈ F do
4: Hf ← FLocate(H,Tf ) . get minimal slices
5: ν(f)← Hf

6: end for
7: for (f1, f2) ∈ F × F s.t. f1 6= f2 do
8: if Hf1 ∩Hf2 = ∅ then continue
9: if Hf1 ⊆ Hf2 then
10: Ed ← Ed ∪ (f2 → f1) . depends-on
11: ν(f2)← Hf2 \Hf1 . factor out Hf1 from Hf2

12: else if Hf2 6⊆ Hf1 then
13: Er ← Er ∪ (f1 ↔ f2) . relates-to
14: end for
15: return (F,Er, Ed, ν)
16: end procedure

With the assumption of unique minimal semantics-preserving slices, an algorithm for constructing
feature relationship graph is given in Figure 6. The procedure FHGraph receives a set of features F
and the history H implementing them. It updates two edge sets, Er and Ed, for the relates-to and
depends-on relationships, respectively. It also maintains a map h which stores the final feature location
results for each feature.

First, we store the minimal semantics-preserving slices returned by FLocate for all features (Line 4).
The algorithm then iterates through all feature pairs (Line 7 – 14). For each pair of minimal slices Hf1

and Hf2 , if Hf1 is subsumed by Hf2 , then we create a depends-on edge f2 → f1 and factor out Hf1 from
Hf2 and store it into ν(f2) (Line 10 and 11). If there is no depends-on relationship between f1 and f2,
then a relates-to edge is constructed instead (Line 13). The procedure returns a feature relationship
graph (F,Er, Ed, ν) when it terminates.
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7.3 Evaluation

In this section, we present the empirical evaluation of our approach on real-world software systems. Our
goal is to have a better understanding of the capability of our history-based feature analysis technique by
answering the following research questions:

RQ 8 How accurate is the feature location performed by FHistorian?

RQ 9 How accurate are the feature relationships inferred by FHistorian?

We implemented FHistorian on top of Definer (Chapter 5), and used the interactive mode of
the Git add command to automatically split commits into hunks. We also generated feature relation
graphs represented using the DOT graph format. Our prototype implementation is available at: https:

//bitbucket.org/liyistc/gitslice.

7.3.1 Subjects

To effectively evaluate FHistorian, we need access to project source code, test cases, and commit
histories to run feature analysis, as well as adequate feature annotations to determine its effectiveness. In
particular, to perform feature location within a history segment, FHistorian requires a predefined set
of features, known to be implemented in the history period, along with test cases.

To find suitable evaluation subjects, we looked for complete histories between two software releases
and referred to release notes to determine the newly implemented feature set. We selected experimental
subjects from a combination of recently published history analysis datasets (Appendix A) which are
well-documented and organized, and ended up with five releases accompanied by comprehensive release
notes and feature annotations. All selected software projects use JIRA [JIR17] as their issue tracking
system. In JIRA, each feature has a unique developer-assigned ID, referred to as the “issue key”, which
is associated with an issue report recording detailed information about the feature. A JIRA issue key is
a string with the format “ABC-123”, where “ABC” stands for the name of the project containing this
feature, and “123” is a unique ID. Developers label commits with issue keys to indicate the purpose of
the changes, which enables us to determine which feature models the developers had in mind.

Table 7.1: Statistics of the experimental subjects used in the evaluation of FHistorian.

Project & Release #C #F LOC #Issue Features
#New #Tested

commons-csv v1.3 79 28 2353 12 7 4
commons-compress v1.13 148 144 6650 13 7 6
commons-io v1.4 140 140 8607 24 18 9
commons-io v2.2 136 182 7328 24 15 7
commons-lang v3.4 262 146 8817 63 17 10

The set of features implemented during the release histories was determined from the release notes. In
all the release notes that we analyzed, newly implemented functionalities are organized as issues including
new features, tasks, bug fixes, improvements, etc. For the purpose of our experiments, we focused on
releases that had at least four implemented and tested features. The resulting subjects are summarized
in Table 7.1. Each row represents a history segment for a particular release. Column “Project & Release”

https://bitbucket.org/liyistc/gitslice
https://bitbucket.org/liyistc/gitslice
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designates the name of the project from which the releases are chosen, followed by their version number.
Columns “#C”, “#F”, “LOC” represent the number of commits, the number of files modified, and the
number of lines of code changed during the release histories, respectively. Column “#Issue” represents
the number of all issues reported. Columns “#New” and “#Tested” represent the number of all new
features and those with associated tests cases. For example, the second row of Table 7.1 shows that
during the development of version 1.13 of the project commons-compress, there were 148 commits, 144
files were modified and 6650 lines of code have been changed. Developers created 13 issues, seven of
which were documented as new features; among them, six were accompanied by test cases capturing the
expected feature behaviors.

7.3.2 Experiment 10: Precision of Feature Location

Experiment 10 aims to address RQ 8 by running FHistorian on the selected subjects and comparing
the result with developer annotations.

Methodology

We compared the feature location results of FHistorian with developers’ feature annotations found in
the commit logs. For each new feature found in the release notes, we used the assigned JIRA issue key
to map the feature with the commits considered as the feature implementations by the developers. We
then ran FHistorian on the whole feature set, taking feature relations into consideration, to compute
relevant changes for each feature. Finally, we repeated the same experiments with hunk-level minimization
disabled to decide the effectiveness of our optimizations on commit-level history slicing.

Results

The studies were conducted on a desktop computer running Linux with an Intel i7 3.4GHz processor and
16GB of RAM. It took on average 4,062 seconds for Definer to obtain a 1-minimal semantic slice for
each feature. The hunk minimization on the resulting slice took on average 3,740 seconds per feature.

Table 7.2 lists the feature location results of FHistorian, comparing them with the developers’
feature annotations. Each row in the table shows results for a particular feature, identified by the feature
key. Column “Releases” lists the release histories being analyzed. Columns “#Labeled” and “#Found”
show the number of commits labeled by the developers and identified by FHistorian, respectively. We
also list the differences between their results in the last two columns – Column “#FN” shows the number
of commits labeled by developers but not found by us and vice versa for Column “#FP”. For instance,
the developers annotated one commit for feature “CSV-159” and FHistorian found the same commit.
However, for “CSV-175”, three commits were annotated by the developers and FHistorian found one of
them with five extra commits and missed the other two.

For 15 out of 36 features, FHistorian’s results match perfectly with the developers’ annotations. To
understand the differences in the rest of the cases, we analyzed all of the FHistorian’s false positives
and false negatives.

False Positives

FHistorian includes not only conceptually essential changes but also peripheral changes to guarantee the
executability of its produced feature models. When committing and labeling feature changes, developers
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Table 7.2: Feature location results of FHistorian compared with developer annotations.

Releases Feature Keys #Labeled #Found #FN #FP

csv v1.3

CSV-159 1 1 0 0
CSV-175 3 6 2 5
CSV-179 1 8 0 7
CSV-180 1 8 0 7

compress
v1.13

COMPRESS-327 10 17 2 9
COMPRESS-368 6 5 3 2
COMPRESS-369 2 5 1 4
COMPRESS-373 1 7 0 6
COMPRESS-374 1 4 0 3
COMPRESS-375 2 1 1 0

io v1.4

IO-126 1 1 0 0
IO-129 2 1 1 0
IO-130 1 1 0 0
IO-135 2 1 1 0
IO-138 1 1 0 0
IO-144 1 1 0 0
IO-145 1 1 0 0
IO-148 4 1 3 0
IO-153 1 1 0 0

io v2.2

IO-173 1 1 0 0
IO-275 1 1 0 0
IO-288 3 1 2 0
IO-290 1 1 0 0
IO-291 3 2 1 0
IO-297 1 1 0 0
IO-305 1 1 0 0

lang v3.4

LANG-536 1 3 0 2
LANG-883 1 1 0 0
LANG-993 1 1 0 0
LANG-999 1 1 0 0
LANG-1015 1 1 0 0
LANG-1021 1 2 0 1
LANG-1033 1 1 0 0
LANG-1080 1 1 0 0
LANG-1082 1 1 0 0
LANG-1093 2 1 1 0

often overlooked preexisting changes which support the compilation and execution of the features. For
example, FHistorian considered commit #f8e09945 as necessary for the feature COMPRESS-369 but
it is not labeled by the developers. We inspected the commit, finding it to be a bug fix updating the
configuration file to use a newer Java JDK. The target feature code cannot be compiled or executed when
ignoring this commit, and thus it is essential.

The second reason why FHistorian detects more commits is that it also takes hunk dependencies
(see Section 4.3.3) specific to text-based version control systems into consideration. That is, FHistorian
includes additional commits providing a necessary context for the application of the essential commits.
We verified that all the feature changes found by FHistorian were minimal, i.e., they could not be
further reduced and yet pass the feature tests. Thus, all commits found by FHistorian but not labeled
by the developers were required for the correct execution of feature tests.
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False Negatives

On the other hand, FHistorian occasionally missed commits labeled by the developers (28% missed).
We manually inspected each missed commit and summarize the most common reasons below.

Some commits missed by FHistorian contained only changes which did not affect feature execution.
For example, developers occasionally created separate commits that updated the release note file
documenting addition of a new feature, and then labeled them as part of the feature. There were also
commits labeled as feature implementations which only updated Javadocs or performed refactoring.
FHistorian also missed commits which performed minor optimizations which were labeled as part of
the feature but the associated feature tests were not updated to capture the modified behaviors.

Effectiveness of Hunk-level Minimization

The comparison of the feature location precision results of FHistorian with and without the hunk-
level minimization (i.e., staying at the commit level) are shown in Figure 7.4. On average, hunk-level
minimization improved FHistorian’s precision 3.47 times. In particular, for releases commons-io v1.4

and commons-io v2.2, hunk-level minimization yielded a 16X improvement in precision (from 5.21% to
81.8% and from 6.32% to 100%, respectively).

Answer to RQ 8. FHistorian precisely identifies commits that implement a specific feature and
required for the feature execution. Its feature location results coincide with the developer annotations
with regard to essential feature implementation changes, while they differ from the annotations when
considering changes that do not affect the test execution. The commit-level optimizations for history
slicing are effective in improving the precision of feature location.

7.3.3 Experiment 11: Accuracy of Feature Relationships

Experiment 11 is designed to answer RQ 9 by running FHistorian on all the new features added in the
same release, which have associated test suites. We are interested in feature relationships discovered by
FHistorian.

Methodology

In this experiment, we evaluated the accuracy of feature relationships inferred by FHistorian through
code inspections and qualitative studies of feature documentation. For each subject release, we ran
FHistorian with the same feature set used in answering RQ1 to generate a feature relationship graph.
We then used additional feature annotations extracted from release notes to refine the feature relationships.
Finally, we analyzed each of the inferred feature relationships and verified it either by internal code
inspection or external evidence such as log messages and issue links on JIRA issue pages.

Results

To simplify the discussion, we categorize the five releases studied into two groups. In one group,
namely, commons-io v1.4, v2.2 and commons-lang v3.4, the feature relationships are relatively sparse
and only depends-on relationships are observed. In the other group, namely, commons-csv v1.3 and
commons-compress v1.13, the feature relationships are more complex and the relates-to relationships
between tested features often reveal “hidden” untested features. We show that with the additional
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knowledge about the hidden features, the relates-to relationships can be refined and reflect more accurate
relationships among analyzed features.

Case Study 1: commons-io and commons-lang

No feature relationships were observed for release v2.2 of commons-io. All analyzed features in this
release can be independently executed using non-overlapping commits.

There are two depends-on edges detected in release v1.4 of commons-io: from IO-153 to IO-135 and
from IO-145 to IO-144 (see Figure 7.5a, where feature nodes without relationships are omitted).

IO-144

IO-145

depends-on

IO-135

IO-153

depends-on

(a) commons-io v1.4

LANG-1033

LANG-1093

depends-on

LANG-1080

LANG-1015

depends-on

(b) commons-lang v3.4

Figure 7.5: Feature relationships for commons-io and commons-lang.

Similarly, Figure 7.5b illustrates the relationship between the features in release v3.4 of commons-lang.
This example also has two depends-on edges: from LANG-1093 to LANG-1033, and from LANG-1015 to
LANG-1080.

To verify the feature relationship found by FHistorian, we report evidence observed from log
messages and source code.

(1) IO-144 → IO-145, IO-153 → IO-135, LANG-1093 → LANG-1033. The three depends-on
edges were verified by inspecting contents of the commits. For example, feature IO-144 is implemented
by a single commit #db3e834e with the commit message “add a compare method”. We inspected
the code changes in this commit and found that it creates a special “checkCompareTo()” method for
comparing strings with the ability to adjust case sensitivity. The commit message of IO-145 (#55dfa6eb)
is “add new package of file comparator implementations”. This commit creates and modifies multiple
file comparator classes. Three of these, namely, “ExtensionFileComparator”, “NameFileComparator”,
and “PathFileComparator”, rely on the “checkCompareTo()” method for file name comparison. This
observation confirms that feature IO-145 depends on IO-144 for its implementation, which in turn
supports the identified feature relationship. The other two edges are similar – one feature provides a
utility function which is then used by the other feature, thus creating a feature dependency between the
two.

(2) LANG-1015 → LANG-1080. FHistorian’s results indicate that feature LANG-1015 is imple-
mented by two commits, one of which labeled as LANG-1015 and the other as LANG-1080. By inspecting
the commits, we concluded that LANG-1015 depends on LANG-1080 due to the hunk dependency.
Patching the former without the latter using Git would result in a conflict because the two commits
modify adjacent lines in the same file. This dependency can of course be ignored if a language-aware
version control system (e.g., SemanticMerge [Sem16]) is used instead.
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Case study 2: commons-csv and commons-compress

In this case study, we first show the feature models produced by FHistorian using tested features. We
then show how additional feature annotations extracted from release notes and log messages can be used
to refine these feature models (e.g., with explicating “hidden features").

(1) commons-csv. Figure 7.6 (top) illustrates the feature relationship graph originally obtained by
FHistorian in the release v1.3 of commons-csv. In this example, there are three depends-on edges,
indicating that CSV-175 → CSV-159, CSV-179 → CSV-159, and CSV-180 → CSV-159, respectively.
There are also three relates-to edges, showing that CSV-175, CSV-179, and CSV-180 are related to each
other.

CSV-175

CSV-159

CSV-180

CSV-179

relates-todepends-on

depends-on relates-to

relates-to

CSV-175’

CSV-159

CSV-180

CSV-179

depends-ondepends-on

depends-on relates-to

depends-on

CSV-169

depends-on

depends-on
depends-on

Figure 7.6: Feature relationships for commons-csv 1.3.

To obtain a more precise relationship between these features, we took into consideration bug fix
annotations in the release notes and discovered that feature CSV-175’s member commits can be separated
into two groups, with one implementing the feature’s functionality, and the other, labeled as CSV-
169, contributing to a bug-fix. The bug-fix does not belong to CSV-175 technically. But since there
is no test case associated with it, FHistorian could not distinguish the bug-fix commit from the
feature-implementing commit.

Using this obtained information, we created a new feature node, CSV-169, to represent the “hidden”
bug-fix (in dashed box). We use node CSV-175’ to represent the rest of the commits that originally
belonged to CSV-175. With the updated feature set, FHistorian computed a newly refined relationship
graph shown in Figure 7.6 (bot). Since the commits of CSV-175’ are fully subsumed by both CSV-179
and CSV-180, Two original relates-to relationships, CSV-179 ↔ CSV-175 and CSV-180 ↔ CSV-175
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can be refined into stronger depends-on relationships, namely, CSV-179 → CSV-175’ and CSV-180 →
CSV-175’.

The refined feature relationships better reflect the actual situation. Some evidences confirming these
relationships can be observed from the source code and commit messages. For example, CSV-179 and
CSV-180 both rely on the “ignoreHeaderCase” option, created by CSV-159, to generate CSV file headers.
This verified the inferred depends-on relationships CSV-179 → CSV-159 and CSV-180 → CSV-159.

(2) commons-compress v1.13. Figure 7.7 (top) illustrates the feature relationships in release v1.13
of commons-compress. From FHistorian’s result, we can determine that features COMPRESS-327,
COMPRESS-368, COMPRESS-369, COMPRESS-373, and COMPRESS-374 all relate to each other.
However, the underlying reasons for these relationships were unclear without additional knowledge about
the software project.

COMPRESS
374

COMPRESS
369

COMPRESS
373

COMPRESS
327

COMPRESS
368

COMPRESS
327’

COMPRESS
373

COMPRESS
369

COMPRESS
374

COMPRESS
368

COMPRESS
360Seekable

Figure 7.7: Feature relationships for commons-compress v1.13.

We inspected the relevant commits, aiming to build a more precise feature relationship graph. We
discovered that all features rely on a shared commit, #7e35f57, labeled as COMPRESS-327. This shared
commit upgrades a basic component – it re-implements the output stream of Zip format using a new class
named “SeekableByteChannel”, replacing an old class “RandomAccessFile”. This upgraded component
is widely used as a basis for many other functionalities related to stream compressors. Therefore, this
commit affects all the five features mentioned earlier.

Another commit #f8e09945 is also shared among features. It contributes to the implementation of
four features: COMPRESS-327, 368, 369, and 373. Upon further investigation, we determined that it
is another bug-fix commit, labeled by the developers as COMPRESS-360, which updates the project’s
minimum JDK version requirement from 1.6 to 1.7. The change was made in the project configuration
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file and without this change, the other four features failed to compile.
We separated the shared commits from COMPRESS-327 to create individual nodes for them in

the feature relationship graph (“Seekable” and “COMPRESS-360” in dashed boxes). As a result, the
refined feature relationship graph is shown in Figure 7.7 (bot). The new graph reveals multiple new
feature relationships. First, it now shows that COMPRESS-327, COMPRESS-368, COMPRESS-369,
and COMPRESS-373 all depend on the hidden nodes “Seekable” and “COMPRESS-360”. In addition,
COMPRESS-374 also depends on “Seekable”. The original relates-to edges can be trivially inferred from
the current graph: two nodes depending on the same node are automatically connected by related-to.
We omit those edges in Figure 7.7 (bot).

We now discuss evidences in support of the found feature relationships. We found direct evidence
provided by the developers for the edge COMPRESS-368 ↔ COMPRESS-369. Developers explicitly
labeled the relationship between COMPRESS-368 and COMPRESS-369 with a JIRA issue link, “is
related to COMPRESS-369 (allow archiver extensions through a standard JRE ServiceLoader)” on the
issue description page of COMPRESS-368.

Answer to RQ 9. Feature relationships inferred by FHistorian are accurate. The depends-on
relationships reflect runtime dependencies between features. They are essential for ensuring well-
formedness and correct execution of the product variants constructed from the target features. The
relates-to relationships are useful in revealing underlying connections between features and can be further
refined into stronger depends-on relationships using additional project expertise such as issue tracking
tickets, developer conversations, log messages, etc.

7.3.4 Threats to Validity

While we selected different projects and attempted to cover different scenarios, our results may not
be sufficiently representative. Furthermore, the projects that we selected for evaluation have complete
change logs and release notes. While our feature location technique produces encouraging results on our
experimental subjects, it is not always applicable to projects that are not well-managed. In the absence
of documentation of the release histories and the corresponding feature information, expert insights are
required for FHistorian to achieve comparably good results.

Due to the absence of adequate feature documentation, it is not always possible to verify the feature
relations obtained by FHistorian rigorously with developers’ conceptual models. For example, we
cannot be certain whether all of the relationships between the features have been generated. Our results
were therefore confirmed by multiple indirect evidences such as commit messages, contents of code
changes, etc.

7.4 Related Work

We discuss related work in four areas, namely, dynamic feature location, feature location in version
histories, feature location for software product lines, and extracting feature models from code.

7.4.1 Dynamic Feature Location

Dynamic feature location techniques rely on program execution for identifying source code that corresponds
to a feature of interest. More than 10 such techniques are reviewed in [RC13b, DRGP13]. The earliest
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dynamic feature location technique which also became a foundation of future approaches is software
reconnaissance [WS95]. It compares execution traces obtained by exercising the feature of interest to
those obtained when the feature is inactive. The technique runs a set of test cases that invoke each
feature and extracts components (code statements or methods) executed by each test case. For each
feature, it then identifies the (1) indispensably involved components – executed by all test cases of the
feature, (2) potentially involved components – executed by at least one test case of the feature, and (3)
uniquely involved components – executed by at least one test case of the feature and not executed by any
test case of the other features. It also extracts the set of common components executed for all features.

Several later approaches extended this work by involving static code analysis, information retrieval,
and other techniques to further prune the feature execution traces and improve the accuracy for feature
detection, allowing them to operate on a single trace rather than on multiple traces corresponding to
multiple features [LMPR07, RDP10]. FHistorian also relies on the presence of test cases to perform
feature location. Yet, it detects features in change histories rather than in the “final” version of the
program, thus assisting in tasks such as porting features and their histories across multiple branches
in version control systems. It also uses information about change histories to improve the accuracy of
feature location and does not require tests of multiple features in order to operate.

7.4.2 Feature Location in Version Histories

In CVSSearch [CCW+01], a feature is specified as a text query. The technique uses the CVS “diff”
command to examine changes between subsequent commits and associates each line of code changed
in a commit with its corresponding commit message. It then retrieves all lines that match the input
query, i.e., either the line itself or its associated message containing at least one word from the query.
The results are scored and ranked so that files with the highest number of matches appear first. Unlike
CVSSearch, our technique does not rely on textual similarity but rather analyzes semantics of changes
and extracts executable feature implementations.

7.4.3 Feature Location for SPLs

Each of the existing feature location techniques can be used for detecting features in products of a product
line by treating these products as singular independent entities. Yet, several techniques that consider
commonalities and differences in SPL products have recently emerged [XXJ12, ZFdSZ12, ASH+13b,
ASH+13a, LAG+14, LLE13, TKW+13, LLHE16]. Most such techniques are based on intersecting code of
multiple product variants in order to identify code fragments shared by variants with a particular feature.
For example, Xue et al. [XXJ12] use information about version differencing to further improve the accuracy
of information retrieval in multiple products. Linsbauer et al. [LLE13, LLHE16] present a technique
for deriving the traceability between features and code in product variants by matching code overlaps
and feature overlaps. Moreover, this technique also identifies code that depends on the combination of
features present in a product variant thus dealing with feature dependencies and interactions. While the
above interaction-based techniques operate statically and are effective when a large number of product
variants are available, our approach is dynamic and does not rely on the presence of a large set of variants
to be effective. Moreover, it is also able to distinguish between features that always appear together in
all product variants – a clear limitation of the intersection-based techniques.
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7.4.4 Extracting Feature Models

Several approaches focus on extracting constraints between features of multiple variants [RPK11, HLHE11,
AHS+14, SSS14, NBKC14, ALHL+15] or on building a desirable feature model when such constraints
are given [SLB+11, CW07, ACSW12]. For example, Assunção et al. [ALHL+15] extend the intersection-
based feature location technique [LLE13] with an approach to identify dependencies between features by
looking at shared/exclusive code fragments. The above approaches mostly consider product and feature
combinations, without inspecting semantic dependencies between code artifacts. Moreover, they rely on
the availability of multiple product variants while FHistorian does not make such an assumption and is
also able to identify dependencies between features of a single variant.

Nadi et al. [NBKC14] focus on inferring constraints between features implemented in C by statically
identifying potential preprocessor, parser, linker, and type errors. Instead, our approach is dynamic and
precisely identifies all runtime dependencies between the executed features.

7.5 Summary

In this chapter, we presented a dynamic feature location technique FHistorian. The technique works
by analyzing version histories, taking into account feature release information and developer-committed
tests demonstrating the new feature, to precisely extract feature-related changes. It also produces models
representing runtime relationships between features. Our cases studies on multiple features of five versions
of four real-world software projects show that FHistorian can locate features effectively.



Chapter 8

Conclusion and Future Work

We have arrived at the end of this dissertation. In Section 8.1, we recap the highlights of this dissertation
and in Section 8.2 we discuss limitations of our approach and suggest possible future paths to address
them.

8.1 Dissertation Summary

Software Configuration Management (SCM) systems are widely used in hosting development artifacts
and assisting software maintenance. Yet, many evolution management tasks which require high-level
understanding of the semantics of program changes remain challenging to software developers. In this
dissertation, we addressed a number of such challenges through the semantic history slicing approach.
By bringing program semantics into history analysis, we fill the gap between local changes and global
system properties and provide developers with a more powerful support in evolution management. Our
conceptual and algorithmic contributions are demonstrated with a family of automated history slicing
techniques which analyze the semantics of historical changes and assist developers in many everyday
practical settings.

Subsequent to Chapter 2 where we introduced terminology and formalized the notations that we use,
Chapter 3 presented a prestudy on the commonly followed evolution management practices in open-source
development environment. The “cherry-picking” feature provided by traditional SCM tools, such as
Git, allows developers to move changes as patches, and reorganize them as needed. However, without a
good understanding of the semantics and relationships between changes, manual “cherry-picking” often
ends up in failures. On the other hand, developers put a significant amount of energy in producing test
cases for every functionality they implement, which is also often a strict requirement in well-organized
software projects. In the absence of concrete and precise specifications of program semantics, test cases
can be used as semantic indicators for the associated software functionalities instead: the passing of a
test indicates the presence of the corresponding functionality. Inspired by this, we proposed the concept
of semantic history slicing, where test cases are used as slicing criteria to select changes from version
histories. The selected changes are known as a semantics-preserving slice of the original change history
and they preserve the semantic properties manifested by the tests. We then formalized the notion of
semantics-preserving slice and minimal semantics-preserving slice, and outlined the general approaches
for computing them.

104
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In Chapter 4, we presented a static history slicing technique, CSlicer, which is based on change
dependency analysis. CSlicer compiles and runs the target tests once, and conservatively identifies
atomic changes in the given input history which contribute to the runtime behaviors of the tests. Then it
performs static dependency analysis over change sets to compute a set of changes which are essential
for ensuring compilation correctness of the functionality of interest. Finally, the collected set of atomic
changes is mapped back to the SCM specific commits in the original change history, and the hunk
dependency analysis over commits helps avoid merge conflicts that can occur when commits are cherry-
picked in text-based SCM systems. Being conservative, CSlicer can sometimes label unnecessary
changes as required resulting in non-minimal history slices. Our experimental evaluation showed that the
static history slicing technique is effective in identifying semantics-preserving history slices and enables a
wide range of applications in evolution management.

In Chapter 5, we presented a dynamic history slicing technique, Definer, which can achieve better
precision than its static counterpart through the dynamic delta refinement process. Definer executes
target tests multiple times and directly observes the test results while attempting to reach a minimal
semantics-preserving history slices iteratively. While similar to delta debugging in terms of the divide-
and-conquer-style history partitioning, Definer employs a delta refinement mechanism to estimate
the significance of changes with respect to the target tests and guide subsequent history partitions for
faster convergence. The history slices produced by Definer are guaranteed to be 1-minimal – removing
any single commit from the history slice breaks the desired semantic properties. We demonstrated
the applications of Definer in evolution management tasks that require minimal semantics-preserving
history slices, such as creating logically focused pull requests for code review.

We unified different history slicing algorithms and discussed our experience developing a semantic
history slicing framework in Chapter 6. The Web-based history slicing framework, CSlicerCloud,
provides users with a flexible and intuitive way to interact with the underlying history slicing engines
and implements a number of important optimizations to improve both the slicing quality and efficiency.
Through experimentation, we evaluated the effectiveness of combining the cheaper but imprecise static
slicing technique with the dynamic slice minimization techniques, and found that their synergy enables a
combined approach which is both precise and efficient.

In Chapter 7, we presented a detailed study on applying semantic history slicing in locating features
from cloned software products. We built a feature location technique FHistorian on top of Definer.
FHistorian is able to identify feature changes from release histories containing multiple feature im-
plementations. It uses feature tests as slicing criteria to compute corresponding history slices for each
feature and then generates a light-weight feature model capturing relationships between features. The
feature relationships indicate dependencies and connections between features which are essential for
constructing valid products. We evaluated the technique on a number of real-world case studies and
compared our results with developer-specified feature annotations. We concluded that, when available,
historical information of software changes can lead to a precise identification of features in existing
software artifacts.

8.2 Future Research Directions

Despite all the advances made in this dissertation, many related problems remain open. We divide the
discussion of future research directions into short- and long-term goals. The former describe “immediate”
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improvements for the techniques developed in this dissertation. The latter focus on “larger” and
longer-term goals that contribute to the field.

8.2.1 Short-Term Goals

Deep Integration with Development Tool Chains. While we have developed a family of automated
semantic history slicing techniques, all of them are standalone tools which require additional configurations
and learning for new users. To further improve tool usability and reach out to a broader user base,
an immediate next step is to deeply integrate the history slicing techniques with the commonly used
development tool chains. As a first step, we have developed a Maven [Mvn15] plugin, which wraps our
history slicing engines as Maven build goals. This allows the history slicing engines to be configured
and triggered through a familiar user interface by sharing information, such as compilation and testing
parameters, directly with the build system. Further, the history slicing process can be activated within
one of the Maven build life cycles without altering original development practices.

Integration with popular version control systems, such as Git and Mercurial, is also a promising
direction. This will make direct access to new evolution management features, including semantics-aware
cherry-picking and automated patch creation, possible within the current version control tools. The
results of those operations can then be reflected directly in the repository without additional effort.

Applications in Bug Localization. We would also like to explore the possibility of applying semantic
history slicing to assist debugging and fault localization. As mentioned in Section 5.6.2, debugging can
be considered a special case of semantic history slicing: given a series of changes which cause a program
failure, the goal of debugging is to locate the minimal cause of the failure, or in other words, the changes
which preserve the failure-inducing property. A natural extension to the iterative minimization-based
debugging approaches (e.g., delta debugging) is to introduce significance learning and delta refinement
(Chapter 5) into the input partition process for faster convergence.

Traditional bug localization techniques [SLKP13, WL16], based on information retrieval, take a bug
report as input and identify source code files/methods that need to be fixed. It is possible to extend
current bug localization solutions to identify problematic commits with semantic history slicing, if test
cases demonstrating the faulty behaviors can be provided. In that case, we would be able to automatically
locate the links between bug reports and culprit changes or commits in version histories. This would
provide additional traceability to the bug localization results and enable more accurate issue management.

Expanding the Boundaries of Change Semantics. The change semantics used in history slicing
is not limited to the one that is adopted in this dissertation. The semantics of a history slice can be
generalized from pure functional correctness to any measurable properties of programs. Therefore, the
slicing criteria used in history slicing need not be defined only by observable test results. In fact, many
different instantiations of the more general semantic history slicing framework are possible, according to
specific use case scenarios.

An example of such instantiations is to create a semantic history slice by analyzing texts in commit
logs with natural language semantics. History slicing with this change semantics corresponds to commit
searching, such as the “grep” feature provided by the “git log” command. For software projects where
a particular logging format is used, semantic history slicing can also be used to perform structured search
via information retrieval and comprehension [SJ12, CFSM16].
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Leveraging the Social Aspect of Software Development. Software development is inherently
a social process. For example, the first step to address an issue report or a pull request is to start a
conversation between the stakeholders of the corresponding software project. The developer conversations
often convey useful knowledge and expertise about the project at hand. As such, we aim to enhance
FHistorian (Chapter 7) with information retrieval-based feature location techniques [DRP13, ZLX+16]
for extracting expert feature-related knowledge from evolution artifacts such as developer conversations,
log messages, and documentation. With more complete information about features, our technique can
produce potentially more accurate feature models.

8.2.2 Long-Term Goals

Verifying Change Compatibility. Different parts of software are often created by different teams or
even different organizations, making their integration and quality assurance time-consuming and difficult.
Moreover, changes in parts of software may not be appropriately communicated to the rest of the system
which may have a major impact on the overall system behavior, rendering previous testing and quality
assurance efforts obsolete, and potentially creating major problems.

In many industrial domains, such as automotive and financial industries, parts of the software are
typically delivered by external subcontractors and need to be put together and validated by the original
manufacturers. Such cases bring with them a few additional problems, making the situation even more
dire: (1) the subcontractor code may not be available for inspection or other static analyses; (2) the
size of external software components present is extremely large; (3) the entire code base is expected to
support a product line of different products, rendering testing and other forms of analysis very difficult,
since they need to be repeated for every product configuration.

A precise and efficient way of integrating evolving software components is a must to ensure backward
compatibilities of component changes with the overall system. In addition, to facilitate modular
development and quality assurance, the problem of specifying and verifying inter-component requirements
and guarantees becomes paramount.

We plan to study the problem of integrating evolving software components and verifying their
compatibility when a change happens in a certain component. To define compatibility, we formalize the
notion of client-specific equivalence, which is similar to the property-specific equivalence used in differential
assertion checking [LMSH13] and incremental upgrade checking [SFS12]. But instead of explicitly defining
properties as relative specifications or change contracts, we intend to generate equivalence specifications
automatically from a static analysis of the source code. Furthermore, if the change made to either
component causes incompatibilities, i.e., the compatibility specification is not satisfied, we would like to
locate the root cause of the issues and suggest possible fixes.

From Analysis to Construction. For almost any desirable functionality, developers now can find
existing code snippets from Q/A websites such as stack overflow, from documentation of third party
libraries, or from other open-source projects. Instead of developing the desired functionality from scratch,
a more common practice is to copy existing code snippets and appropriately integrate them with the host
code base under development. This manual development process includes wiring up correct data flow
paths between the copied code and the host code, and inserting necessary glue code at the beginning and
the end of the copied code to initialize and clean up relevant data objects. A technique that automates
even parts of this development process will be extremely valuable.
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This dissertation already demonstrates the potential of understanding and reusing historical change
data, and with the increasing volume of code fragments available on the Internet, we plan to look at the
problem of modular software construction through mining and composition. We are specifically interested
in synthesizing new functionality from existing code which may not have been designed for composition a
priori. The final goal is to produce abstractions and analyses enabling correct and modular construction
of software based on all available code sources.

To achieve the goal, we need to design algorithms to (1) identify reusable software components from
multiple sources, (2) establish properties of individual components in the absence of the rest of the system,
(3) detect and resolve “semantic” software integration problems related to conflicting program behaviors,
and (4) validate composed final products and provide quality assurance through testing, debugging and
verification.

The success of this approach will greatly improve not only the productivity of developers, but also
the quality of software they produce. It will bring a revolutionary change to the software development
process which is powered by massive reuse, in-depth analysis and validation.
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Appendix A

A Dataset of Semantic Changes in
Version Histories

A.1 Dataset Descriptions

Here we present a dataset for dynamic discovery of semantic changes in version controlled software
histories. The dataset contains 81 semantic change data items collected from eight open source Java
projects found on GitHub, which covers a broad range of software projects and a significant number of
data items. The dataset can be accessed from: https://github.com/Chenguang-Zhu/DoSC.

Each data item in the dataset is associated with a meta-data file written in the YAML [YAM17] format.
Figure A.1 shows an example of such a file for the functionality CALCITE-1168.1 In each meta-data file:

• id is the issue key of the functionality on JIRA – a unique identifier originally assigned by developers
in the issue tracking system.

• description is the developers’ description of the functionality, found on the JIRA release notes
page.

• project designates the project in which the functionality belongs. The project’s name and url are
provided.

• issue url designates the link of the issue report of the functionality on JIRA. The issue report
page contains detailed information and activity log of the functionality.

• history start specifies the starting point of the history segment where the functionality was
developed. It is the SHA-1 ID of a release commit, which is the closest release version before the
functionality was developed.

• history end specifies the ending point of the history segment where the functionality was developed.
It is the SHA-1 ID of the closest release version after the functionality was developed.

• test suite designates the associated test suite of the functionality. The test suite exercises the
behaviors of the functionality. All the test methods of the test suite are listed in this field.

1https://issues.apache.org/jira/browse/CALCITE-1168
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• history slice designates the 1-minimal semantic history slice with respect to the functionality,
i.e., the ground truth for semantic history slicing.

1 id: "CALCITE-1168"

2 description: "Add DESCRIBE SCHEMA/DATABASE/TABLE/query"

3 project:

4 name: "Calcite"

5 url: "https://github.com/apache/calcite"

6 issue url: "https://issues.apache.org/jira/browse/CALCITE-1168"

7 history start: "8eebfc6d"

8 history end: "aeb6bf14"

9 test suite:

10 - "SqlParserTest.testDescribeSchema"

11 - "SqlParserTest.testDescribeTable"

12 - "SqlParserTest.testDescribeStatement"

13 history slice:

14 - "a065200a"

15 - "da875a67"

Figure A.1: Meta-data file of the functionality CALCITE-1168.

Table A.1 presents detailed descriptions of the dataset. Each row in the table represents a target
functionality. The first eight columns list statistics of the selected functionalities with corresponding
history segments and test suites, while the last two columns contain information of the ground truth for
semantic history slicing and feature location.

• Column “Functionality ID” designates the JIRA issue key of the functionality - a unique identifier
assigned to the functionality by developers in the JIRA issue tracking system.

• Column “H.Start” shows the starting point of the history segment where the functionality was
developed. It is the SHA-1 ID of a release commit, which is the last release version before the
functionality was developed.

• Column “H.End” shows the ending point of the history segment where the functionality was
developed. It is the SHA-1 ID of the earliest release version after the functionality was developed.

• Column “#C” represents the length of history of developing a functionality, measured by the
number of commits.

• Column“#F” shows the number of files edited during the development of the functionality.

• Column “#LOC+” designates the number of code lines inserted during the development of the
functionality.

• Column “#LOC-” exhibits the number of code lines deleted during the development of the
functionality.

• Column “#T” represents the number of test cases in the associated test suite of the functionality.

• Column “Slice” designates the size of the 1-minimal history slice of each functionality, expressed as
the number of commits.
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• Column “#Dev.Labels” designates the size of the set of commits that developers labeled as part of
the functionality.

A.2 Using the Dataset

The dataset can be used for the evaluation of both the semantic history slicing and dynamic feature
location techniques.

Semantic History Slicing. The dataset allows researchers to assess the capabilities of their history
slicing tools and easily compare with other techniques in the same category. To use the dataset as a
benchmark for semantic history slicing, users need to follow the following steps:

1. Pick a functionality that they would like to analyze from the dataset. View its meta-data file.

2. Access the repository of the project via the link provided in the project url field of the meta-data.

3. Use the git clone command to clone the project repository to the user’s local file system.

4. Extract the names of all test methods listed in the test suite field of the meta-data.

5. Use the extracted test cases and the history segment specified by the starting point (field history

start) and the ending point (field history end) as the input on which to run the history slicing
tool.

6. Compare the resulting semantic history slice with the 1-minimal ground truth we provide (field
history slice).

7. Repeat the steps 1-6 until the evaluation is completed.

Dynamic Feature Location. In addition to semantic history slicing, the dataset can also be used for
other software analysis tasks such as dynamic feature location [RC13b], requiring only simple modifications
to the above method.

Feature location aims to identify software components that implement a specific program functionality.
Dynamic location techniques monitor executions of some target feature and analyze runtime traces
collected during the executions, to identify the set of related program entities for the feature. In the
dataset, each target functionality is accompanied by a test suite capturing its behaviors and a set of
essential commits implementing the functionality. The test suites provided in the dataset can be used to
activate and gather execution traces for the corresponding features, while the set of essential commits
can be mapped to relevant code entities to evaluate the effectiveness of the feature location techniques.
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Table A.1: Detailed statistics of the dataset.

Functionality ID H.Start H.End #C #F #LOC+ #LOC- #T Slice #Dev.Labels

LANG-825 bae9f7c3 15a51f1d 475 265 27,630 11,935 2 118 1
LANG-839 bae9f7c3 15a51f1d 475 265 27,630 11,935 2 200 4
LANG-841 bae9f7c3 15a51f1d 475 265 27,630 11,935 2 200 1
LANG-906 bae9f7c3 15a51f1d 475 265 27,630 11,935 5 1 1
LANG-834 c4ecd75 66a3717 179 121 6,889 1,807 12 12 1
LANG-944 c4ecd75 66a3717 179 121 6,889 1,807 1 24 1
LANG-993 24767d6 76cc69c 262 146 6,741 2,076 10 6 1
LANG-999 24767d6 76cc69c 262 146 6,741 2,076 5 15 1
LANG-1006 24767d6 76cc69c 262 146 6,741 2,076 2 14 1
LANG-1033 24767d6 76cc69c 262 146 6,741 2,076 1 22 1
LANG-1088 24767d6 76cc69c 262 146 6,741 2,076 2 1 2
LANG-536 24767d6 76cc69c 262 146 6,741 2,076 17 30 1
LANG-883 24767d6 76cc69c 262 146 6,741 2,076 1 36 1
LANG-1015 24767d6 76cc69c 262 146 6,741 2,076 9 39 1
LANG-1021 24767d6 76cc69c 262 146 6,741 2,076 16 28 1
LANG-1080 24767d6 76cc69c 262 146 6,741 2,076 8 38 1
LANG-1093 24767d6 76cc69c 262 146 6,741 2,076 2 63 2
LANG-1050 0d5d666 36f98d8 515 309 18,885 6,395 4 8 1
LANG-1074 0d5d666 36f98d8 515 309 18,885 6,395 9 6 1
LANG-1119 0d5d666 36f98d8 515 309 18,885 6,395 1 1 3
CALCITE-627 f10ea367 d60f2aa3 51 135 8,274 1,446 2 19 1
CALCITE-655 f10ea367 d60f2aa3 51 135 8,274 1,446 1 19 1
CALCITE-674 d60f2aa3 495f1859 59 196 14,861 9,173 1 11 1
CALCITE-718 495f1859 0c0c203d 92 304 21,348 7,686 1 14 1
CALCITE-758 495f1859 0c0c203d 92 304 21,348 7,686 1 1 2
CALCITE-811 495f1859 0c0c203d 92 304 21,348 7,686 1 1 1
CALCITE-803 495f1859 0c0c203d 92 304 21,348 7,686 1 1 1
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CALCITE-925 0c0c203d ba6e43c6 120 468 68,314 6,096 3 1 1
CALCITE-767 ba6e43c6 c4d346b0 103 465 31,647 13,594 1 8 1
CALCITE-996 ba6e43c6 c4d346b0 103 465 31,647 13,594 1 1 1
CALCITE-1003 ba6e43c6 c4d346b0 103 465 31,647 13,594 25 14 1
CALCITE-1028 ba6e43c6 c4d346b0 103 465 31,647 13,594 1 6 1
CALCITE-1168 8eebfc6d aeb6bf14 122 399 30,975 4,800 3 2 2
CALCITE-1200 8eebfc6d aeb6bf14 122 399 30,975 4,800 3 2 1
CALCITE-991 aeb6bf14 08c56b15 78 295 14,908 3,637 5 1 1
CALCITE-1288 aeb6bf14 08c56b15 78 295 14,908 3,637 1 6 1
CALCITE-1309 aeb6bf14 08c56b15 78 295 14,908 3,637 8 7 1
CALCITE-1337 aeb6bf14 08c56b15 78 295 14,908 3,637 2 5 1
MNG-4904 b175144 308d4d4 51 78 1,816 713 1 7 1
MNG-4909 b175144 308d4d4 51 78 1,816 713 2 7 1
MNG-4910 b175144 308d4d4 51 78 1,816 713 1 7 1
MNG-4953 38ced22 0023226 47 96 2,448 329 1 6 1
MNG-5159 089a9f8 6d37598 120 318 3,003 1,098 4 2 1
MNG-5530 b7e3ce2 ea8b2b0 97 160 4,431 4,144 1 1 2
MNG-5549 b7e3ce2 ea8b2b0 97 160 4,431 4,144 1 13 2
MNG-5754 d13c288 cab6659 97 235 9,500 3,930 4 8 3
MNG-5755 d13c288 cab6659 97 235 9,500 3,930 5 7 1
MNG-5767 d13c288 cab6659 97 235 9,500 3,930 3 21 6
MNG-5805 0ddab5f bb52d85 98 341 3,751 3,030 2 11 4
COMPRESS-295 083e7a4 1dcab3f 169 181 6,638 1,580 2 1 2
COMPRESS-296 083e7a4 1dcab3f 169 181 6,638 1,580 3 37 2
COMPRESS-313 083e7a4 1dcab3f 169 181 6,638 1,580 3 40 1
COMPRESS-327 99bc508 b29395d 148 144 4,644 2,006 18 26 10
COMPRESS-368 99bc508 b29395d 148 144 4,644 2,006 6 12 6
COMPRESS-369 99bc508 b29395d 148 144 4,644 2,006 2 10 2
COMPRESS-373 99bc508 b29395d 148 144 4,644 2,006 1 14 1
COMPRESS-374 99bc508 b29395d 148 144 4,644 2,006 8 15 1
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COMPRESS-375 99bc508 b29395d 148 144 4,644 2,006 2 1 2
FLUME-1710 31d45f1b f7560038 133 258 15,949 2,783 1 1 1
FLUME-2052 cda3bd10 31d45f1b 101 181 14,742 3,097 5 3 1
FLUME-2056 cda3bd10 31d45f1b 101 181 14,742 3,097 1 5 1
FLUME-2130 cda3bd10 31d45f1b 101 181 14,742 3,097 1 3 1
FLUME-2206 cda3bd10 31d45f1b 101 181 14,742 3,097 1 4 1
FLUME-2498 f7560038 5e400ea8 100 428 17,341 8,187 17 65 1
FLUME-2628 f7560038 5e400ea8 100 428 17,341 8,187 7 1 1
FLUME-2955 f7560038 5e400ea8 100 428 17,341 8,187 1 65 1
FLUME-2982 f7560038 5e400ea8 100 428 17,341 8,187 2 35 1
PDFBOX-3307 a281f71 9e102f2 37 42 1,138 268 2 1 4
PDFBOX-3069 3b5ae83 5848e90 272 255 9,737 5,398 2 1 1
PDFBOX-3418 3b5ae83 5848e90 272 255 9,737 5,398 2 3 2
PDFBOX-3461 3b5ae83 5848e90 272 255 9,737 5,398 24 3 1
PDFBOX-3262 7c1a2c8 69a8e03 162 135 3,295 814 1 2 3
CONFIGURATION-466 5270237 f81ff1a 252 694 79,920 80,096 3 13 1
CONFIGURATION-624 89428f1 9fb4ad8 50 34 1,201 655 11 48 7
CONFIGURATION-626 89428f1 9fb4ad8 50 34 1,201 655 4 1 5
NET-436 d8812a3 4c3860e 77 99 2,357 774 5 7 1
NET-525 d483631 abd6711 269 233 6,845 2,393 14 40 2
NET-527 d483631 abd6711 269 233 6,845 2,393 1 40 1
CSV-159 b230a6f5 7310e5c6 79 28 1,640 713 1 10 1
CSV-175 b230a6f5 7310e5c6 79 28 1,640 713 11 48 3
CSV-179 b230a6f5 7310e5c6 79 28 1,640 713 1 56 1
CSV-180 b230a6f5 7310e5c6 79 28 1,640 713 2 56 1
IO-126 61519de4 f6724182 140 140 7,365 1,242 2 6 1
IO-129 61519de4 f6724182 140 140 7,365 1,242 7 10 2
IO-130 61519de4 f6724182 140 140 7,365 1,242 4 11 1
IO-135 61519de4 f6724182 140 140 7,365 1,242 4 23 2
IO-138 61519de4 f6724182 140 140 7,365 1,242 7 13 1
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IO-144 61519de4 f6724182 140 140 7,365 1,242 2 1 1
IO-145 61519de4 f6724182 140 140 7,365 1,242 2 61 1
IO-148 61519de4 f6724182 140 140 7,365 1,242 2 30 4
IO-153 61519de4 f6724182 140 140 7,365 1,242 6 56 1
IO-173 8de491fc b1b9f1af 136 182 5,647 1,681 2 32 1
IO-275 8de491fc b1b9f1af 136 182 5,647 1,681 2 1 1
IO-288 8de491fc b1b9f1af 136 182 5,647 1,681 81 16 3
IO-290 8de491fc b1b9f1af 136 182 5,647 1,681 2 5 1
IO-291 8de491fc b1b9f1af 136 182 5,647 1,681 10 24 3
IO-297 8de491fc b1b9f1af 136 182 5,647 1,681 9 13 1
IO-305 8de491fc b1b9f1af 136 182 5,647 1,681 10 83 1
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