
A Dataset for Dynamic Discovery of Semantic

Changes in Version Controlled Software Histories

Chenguang Zhu

University of Toronto

Toronto, Canada

czhu@cs.toronto.edu

Yi Li

University of Toronto

Toronto, Canada

liyi@cs.toronto.edu

Julia Rubin

University of British Columbia

Vancouver, Canada

mjulia@ece.ubc.ca

Marsha Chechik

University of Toronto

Toronto, Canada

chechik@cs.toronto.edu

Abstract—Over the last few years, researchers proposed several
semantic history slicing approaches that identify the set of
semantically-related commits implementing a particular software
functionality. However, there is no comprehensive benchmark for
evaluating these approaches, making it difficult to assess their
capabilities.

This paper presents a dataset of 81 semantic change data
collected from 8 real-world projects. The dataset is created for
benchmarking semantic history slicing techniques. We provide
details on the data collection process and the storage format. We
also discuss usage and possible extensions of the dataset.

Keywords-Semantic history slicing; change history; benchmark

I. INTRODUCTION

Over the last few years, researchers proposed several auto-

mated approaches to support software developers in identifying

code changes related to a particular high-level functionality [1],

[2], [3], [4]. These approaches are collectively referred to as

semantic history slicing. Semantic history slicing techniques

have been applied to different software evolution tasks such

as assisting developers in transferring functionalities between

branches of a configuration management system [2], performing

transformations on change histories [1], and producing focused

and easy-to-merge pull requests [4].

Existing semantic history slicing tool implementations such

as CSLICER [2] and DEFINER [3], accept as input the project

source code, a selected range of its version history and a

test suite acting as the slicing criterion. The test suite is

assumed to be deterministic and exercising behaviors of a

software functionality (or feature in most cases). Semantic

history slicing aims at finding a sub-history that preserves

the target functionality, i.e., producing a syntactically correct,

compilable program that passes the original test suite. It is

called a semantic history slice [4].

In the absence of a unified benchmark for semantic history

slicing, researchers evaluate their techniques on data that

they themselves collect. Such data is manually extracted

from open source software repositories. For example, Li et

al. [4] evaluated their tool, CSLICER, on data taken from

CSLICER’s own source repository and three other open source

project repositories, namely, Hadoop [5], Elasticsearch [6],

and Maven [7]. DEFINER, another state-of-the-art semantic

history slicing tool [3], was evaluated on data collected from

the Apache Commons project repositories [8].

The absence of a comprehensive dataset for semantic change

data is partly due to the difficulty in obtaining well-documented

functionalities that come with test cases. For example, to collect

semantic change data, researchers need to manually browse

a large number of software projects and thoroughly inspect

their version-controlled histories to find well-organized projects

with informative documentation. In addition, since all semantic

history slicing techniques also require a test suite as the history

slicing criterion, further efforts are needed to identify those

functionalities that are accompanied by corresponding test

suites.

Obtaining ground truth for such a dataset is also difficult.

Ultimately, a semantic history slicing technique should produce

the smallest possible slice that would still pass the tests.

Manually determining the smallest semantic history slice that

does not contain unnecessary commits is time-consuming and

error-prone [4].

To unify evaluation targets for semantic history slicing

techniques and provide a common ground for researchers to

benchmark their tool implementations, we report on a dataset

for evaluating semantic history slicing techniques in this paper.

The dataset consists of 81 items of semantic change data

collected from the repositories of 8 open source Java projects

on GitHub.

The rest of this paper is organized as follows. In Sect. II,

we describe the methodology used for collecting data. In

Sect. III, we explain the storage mechanism of the dataset,

and illustrate the data schema using an example. In Sect. IV,

we give instructions on how to use the dataset for semantic

history slicing. We suggest ways for extending the dataset in

Sect. V and conclude in Sect. VI.

II. DATASET CREATION

In this section, we describe the creation process of our

dataset. Central to our dataset is the concept of a semantic

history slice [4]. A semantic history slice is a sub-sequence

of a change history that preserves the functionality of interest,

which is defined by a set of test cases.

For each functionality, the dataset features an 1-minimal

semantic history slice as its ground truth. The concept of 1-

minimality was used in the literature [3], [4], [9] as a standard



for precise history slices the computation of which is also

tractable in practice. It essentially means that no single commit

in the computed history slice can be removed without breaking

the functionality of interest.

Project Selection. We manually inspected repositories of

various open source Java projects, focusing on a set of Apache

projects which use JIRA [10] as their issue tracker. JIRA holds

complete change log and release notes. For each release version,

a number of functionalities are exhibited on the release notes

page, categorized by developers as new features, improvements,

bug fixes, tasks, etc.

Each functionality is assigned a unique ID, referred to as

“issue key”, which is associated with an issue report recording

detailed information about the functionality. A JIRA issue key

is a string with the format “ABC-123”, where “ABC” stands for

the name of the project containing this functionality, and “123”

is a number for uniquely identifying a particular functionality.

A JIRA issue key of a functionality is usually embedded in

the log messages of the commits implementing it, making it

easy to locate it in the history.

From a collection of Apache software projects, we selected

those that are well-managed and accompanied by complete

documentation and change logs on JIRA. The first and second

authors independently evaluated 26 projects, inspected their

issue trackers, and filtered out those that either had no change

logs or had very few features documented in the release notes.

Afterwards, they cross-checked the results and ended up with

eight projects that both authors considered to be good.

Functionality Selection. For each of the selected projects, we

determined the functionalities to be included in the dataset.

All known semantic history slicing techniques need test

cases as slicing criteria to define functionalities of interests.

Therefore, when we created the dataset, we only considered the

functionalities accompanied by a test suite, where the code of

functionalities and the test cases are committed together. From

the eight projects selected in the previous step, we inspected

features for 33 release versions. There were 478 features in

total, and we filtered out those that had no test cases associated

with them, resulting in 81 features.

History Range Selection. The purpose of semantic history

slicing is to locate the commits relevant to a functionality

within an appropriate history segment. We selected input

history segments directly from the original project histories

to closely simulate the practical application scenarios. The

range of the selected history should also cover all the relevant

commits for the whole life cycle of a functionality. Thus, for

each functionality selected in the previous step, we would

like to determine a range of history that subsumes the entire

development activities of the functionality. To do that, we

manually inspected the change logs of the projects and searched

for the JIRA issue keys of the functionalities in the project

version histories. For each selected functionality, we determined

a sequence of commits that have the corresponding key in their

commit messages.

For a functionality F , we identified a sequence of commits

Release 1

Version History

R

Release 2

Selected Range

1 C1 C2 Cn R2

Fig. 1. History range selection between releases.

C1, C2, . . . , Cn which all contain the same JIRA issue key

corresponding to F (Fig. 1). In Fig. 1, R1 and R2 are commits

that are labeled as version releases either explicitly using release

tags or implicitly using commit messages. R1 is the closest

release commit before the first appearance of the JIRA issue

key of F , and R2 is the closest release commit after the last

appearance of the issue key. The history segment from R1

(inclusive) to R2 (exclusive) is selected as the input history

for semantic slicing with respect to functionality F .

The rationale for selecting contiguous history segments

between release commits is that every functionality is always

finalized and published at some release version. Despite being

conservative and potentially including irrelevant commits before

and after the true functionality development period, we ensure

that all potentially relevant commits are included in the selected

range.

Obtaining 1-Minimal Semantic History Slices. We devel-

oped a data collection tool that applies a delta debugging-

style partitioning algorithm [9] to produce 1-minimal semantic

history slices (ground truth for semantic history slicing).

Delta debugging repeatedly partitions the input space and

opportunistically reduces the search space when the desired

test behaviors are preserved in one of the partitions, until a

minimal partition is reached. Zeller et al. [9] formally proved

that the delta debugging algorithm is guaranteed to yield a

1-minimal partition that preserves the properties of interest.

Our tool is similar to delta debugging but is adapted to our

application scenario to find an 1-minimal history slice that

pass the functionality-exercising test cases. For each selected

functionality in the dataset, we use its associated test suite and

the selected history range as the input of the tool, running it

to obtain a 1-minimal semantic history slice.

We carried out all the data processing jobs on a desktop

computer running Linux with an Intel i7 3.4GHz processor

and 16GB of RAM. The average time spent computing ground

truth for a given functionality is approximately 1.5 hours. We

divided the entire experimental set into 5 groups and ran them

in parallel. We set a two-hours time limit on the tool execution

for each functionality. Afterwards, we manually inspected the

result, filtered out the functionalities that cause timeout, and

extracted the meta-data from the remaining functionalities.

For each functionality in the dataset, we further verified

that the semantic history slice returned by our tool is indeed

1-minimal in case there is flaw in the tool implementation.

We did this by removing each commit individually from our

computed semantic history slice, running the test suite and



expecting the tests to fail. The confirmed result of test suite

demonstrated that the semantic history slice in our dataset is

1-minimal, as desired.

Dataset. Using the approach described above, we extracted 81

semantic change data from 8 open source Java projects found

on GitHub. The final dataset covers a broad range of projects

(previous collections contained four [2] and three [3]) and a

significant number of data items (all previous collections [2],

[3], [4] had less than 20). Our dataset is summarized in Table I.

The first six columns list aggregated statistics of the selected

functionalities as well as the corresponding history segments

and test suites. Columns “#F” and “#R” represent the number

of selected functionalities and the number of release versions

from which we gathered these functionalities, respectively.

Column “Avg. Commits” lists the average length of history

of developing a functionality. Columns “Avg. Files” and “Avg.

LOC” show the average number of files changed and the

average number of lines of code edited, during the development

of the functionality, respectively. Column “Avg. Tests” shows

the average number of tests in the associated test suite of

the functionality. For example, we selected 17 functionalities

from the commons-lang project, analyzed change histories

for 4 release versions. The input history segments span over

365 commits, with about 211 files and 21.1 KLOC changed.

The average number of test cases for a target functionality in

commons-lang is about 4.14.

The last two columns contain metrics about the ground truth.

Column “Avg. Slice” stands for the average size of the 1-

minimal history slice of each functionality, expressed in terms

of the number of commits. Column “Avg. Reduce” shows the

average reduction rate in percentage. For each functionality, the

reduction rate is the percentage of the unnecessary commits

within the original input histories. The average reduction rate

over all projects is about 87.9% which means that the 1-minimal

history slices is on average 12.1% of the input histories.

III. DATA REPRESENTATION

We store the dataset in a GitHub repository (see https://

github.com/Chenguang-Zhu/DoSC). It consists of the forked

versions of the selected project repositories as persistent copies

in case the original project histories are modified in the future.

For each semantic change data in the dataset, we provide

a file with its meta-data written in the YAML [11] format.

Fig. 2 shows an example of such a file for the functionality

CALCITE-11681:

• id is the issue key of the functionality on JIRA – a unique

identifier originally assigned by developers in the issue

tracking system.

• description is the developers’ description of the function-

ality, found on the JIRA release notes page.

• project designates the project in which the functionality

belongs. The project’s name and url are provided.

1https://issues.apache.org/jira/browse/CALCITE-1168

1 id : CALCITE−1168

2 d e s c r i p t i o n : Add DESCRIBE SCHEMA/DATABASE/TABLE/ que ry

3 p r o j e c t :

4 name: C a l c i t e

5 u r l : ” h t t p s : / / g i t h u b . com / apache / c a l c i t e ”

6 i s s u e u r l : ” h t t p s : / / i s s u e s . apache . o rg / j i r a / browse /

CALCITE−1168”

7 h i s t o r y s t a r t : ” 8 e e b f c 6 d ”

8 h i s t o r y end: ” aeb6bf14 ”

9 t e s t s u i t e :

10 - ” S q l P a r s e r T e s t . t e s t D e s c r i b e S c h e m a ”

11 - ” S q l P a r s e r T e s t . t e s t D e s c r i b e T a b l e ”

12 - ” S q l P a r s e r T e s t . t e s t D e s c r i b e S t a t e m e n t ”

13 h i s t o r y s l i c e :

14 - ” a065200a ”

15 - ” da875a67 ”

Fig. 2. Meta-data of the functionality CALCITE-1168.

• issue url designates the link of the issue report of the

functionality on JIRA. The issue report page contains

detailed information and activity log of the functionality.

• history start specifies the starting point of the history

segment where the functionality was developed. It is the

SHA-1 ID of a release commit, which is the closest release

version before the functionality was developed.

• history end specifies the ending point of the history

segment where the functionality was developed. It is

the SHA-1 ID of the closest release version after the

functionality was developed.

• test suite designates the associated test suite of the

functionality. The test suite exercises the behaviors of

the functionality. All the test methods of the test suite are

listed in this field.

• history slice designates the 1-minimal semantic history

slice with respect to the functionality, i.e., the ground

truth for semantic history slicing.

IV. USING THE DATASET

In this section, we discuss the usage of our dataset.

Semantic History Slicing. The main motivation for creating

the dataset is to provide evaluation targets for semantic history

slicing techniques. Our dataset allows researchers to assess the

capabilities of their history slicing tools and easily compare

with other techniques.

To use the dataset as a benchmark for semantic history

slicing, users need to follow the following steps:

1) Pick a functionality that they would like to analyze from

the dataset. View its meta-data file.

2) Access the repository of the project via the link provided

in the project url field of the meta-data.

3) Use the git clone command to clone the project

repository to the user’s local file system.

4) Extract the names of all test methods listed in the test

suite field of the meta-data.

5) Use the extracted test cases and the history segment

specified by the starting point (field history start) and

the ending point (field history end) as the input on which

to run the history slicing tool.

6) Compare the resulting semantic history slice with the

1-minimal ground truth we provide (field history slice).



TABLE I
OVERVIEW OF SOFTWARE PROJECTS IN THE DATASET

Project #F #R Avg. Commits Avg. Files Avg. LOC Avg. Tests Avg. Slice Avg. Reduce (%)

commons-lang 17 4 365.21 211.36 21112.64 4.14 44.86 88.97
calcite 19 7 89.83 332.67 31150.77 3.39 6.61 90.65
maven 11 6 82.09 183.09 7153.27 2.27 8.18 89.24
commons-compress 14 6 155 156.33 7172.67 5 17.33 89.01
flume 9 3 104.11 299.33 21355.56 4 20.22 79.82
pdfbox 5 3 203 188.4 10184 6.2 2 98.7
commons-configuration 3 2 117.33 254 54576 6 20.67 65.61
commons-net 3 2 205 188.33 7202.33 6.67 29 87.05

Overall 81 33 165.93 240.71 19833.14 4.08 18.53 87.92

Note: complete statistics on the dataset can be found at https://github.com/Chenguang-Zhu/DoSC

7) Repeat the steps 1-6 until the evaluation is sufficient.

Other Applications. In addition to semantic history slicing,

our dataset can also be used for other software analysis tasks

such as dynamic feature location [12], requiring only simple

modifications to the above method.

Feature location aims to identify software components that

implement a specific program functionality. The dynamic loca-

tion techniques [13] monitor executions of some target feature

and analyze runtime traces collected during the executions, to

identify the set of related program entities for the feature. In

our dataset, each target functionality is accompanied by a test

suite capturing its behaviors and a set of essential commits

implementing the functionality. The test suites provided in

our dataset can be used to activate and gather execution

traces for the corresponding features, while the set of essential

commits can be mapped to relevant code entities to evaluate

the effectiveness of the feature location techniques.

V. EXTENDING THE DATASET

An obvious way of extending the dataset is to analyze more

repositories. In our current setting, this would require open

source Java projects which use issue tracking systems for

recording the functionalities and organizing the change logs.

The essential requirement for this inclusion is that the projects

have well-organized version controlled histories (so that there

is a clear way of identifying a particular functionality) and

have corresponding test cases.

The dataset can also be extended to include project histories

containing known bugs and failed test cases that manifest the

buggy behaviors. This extension would allow evaluation of

fault localization techniques [14], [15] which determine a set

of code edits in the change histories that may lead to program

faults. Dynamic fault localization techniques analyze execution

traces of passed and failed test runs, identify the most probably

failure-inducing code changes, and sometimes also produce

ranking of the potential culprits.

We provide a meta-data schema template as part of the

dataset, and encourage other researchers to contribute to the

dataset directly on GitHub. To obtain 1-minimal history slice,

we implemented a data collection tool based on the delta

debugging-style of history partition and made the tool publicly

available. The tool is located in the same repository as the

dataset itself.

VI. CONCLUSIONS

In this paper, we presented a dataset to benchmark semantic

history slicing techniques. The dataset consists of meta-data of

81 functionalities covering a diverse range of software version

histories from 8 software projects.

To the best of our knowledge, our dataset is the first to focus

on supporting semantic history slicing research. It provides

comprehensive and well-documented data for semantically-

related changes in the context of version controlled histories.

We believe that the dataset will provide insights on capabilities

of tools and help advance the state-of-the-art in semantic history

slicing research.

REFERENCES

[1] K. Muşlu, L. Swart, Y. Brun, and M. D. Ernst, “Development History
Granularity Transformations,” in Proc. of ASE’15, Lincoln, NE, USA,
November 2015, pp. 697–702.

[2] Y. Li, J. Rubin, and M. Chechik, “Semantic Slicing of Software Version
Histories,” in Proc. of ASE’15, Lincoln, NE, USA, November 2015, pp.
686–696.

[3] Y. Li, C. Zhu, J. Rubin, and M. Chechik, “Precise Semantic History
Slicing through Dynamic Delta Refinement,” in Proc. of ASE’16,
Singapore, Singapore, September 2016, pp. 495–506.

[4] ——, “Semantic Slicing of Software Version Histories,” IEEE Transac-

tions on Software Engineering, February 2017.
[5] How to Contribute to Hadoop Common. [Online]. Available:

https://wiki.apache.org/hadoop/HowToContribute
[6] Elasticsearch: Distributed, Open Source Search and Analytics Engine.

[Online]. Available: https://www.elastic.co/products/elasticsearch
[7] Apache Maven Project. [Online]. Available: https://maven.apache.org
[8] Apache Commons Project. [Online]. Available: http://commons.apache.

org
[9] A. Zeller and R. Hildebrandt, “Simplifying and Isolating Failure-inducing

Input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.

[10] JIRA Software. [Online]. Available: https://www.atlassian.com/software/
jira

[11] YAML Ain’t Markup Language. [Online]. Available: http://www.yaml.
org/

[12] J. Rubin and M. Chechik, “A Survey of Feature Location Techniques,”
in Domain Engineering: Product Lines, Languages, and Conceptual

Models. Springer Berlin Heidelberg, 2013, pp. 29–58.
[13] R. Koschke and J. Quante, “On Dynamic Feature Location,” in Proc. of

ASE’05. ACM, 2005, pp. 86–95.
[14] L. Zhang, M. Kim, and S. Khurshid, “Localizing Failure-inducing

Program Edits Based on Spectrum Information,” in Proc. of ICSM’11,
2011, pp. 23–32.

[15] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” in Proc. of ICSE’02. ACM,
2002, pp. 467–477.


