
Symbolic Abstraction with SMT Solvers

by

Yi Li

A thesis submitted in conformity with the requirements
for the degree of Master of Science

Graduate Department of Computer Science
University of Toronto

c© Copyright 2013 by Yi Li

Abstract

Symbolic Abstraction with SMT Solvers

Yi Li

Master of Science

Graduate Department of Computer Science

University of Toronto

2013

Numerical invariant generation is an important program analysis task with uses span-

ning compiler optimizations, bug finding, and verification. Abstract interpretation with

numerical domains is one of the most scalable automated techniques for computing nu-

merical invariants. Unfortunately, efficiency is often achieved by employing imprecise

operations (e.g., join and abstract post). Moreover, expressive domains such as polyhe-

dra are expensive, and efficient domains such as intervals are often too weak to prove

interesting program properties.

In this thesis, we present Symba, a novel algorithm that harnesses the power and

precision of SMT solvers, in order to (1) implement precise (best) abstract transformers

over large program segments described as formulas in linear real arithmetic (QF LRA),

thus avoiding the imprecision incurred by abstract post computations over single in-

structions or basic blocks; (2) avoid the use of imprecise join operations by symbolically

and efficiently enumerating program paths; and (3) enable invariant generation in the

Template Constraint Matrix (TCM) domain, a parameterized domain that subsumes

intervals, octagons, and octahedra, amongst other domains.

ii

Acknowledgements

This thesis would not be possible without the support of a large number of people who

have helped me in different ways.

In particular, I would like to thank my adviser, Marsha Chechik, for her support,

encouragement, patience and trust. She has shown me how to communicate ideas more

effectively and spent hours on improving my writing.

I also owe a debt of gratitude to Arie Gurfinkel whose knowledge and insights were

invaluable in every stage of this project. By being demanding, criticizing and under-

standing, he has driven me to success.

There are two others who made this possible. Aws Albarghouthi, from the very

beginning, has been a welcoming ear of random ideas, a great teacher and friend, and

helped me tremendously during my Master’s study. The inspiration of this work certainly

stems from Zachary Kincaid, who also gave insightful comments in numerous occasions

and provided a critical eye throughout the project.

Finally, I would also like to thank my parents for their unparalleled love.

iii

Contents

1 Introduction 1

1.1 Overview . 1

1.2 Symbolic Abstraction . 3

1.3 Symbolic Abstraction with Symba . 4

1.4 Contributions . 5

1.5 Organization . 5

2 Background 6

2.1 Vectors and Matrices . 6

2.2 The Geometry of Polyhedra . 7

2.3 Abstract Interpretation . 9

3 Symba by Example 11

3.1 A 2-dimensional Example . 11

3.2 A 3-dimensional Example . 13

4 Symba: The Symbolic Abstraction Algorithm 15

4.1 Definitions . 15

4.2 Symba Formalized . 17

4.3 Soundness . 19

4.4 Termination . 22

5 Implementation 25

5.1 Tools and Technologies . 25

5.2 Implementation . 26

6 Evaluation 32

6.1 Benchmarks . 32

6.2 Experimental Evaluation . 33

iv

7 Related Work 41

7.1 Symbolic Abstraction of Numerical Domains 41

7.2 Other Symbolic Abstraction Techniques 42

7.3 Predicate Abstraction . 42

7.4 Classification and Machine Learning . 43

8 Conclusions and Future Work 44

8.1 Conclusion . 44

8.2 Future Work . 45

Bibliography 46

v

List of Tables

6.1 Overall results on 295 SMT-LIB2 benchmarks. 36

6.2 Overall results for loop invariant generation on 604 C benchmarks. 38

vi

List of Figures

1.1 Example for illustrating numerical invariant. 2

1.2 Examples for illustrating symbolic abstraction. 3

2.1 A ray generated by x̃ and a half-line starts at x̌. 8

3.1 Illustration of Symba on a 2-D example. 12

3.2 Illustration of Symba on a 3-D example. 13

4.1 Inference rules used by Symba. 17

5.1 Deterministic implementation of scheduling policy. 27

5.2 Implementation of Unbounded and Unbounded-Fail. 28

5.3 Integer rounding rule. 30

6.1 Problem file for the 2-D example. 32

6.2 Solution file for the 2-D example. 33

6.3 Illustration of DnfBound on a 3-D example. 35

6.4 Number of benchmarks solved vs. timeout in seconds for several configu-

rations of Symba. 38

6.5 Number of C files analyzed using SymbaIR(∞) as the abstract trans-

former vs. timeout in seconds. 39

vii

Chapter 1

Introduction

1.1 Overview

Software has become an inseparable part of our lives nowadays. Many software prod-

ucts affect or relate closely to public security and health care, where their reliability is

of paramount importance. For example, modern avionics systems rely on software to

navigate and control large aircraft that carries hundreds of people. Artificial cardiac

pacemaker helps maintain adequate heart rate for patients who suffer from arrhythmia.

Software systems in pacemakers monitor the body condition of patients and send out

correct electrical signals to hearts. Software failures in such systems are usually life-

threatening.

Software verification is an automatic technique that ensures that software meets all

the expected requirements and is free of bugs. Approaches to verification can be divided

into two fundamental categories, namely dynamic verification that includes traditional

testing and experimentation techniques, as well as static verification which is also known

as static analysis or program analysis. The static approach is able not only to find

bugs but also prove correctness of a program. Research on static analysis has been

active for decades and many exciting advances have been made in this field since then.

The technique has been successfully applied in proving the correctness of many software

systems expressed as source code, such as software in medical devices and nuclear plants.

Program analysis relies on invariants for reasoning about sets of reachable states [1].

Program invariant refers to a proposition associated with a particular program location

which is asserted to true whenever the location is reached. Examples include x = 2y +

1, “n=n.child.parent” and “elements in array a are sorted in ascending order”. We

can infer interesting properties of a program given good invariants. A large portion

of program predicates can be represented by numerical expressions, that is, arithmetic

1

Chapter 1. Introduction 2

1: n=0, x=0;

2: while (n<100)

3: n=n+1;

4: x=x+n;

Figure 1.1: Example for illustrating numerical invariant.

relations that hold among numerical variables in a program (e.g., x = 2y+1). Numerical

invariant generation is thus a key task for analysing programs involving numerical data

and operations. As a simple example for numerical invariant, consider a program that

sums integers from 1 to 100 (Fig. 1.1). A useful invariant at line 4 is x =
∑n

i=1 i. Suppose

we know that n 6 100 always holds; we can then prove that x 6
∑100

i=1 = 5050.

Abstract interpretation [2] with numerical domains (such as intervals [3] or octagons [4]),

is one of the most scalable automated techniques for computing numerical invariants.

While highly efficient, abstract interpretation loses valuable precision due to the follow-

ing factors:

• Imprecise operations such as join, used to avoid exploring exponentially many paths

in the size of the program by merging abstract states; and abstract post used to

interpret program statements in the abstract domain.

• Limitations in the used abstract domain. For example, the polyhedra domain [5]

allows representation of arbitrary linear inequalities, but suffers from exponential

time and space complexity. While domains such as intervals and octagons are more

efficient, they can only represent restricted forms of relationships among variables,

often limiting their ability to prove certain program properties.

In this thesis, we present Symba, a novel abstract interpretation algorithm that

exploits advances in decision procedures to (1) implement precise (best) abstract trans-

formers over large program segments, thus avoiding the imprecision incurred by abstract

post computations over single instructions and basic blocks; (2) avoid the use of impre-

cise join operations by symbolically and efficiently enumerating program paths; and (3)

enable invariant generation in expressive numerical abstract domains.

To achieve these goals, Symba implements the following symbolic abstraction algo-

rithm: Given a formula ϕ and some abstract domain A, find the best (tightest) abstrac-

tion of ϕ in A. This allows us to encode a loop-free program fragment as a formula ϕ

(e.g., as in verification condition encodings and bounded model checking [6, 7]) and use

the symbolic abstraction algorithm to compute the best abstraction a ∈ A of ϕ. As a

result, a can represent an over-approximation of concrete states reachable after executing

Chapter 1. Introduction 3

1: x = y + 1;

2: y = x - y;

3: assert(y == 1);

(a)

1: if (x < 0)

2: x = x - 10;

3: else x = x + 10;

4: x = abs(x);

5: assert(x != 5);

(b)

Figure 1.2: Examples for illustrating symbolic abstraction.

the program fragment, with no precision loss due to joins or abstract transformers over

single instructions. We illustrate the power of Symba below.

1.2 Symbolic Abstraction

Consider the example in Fig. 1.2a. We would like to prove that the assertion is never

violated by computing an over-approximation of the set of reachable states at line 3.

Suppose we are using the intervals domain in a standard abstract interpretation fashion.

After interpreting the first statement, we get the abstract value >, denoting that the

bounds of x and y are unknown. Similarly, after interpreting the second statement, we

still get > as the set of reachable states at line 3. Therefore, we conclude that every

possible value for y is reachable at line 3, indicating a potential assertion violation.

Suppose, instead, that we encode the execution of the three instructions as a formula in

quantifier-free linear real arithmetic (QF LRA), a commonly used theory for encoding

program executions [8, 9, 10, 11]. This results in a formula

ϕ ≡ x0 = y0 + 1 ∧ y1 = x0 − y0,

where subscripts are added to represent different versions of the same variable. Given

a symbolic abstraction algorithm, we can compute the best abstraction y = 1 of ϕ

(again, using intervals), since the algorithm realizes that the only satisfying assignment

to ϕ sets y1 to 1, where y1 represents the value of y at line 3. Therefore, using a

symbolic abstraction algorithm, we are able to avoid precision loss due to abstract post

computations over single instructions by treating a number of instructions monolithically.

Now consider the example in Fig. 1.2b. We would like to prove that the assertion at

line 5 is never violated. An abstract interpreter using intervals joins the abstract states

from the two branches of the if statement, namely, x < −10 and x > 10, resulting in

the abstract state > at line 4. After executing x = abs(x) (absolute value), the abstract

interpreter concludes that all states where x > 0 are reachable at line 5, thus indicating

Chapter 1. Introduction 4

that the assertion may be violated. On the other hand, using symbolic abstraction, we

represent all executions that can reach line 5 using a formula

ϕ ≡ ite(x0 < 0, x1 = x0 − 10, x1 = x0 + 10) [lines 1-3]

∧ ite(x1 > 0, x2 = x1, x2 = −x1) [line 4]

where ite is the logical if-then-else construct and x2 represents the value of variable x at

line 5. Note that all satisfying assignments of ϕ ensure that x2 > 10. Since a symbolic

abstraction algorithm computes the tightest bound for the variable x, it computes the

abstract state x > 10 at line 5, allowing us to avoid the imprecise join at line 3 and prove

that the assertion at line 5 always holds.

1.3 Symbolic Abstraction with Symba

Symba exploits the power of Satisfiability Modulo Theories (SMT) solvers to compute the

most precise abstractions of QF LRA formulas in the general Template Constraint Matrix

(TCM) [12] domain – a parameterized domain that subsumes intervals, octagons, and

octahedra, among others. Specifically, Symba takes a formula ϕ and a set of templates

T as input, where each ti ∈ T is a linear expression c1x1 + · · · + cnxn over the variables

{xi}i of ϕ and ci ∈ R. Symba computes the strongest formula ϕ′, such that ϕ⇒ ϕ′ and

ϕ′ ≡ t1 6 k1 ∧ · · · ∧ t|T | 6 k|T |,

where ki ∈ R ∪ {∞}. In other words, Symba computes the least upper bound ki for

each template ti within ϕ, where ki =∞ implies that the template ti is unbounded. For

the example in Fig. 1.2b, T = {x,−x}, indicating that we would like to find the tightest

upper and lower bounds of variable x at location 5 (i.e., an intervals analysis).

Symba maintains both an under- and an over-approximation of the best abstraction

ϕ′. It works by sampling points (models) in ϕ in a systematic manner, using an SMT

solver, and adding the points to the under-approximation in order to extend it. The

process continues until the under-approximation is equal to the best abstraction. The

key insight underlying Symba is how to carry out the sampling process in an infinite

space of satisfying assignments, while ensuring convergence to least upper bounds and

discovery of unbounded templates.

Symba also maintains an over-approximation of ϕ′, and when it terminates, the two

approximations are equivalent. Maintaining an over-approximation allows us to halt

Symba at any point and still compute a sound (but possibly not the best) abstraction of

Chapter 1. Introduction 5

ϕ. This makes Symba resilient to SMT solver failures and resource (e.g., time) depletion.

We have implemented Symba and integrated it as an abstract domain in UFO [13],

a C analysis and verification framework built in the LLVM compiler infrastructure [14].

We have applied Symba to a large number of programs from the software verification

competition (SV-COMP) [15], with a total of 2.7MLoC. Standard abstract interpreta-

tion techniques failed to prove safety of any of the 373 safe programs, whereas Symba

produced more precise invariants for 73% of the loops and proved 47 programs safe. In

a comparison against other symbolic abstraction techniques, Symba demonstrates large

efficiency improvements.

1.4 Contributions

We summarize our contributions as follows:

• Symba: A novel symbolic abstraction algorithm that exploits the power and pre-

cision of SMT solvers for computing precise abstract post over loop-free program

fragments. As a result, Symba is able to avoid imprecise join operations by sym-

bolically enumerating program paths; and avoid the imprecision of abstract post

operations over single instructions and basic blocks. Moreover, Symba is parame-

terized by the abstract domain used, and allows for intervals, octagons, octahedra,

as well as others, as defined by the Template Constraint Matrix domain [12].

• An extensive experimental evaluation of Symba as (1) an abstract post transformer

over loop-free program fragments, (2) as a loop invariant synthesizer, and (3) as a

verification algorithm within an abstraction refinement loop. Our results indicate

the power and efficiency of Symba in comparison with other symbolic abstraction

techniques, and its large precision improvements when compared against standard

abstract interpretation techniques.

1.5 Organization

In this thesis, we introduce and evaluate our symbolic abstraction algorithm Symba.

We start by reviewing preliminaries in Chapter 2. In Chapter 3, we demonstrate the

operation of Symba on simple examples. In Chapter 4, we formalize Symba and prove

its correctness. In Chapters 5 and 6, we describe our implementation and experimental

results. In Chapter 7, we compare Symba to related work. We conclude in Chapter 8

with suggestions for future work.

Chapter 2

Background

2.1 Vectors and Matrices

Let a = (a1, . . . , an) ∈ Rn denote a column vector which is an n × 1 matrix for n > 0.

A denotes a real matrix, while Ai,j represents the entry in the i-th row and the j-th

column. The dot product of two column vectors a, b ∈ Rn is defined as a · b = aTb

where AT is the transpose of A.

Definition 1 (Linear Assertions). A linear inequality is an expression of the form a1x1+

· · ·+anxn ./ b, where ./∈ {>,=} and ai, b ∈ R. A linear assertion is a finite conjunction

of linear inequalities.

Matrices can be used to compactly write and work with multiple linear inequalities,

i.e., linear assertion. For example, if A is an m × n matrix, x designates a column

vector of n variables x1, x2, . . . , xn, and b is an m × 1 column vector, then the matrix

representation

Ax ./ b

is equivalent to the system of linear inequalities

A1,1x1 + A1,2x2 + · · ·+ A1,nxn ./ b1

. . .

Am,1x1 + Am,2x2 + · · ·+ Am,nxn ./ bm.

Equality constraints can be transformed into equivalent inequality constraints. For

example, α1x1 + · · ·+ αnxn = b can be written as α1x1 + · · ·+ αnxn > b in conjunction

with α1x1 + · · · + αnxn 6 b. In this thesis, we assume that linear equalities are written

as equivalent inequalities.

6

Chapter 2. Background 7

A zero matrix is a matrix with all its entries being zero, denoted by 0i,j. Some

examples of zero matrices are

01,1 =
[
0
]
, 02,2 =

[
0 0

0 0

]
, 02,3 =

[
0 0 0

0 0 0

]
.

An identity matrix of size n is the n×n square matrix with ones on the main diagonal

and zeros elsewhere, denoted by 1n. Some examples of identity matrices are

11 =
[
1
]
, 12 =

[
1 0

0 1

]
, 13 =

1 0 0

0 1 0

0 0 1

 .
Note that we may omit the subscripts for simplicity if the size of the matrices can be

easily inferred.

2.2 The Geometry of Polyhedra

Every point x in the n-dimensional Euclidean space Rn can be represented as a column

vector x. Let {x1, . . . , xk} be a finite set of points in Rn.

Definition 2 (Affine Combinations and Affine Hull). An affine combination of x1, . . . , xk

is any point of the form

x = α1x1 + · · ·+ αkxk,

where α1, . . . , αk are real numbers satisfying

α1 + · · ·+ αk = 1.

The set of all affine combinations of x1, . . . , xk is known as the affine hull of {x1, . . . , xk}.

It can be verified that any affine combination of solutions of a nonhomogeneous system

of linear equations is also a solution of this system [16].

Definition 3 (Convex Combinations and Convex Hull). A convex combination of x1, . . . , xk

is any point of the form

x = α1x1 + · · ·+ αkxk,

where α1, . . . , αk are real numbers satisfying

α1 + · · ·+ αk = 1

αi > 0

Chapter 2. Background 8

The set of all convex combinations of x1, . . . , xk is known as the convex hull of {x1, . . . , xk}.

Definition 4 (Translate). If S ⊂ Rn, x̌ ∈ Rn, the translate of S to x̌ is the set {x | x =

x̌ + y,y ∈ S}.

Definition 5 (Rays and Half-Lines). Let x̃ ∈ Rn, x̃ 6= 0. The ray generated by x̃ is the

set {x | x = λx̃, λ > 0}. If x̌ ∈ Rn, then the set {x | x = x̌ + θx̃, θ > 0} is known as

the half-line through x̌ parallel to the ray generated by x̃.

y

x

R
ay

of
x̃

H
al

f-
lin

e
th

ro
ug

h
x̌

pa
ra

lle
l

to
th

e
ra

y
of
x̃

0

x̌

x̃

Figure 2.1: A ray generated by x̃ and a half-line starts at x̌.

Fig. 2.1 shows a a half-line starting at x̌ (this point corresponds to θ = 0) which is

parallel to the ray generated by x̃. Every ray contains the origin, and a half-line is a

translate of a ray.

Definition 6 (Hyperplanes). A hyperplane in Rn is the set of all points x = (x1, . . . , xn) ∈
Rn satisfying a single linear equation, α1x1+· · ·+αnxn = b, where αi, b are given numbers

and at least one of the αi is nonzero, that is, (α1, . . . , αn) 6= 0.

Definition 7 (Half-Spaces). An open half-space is either of the two open sets produced

by the subtraction of a hyperplane from Rn. A closed half-space is the union of an open

half-space and the hyperplane that defines it. A closed half-space may be specified as a

linear inequality α1x1 + · · ·+ αnxn > b.

Definition 8 (Convex Polyhedra and Convex Polytopes). The intersection of a finite

number of half-spaces is known as a convex polyhedral set or a convex polyhedron. A

convex polyhedron that is bounded is known as a convex polytope.

It is clear from the discussion earlier that the solution set of a linear assertion is a

closed convex polyhedron.

Chapter 2. Background 9

2.3 Abstract Interpretation

Similar to data-flow analysis [17], abstract interpretation [2] is an iterative fixed-point

computation based technique. In this section, we briefly recall the framework of abstract

interpretation and define some of the terminology and concepts used in this thesis.

2.3.1 Partial Orders and Lattices

Definition 9 (Partial Orders). A partial order is a mathematical structure (L,v), where

L is a set and v is a binary relation on L that satisfies the following conditions:

1. reflexivity: ∀x ∈ L · x v x

2. transitivity: ∀x, y, z ∈ L · x v y ∧ y v z ⇒ x v z

3. anti-symmetry: ∀x, y ∈ L · x v y ∧ y v x⇒ x = y

Let X ⊆ L. We say that y ∈ L is an upper bound for X, written as X v y, if

we have ∀x ∈ X · x v y. Similarly, y ∈ L is a lower bound for X, written as y v X,

if ∀x ∈ X · y v x. A least upper bound (a.k.a., join), written as tX, is defined by:

X v tX ∧ ∀y ∈ L · X v y ⇒ tX v y. Dually, a greatest lower bound (a.k.a., meet),

written as uX, is defined by: uX v X ∧ ∀y ∈ L · y v X ⇒ y v uX.

Definition 10 (Lattices). A lattice is a partial order (L,v) for which a unique tX and

uX exist for all X ⊆ L.

Notice that a lattice must have a unique largest element > defined as > = tL and a

unique smallest element ⊥ defined as ⊥ = uL.

2.3.2 Fixed-Points

Let (L,�) and (L,v) be two partially ordered sets. A function f : L → L is monotone

when ∀x, y ∈ L ·x v y ⇒ f(x) v f(y). The existence of the least and greatest fixed-point

on a monotonic map is guaranteed by the following theorem.

Theorem 1 (Tarski’s Theorem). Let (L,v) be any complete lattice. Let f : L → L be

a monotone function on this lattice. Then the set of fix-points is a non-empty complete

lattice.

Consequently, f has a least fixed-point which is defined as lfp(f) =
⊔
i>0

f i(⊥). Usually,

inductive invariants are generated by fixed-point computation.

Chapter 2. Background 10

2.3.3 Galois Connections

Definition 11 (Galois Connections). Let (L,�) and (L,v) be two partially ordered sets.

A pair (α, γ) of maps where α : L → L and γ : L → L is a Galois Connection if and

only if

∀x ∈ L,∀y ∈ L · α(x) v y ⇔ x � γ(y)

which is written

(L,�) −−−→←−−−α
γ

(L,v).

Usually, we call L the concrete set and L the abstract set. Similarly, α is called the

abstraction function and γ is called the concretization function.

2.3.4 Widening

Definition 12 (Widening Operator). A widening operator O ∈ L×L→ L is such that:

1. correctness: ∀x, y ∈ L · γ(x) v γ(xOy) ∧ γ(y) v γ(xOy),

2. convergence: for all increasing chains x0 v x1 v · · · , the increasing chain defined

by y0 = x0, . . . , yi+1 = yiOxi+1, · · · is not strictly increasing.

Widening operator can be used to accelerate the convergence of fixed-point compu-

tation in domains that have infinite ascending chains such as intervals and polyhedra.

Chapter 3

Symba by Example

In this chapter, we illustrate the operation of Symba on two formulas, a 2-dimensional

and a 3-dimensional one.

3.1 A 2-dimensional Example

Consider the formula

ϕ ≡ 1 6 y 6 3 ∧ (1 6 x 6 3 ∨ x > 4)

containing the real variables x and y and represented pictorially in Fig. 3.1. Suppose

that our set of templates is T = {y, x+ y}. That is, we would like to find the least upper

bound for y and x + y in ϕ. (Note that if we want to find a lower bound for y, we can

simply add −y as a template to T .)

Initially, the under-approximation, U , of the best abstraction of ϕ w.r.t. the templates

T is false, and the over-approximation, O, is true. Symba alternates between two main

operations: GlobalPush, which is used to grow the under-approximation by sampling

points (models) of ϕ that lie outside the under-approximation; and Unbounded, which

is used to detect unbounded templates. In this example, 3 is the upper bound for y, and

x+ y is unbounded. That is, the best abstraction of ϕ using T is y 6 3.

First GlobalPush. Symba starts with a GlobalPush by querying an SMT solver for

a model of ϕ that is not a model of U . Suppose the solver returns the point p1 = (2, 2).

The under-approximation U is the best approximation of the set of points found by the

solver that is expressible in the TCM domain with the templates T . So, the under-

approximation is updated to U = y 6 2∧ x+ y 6 4 (since the maximum values of y and

x + y seen so far are 2 and 4, respectively). This is shown as the shaded region U1 in

11

Chapter 3. Symba by Example 12

y

x
1 2 3 4 5 6 7 8

1

2

3

p1

p2
p3

U1

U2 U3 U4

0

Figure 3.1: Illustration of Symba on a 2-D example.

Fig. 3.1.

Unbounded (p1, y). Symba now tries to prove that y is unbounded. First, we categorize

points into equivalence classes as follows: Let E(ϕ) = {t = k | t 6 k ∈ ϕ}, i.e., E(ϕ) is

the set of all atomic formulas appearing in ϕ with the inequalities replaced by equalities.

In our example, E(ϕ) = {x = 1, x = 3, x = 4, y = 1, y = 3}. Informally, E(ϕ) represents

the set of edges (boundaries) appearing in Fig. 3.1. The equivalence class [p] of a point

p is {e ∈ E(ϕ) | p |= e}, i.e., the set of equalities in E(ϕ) satisfied by p. For p1, [p1] = {},
since p1 does not lie on any of the boundaries. The intuition underlying Unbounded is

finding a ray r from a point p in ϕ such that a given template t is increasing along r,

and r never hits any boundaries of ϕ (i.e., completely contained in ϕ).

Unbounded picks a point p1 and queries the SMT solver for a point p′ s.t. [p′] = [p1]

and y(p1) < y(p′), where y(p′) is the valuation of y at point p′. The point p′ = (2, 2.5)

satisfies this condition. Then Unbounded queries for a point p′′ s.t. [p′] ⊂ [p′′] and

y(p′) 6 y(p′′). If no such p′′ exists, then we know that y is unbounded. Intuitively, we are

asking whether we can keep increasing the value of y from p′ without touching a point

p′′ on one of the boundaries in E(ϕ). In this case, such a p′′ exists, so it is added to the

under-approximation as p2 = (3, 3) in Fig. 3.1. Note that p2 exhibits the upper bound of

y; Symba detects that and updates the over-approximation O to y 6 3. To take p2 into

account, U is updated to become y 6 3 ∧ x+ y 6 6 (see region U2 in the figure).

Second GlobalPush. Suppose that Symba calls GlobalPush. The result is a point

in ϕ but not in U . Let p3 = (5, 3) be the point found by GlobalPush. As a result, U

is updated to y 6 3 ∧ x+ y 6 8 (see region U3).

Unbounded (p3, x+y). Symba now applies Unbounded to check if x+y is unbounded.

Suppose Unbounded picks the point p3. First, it finds a point p′ = (6, 3) which increases

x + y and is in the same equivalence class as p3. Then, it tries to find a point p′′ that

Chapter 3. Symba by Example 13

0

2

3

p7

2(p4)

3

z

x

y

p1

p2

1

p3

p5

p6

Figure 3.2: Illustration of Symba on a 3-D example.

has an equivalence class [p′] ⊂ [p′′] and has a greater (or equal) valuation of x + y than

p′. Since no such point p′′ exists, Symba concludes that x+ y is unbounded. Intuitively,

Symba discovers that it is possible to keep finding points, along the boundary y = 3, that

increase x + y without encountering any other boundary, thus concluding that x + y is

unbounded. We formally specify and prove the correctness of Unbounded in Section 4.

The under-approximation U is now updated to become y 6 3 (region U4), by dropping

the upper bound for x + y. At this point, U = O, so Symba terminates with the best

abstraction y 6 3.

3.2 A 3-dimensional Example

We now illustrate the workings of Symba on the formula

ϕ ≡ 0 6 x 6 3 ∧ 0 6 z 6 2 ∧ (2y 6 −x+ 4 ∨ 4y = 3x+ 3),

containing the variables x, y, and z and depicted in Fig. 3.2. Suppose, for simplicity, that

we would like to find the least upper bound only for y, i.e., T = {y}.
First GlobalPush. Similar to our previous example, Symba starts with U = false

and O = true and uses GlobalPush to find the initial point. Suppose the SMT solver

returns the point p1 = (1, 0, 1) denoting values of (x, y, z). Thus, U = y 6 0.

Unbounded (p1, y). To check if y is unbounded, Symba applies Unbounded starting

Chapter 3. Symba by Example 14

from p1. Since it cannot prove that y is unbounded, it finds the point p2 = (0, 1, 1), where

[p1] ⊂ [p2] and y(p1) < y(p2), i.e., a point showing that increasing the value of y from

p1 can hit a boundary. After applying Unbounded to p2, Symba can get the point p3,

and then point p4 (after applying Unbounded to p3). As a result, U = y 6 2. From

point p4, Symba cannot apply Unbounded, since there does not exist a point p′ where

[p′] = [p4] that increases the value of y. Intuitively, p4 represents a local maximum.

Second GlobalPush. To escape the local maximum, Symba uses GlobalPush to

query the SMT solver for a point outside U . In this case, it might find the point p5 =

(1.8, 2.1, 1), and thus U becomes y 6 2.1.

Unbounded (p5, y). Symba continues trying to prove that y is unbounded by perform-

ing Unbounded from p5, leading to p6 and then p7. Symba detects that p7 represents

the maximum value of y in ϕ and terminates with the best abstraction y 6 3.

We have illustrated the workings of Symba on two formulas representing non-convex

shapes, and showed how it utilizes an SMT solver to find least upper bounds and detect

unboundedness of arbitrary linear expressions (expressed as templates). In the following

chapters, we describe Symba formally and discuss our implementation and experimental

results.

Chapter 4

Symba: The Symbolic Abstraction

Algorithm

In this chapter, we provide definitions required for the rest of the thesis and formalize

Symba as a set of inference rules.

4.1 Definitions

4.1.1 Formulas

Let L be a a topologically-closed (i.e., all atoms are non-strict inequalities) subset of

Quantifier Free Linear Real Arithmetic (QF LRA), defined as follows:

ϕ ∈ L ::= true | false | P ∧ P ′ | P ∨ P ′
P, P ′ ∈ Atoms ::= c1x1 + · · ·+ cnxn 6 k, n ∈ N

xi ∈ Vars ::= {x1, . . . , xn},

where ci, k ∈ R.

We use JϕK to denote the set of all satisfying assignments (models) of ϕ. A model

p : Vars → R of ϕ, denoted p |= ϕ, is a valuation of the variables of ϕ such that

ϕ(p) ≡ true, where ϕ(p) is ϕ with every occurrence of a variable x replaced by p(x).

Geometrically, p is a point in Rn, and in what follows, we use the terms model and point

to refer to p interchangeably. We use Atoms(ϕ) to denote the set of all Atoms appearing

in ϕ.

15

Chapter 4. Symba: The Symbolic Abstraction Algorithm 16

4.1.2 Equivalence Classes

We define the equivalence class [p] of a model p of ϕ as follows:

[p] = {a ∈ E(ϕ) | p |= a}

where E(ϕ) = {l = k | l 6 k ∈ Atoms(ϕ)}, and l is a linear expression of the form

c1x1 + · · ·+ cnxn. For clarity, we often abuse notation and use [p] to denote the formula∧
[p] (i.e., conjunction of all formulas in the set [p]). Geometrically, E(ϕ) is the set of

hyperplanes that form the boundary between points for which an atom does and does

not hold, and [p] is the intersection of the hyperplanes that p falls on.

4.1.3 The Template Constraint Matrix (TCM) Domain

The TCM domain [12] is a numerical abstract domain parameterized by a set of linear

terms T called templates of the form c1x1 + · · · + cnxn, where ci ∈ R, and Vars =

{x1, . . . , xn} are real-valued variables. Throughout the thesis, we assume the set Vars is

fixed. A set of templates T gives rise to the domain AT where each A ∈ AT is a vector of

constants k = (k1, . . . , k|T |), with ki ∈ R∪{∞,−∞}. In other words, the domain consists

of polyhedra of a fixed shape determined by T . For example, suppose T = {2x+ y, 2z}.
Then an abstract state (0,∞) ∈ AT represents the formula 2x + y 6 0 ∧ 2z 6 ∞. By

simplifying 2z 6∞ to true, we get the formula 2x+ y 6 0 in L.

Without loss of generality, we assume that T 6= ∅. The top (>) and bottom (⊥)

elements of AT are the vectors (∞, . . . ,∞) and (−∞, . . . ,−∞), respectively. We use t
and v to denote the join and the order operations in the TCM domain, respectively.

4.1.4 Symbolic Abstraction Over TCM domain

We now formalize the relationship between TCMs and L formulas. Let C −−→←−−α
γ AT be a

Galois connection between the concrete domain C and the abstract domain AT . We use

the notation of [18, 19] to define symbolic versions of the abstraction and concretization

functions α and γ, namely, α̂ and γ̂, between the domain representing L formulas and

AT .

• α̂ : L → AT maps a formula ϕ ∈ L to the best value A ∈ AT such that JϕK ⊆ γ(A).

Specifically,

α̂(ϕ) = (k1, . . . , k|T |),

Chapter 4. Symba: The Symbolic Abstraction Algorithm 17

where ϕ′ ≡ t1 6 k1 ∧ · · · ∧ t|T | 6 k|T | is the strongest formula such that ϕ ⇒ ϕ′,

and t 6∞ ≡ true and t 6 −∞ ≡ false for any template t ∈ T .

• γ̂ : AT → L maps an element A ∈ AT to the formula ϕ ∈ L such that γ(A) ⊆ JϕK.
Specifically,

γ̂(A) =

false, ∃ki ∈ A · ki = −∞∧{ti 6 ki | ki 6=∞}, otherwise

where A = (k1, . . . , k|T |).

The goal of Symba is to compute α̂(ϕ), the best abstraction of a L formula in some

TCM domain AT . Abstract post computations can be reduced to α̂ [20, 18, 21], using

which we can compute best abstract transformers for τ : L → L described symbolically

and conveniently as formulas.

4.2 Symba Formalized

Init
〈∅,⊥,>〉

p |= ϕ ∧ ¬γ̂(U)
GlobalPush

〈M,U,O〉 → 〈M ∪ {p}, U t α̂(p), O〉

U = (k1, . . . , kn) p2 |= ϕ [p2] = [p1] ti(p1) < ti(p2)
@p3 |= ϕ ∧ ti(p2) 6 ti(p3) ∧ [p2] ⊂ [p3]

Unbounded(p1 ∈M, ti ∈ T)
〈M,U,O〉 → 〈M,U t (k1, . . . , ki−1,∞, ki+1, . . . , kn), O〉

p2, p3 |= ϕ ti(p1) < ti(p2) 6 ti(p3) [p1] = [p2] ⊂ [p3]
Unbounded-Fail(p1 ∈M, ti ∈ T)

〈M,U,O〉 → 〈M ∪ {p3}, U t α̂(p3), O〉

O = (k1, . . . , kn) m = max{ti(p′) | p′ ∈M} ϕ⇒ ti 6 m
Bounded(ti ∈ T)

〈M,U,O〉 → 〈M,U,O u (k1, . . . , ki−1,m, ki+1, . . . , kn)〉

Figure 4.1: Inference rules used by Symba.

Chapter 4. Symba: The Symbolic Abstraction Algorithm 18

We now formalize the symbolic abstraction algorithm Symba as a set of inference

rules shown in Fig. 4.1.

Given a set of templates T = {t1, . . . , tn} and a formula ϕ in L, Symba computes

α̂(ϕ) in the TCM domain AT . The state of Symba is a tuple 〈M,U,O〉, where M is a

set of models of ϕ; U is an under-approximation of α̂(ϕ) (i.e., U v α̂(ϕ) is an invariant);

and O is an over-approximation of α̂(ϕ) (i.e., α̂(ϕ) v O is an invariant).

When Symba terminates, we know that U = O = α̂(ϕ). Initially, as defined by the

rule Init, M = ∅, U = ⊥, and O = >. The rules GlobalPush, Unbounded, and

Unbounded-Fail are used to weaken U until it is equal to α̂(ϕ), whereas Bounded

strengthens O until it is equal to α̂(ϕ). Given a model p, we use α̂(p) to denote the best

abstraction of p in AT , i.e., (t1 6 t1(p), . . . , tn 6 tn(p)).

GlobalPush finds a model of ϕ that is not captured by γ̂(U) (i.e., lies outside the

under-approximation) and adds it to U to weaken it. When the rule GlobalPush no

longer applies, we know that U = α̂(ϕ). Note that applying this rule alone does not

guarantee that U eventually reaches α̂(ϕ) for two reasons:

1. Since we are dealing with real variables, GlobalPush might keep finding models

that approach the upper bound of one of the templates asymptotically.

2. GlobalPush cannot detect whether a template t is unbounded, as it will keep

finding models p that increase the value t(p), thus growing the under-approximation

indefinitely.

To that end, the rules Unbounded and Unbounded-Fail are used to detect un-

bounded templates and help GlobalPush avoid asymptotic behavior. Unbounded

takes as parameters a model p1 ∈ M and a template ti ∈ T and attempts to prove that

ti is unbounded as follows: First, it tries to find a point p2 |= ϕ such that [p1] = [p2]

and t(p1) < t(p2). Then, it looks for a point p3 such that p3 |= ϕ, [p1] = [p2] ⊂ [p3] and

t(p2) 6 t(p3). If no such p3 exists, then t is unbounded in ϕ. Otherwise, Unbounded-

Fail adds p3 to M . The intuition here is as follows: If we can find a model p2, then we

know that t can increase along the hyperplanes in E(ϕ). If no point p3 exists, then we

know that we can keep increasing t indefinitely without encountering any of the bound-

aries in E(ϕ) that are not in [p2], thus showing that t is unbounded. This is analogous to

the technique used by the simplex method for showing that a dimension is unbounded

in a convex polyhedron. We further discuss the intuition underlying Unbounded and

prove its correctness in Sec. 4.3.

In addition to the aforementioned rules, the rule Bounded detects whether a model

p ∈M exhibits the largest value for some template t, i.e., ϕ⇒ t 6 t(p), and strengthens

Chapter 4. Symba: The Symbolic Abstraction Algorithm 19

the over-approximation accordingly. Note that the over-approximation is not required

for the correctness of Symba, but its availability allows us to guarantee that Symba

maintains a sound approximation O of α̂(ϕ) at every point of its execution. This makes

Symba resilient to SMT solver failures and allows us to limit resource consumption when

desired.

Example. We illustrate the applications of the rules on the 2-D example from Sec. 3.1

and shown in Fig. 3.1. Assume that after the initial call to GlobalPush, M = {p1 =

(2, 2)}, γ̂(U) = y 6 2 ∧ x+ y 6 4, and γ̂(O) = true.

Applying Unbounded-Fail on p1 ∈ M and y ∈ T adds p2 = (3, 3) to M . Next,

Bounded is used to detect that p2 exhibits an upper bound of y, and updates O so that

γ̂(O) ≡ y 6 3.

Assume that the second application of GlobalPush adds point p3 = (5, 3) to M .

Applying Unbounded(p3, x + y) detects that x + y is unbounded. At this point, γ̂(U)

becomes y 6 3, making GlobalPush inapplicable. Therefore, ϕ⇒ γ̂(U).

In what follows, we discuss and prove soundness of Symba, and define terminating

sequences of rule application.

4.3 Soundness

We start by showing soundness of the Unbounded rule.

A necessary and sufficient condition for proving that a given template t is unbounded

within ϕ is the existence of a convex polyhedron ϕc, e.g., a half-line, such that t is

unbounded in ϕc and ϕc ⇒ ϕ. Our solution addresses two problems:

1. How to restrict the space from which ϕc is drawn while maintaining completeness,

i.e., ensuring that ϕc is found whenever t is unbounded in ϕ.

2. How to check that ϕc ⇒ ϕ.

The idea we use here is to restrict ϕc to formulas of the form∧
E ∧ t > k,

where E ⊆ E(ϕ) and k ∈ R. This space of convex polyhedra is sufficient for completeness.

For instance, consider the example from Fig. 3.1. To prove that the x + y direction is

unbounded, we find a point p3 = (5, 3) that lies on the boundary y = 3 ∈ E(ϕ) and

ask whether ϕc ≡ y = 3 ∧ x + y > 8 is contained in ϕ. Furthermore, we perform

the containment check implicitly by checking whether there is a point in ϕc, along any

Chapter 4. Symba: The Symbolic Abstraction Algorithm 20

direction that increases x+ y, that intersects a boundary of ϕ. In our running example,

such a point does not exist (see Fig. 3.1). Thus, x+y is unbounded. For another example,

consider the point p1 = (2, 2). Since p1 does not lie on any boundary, to check if x + y

is unbounded we ask whether ϕc ≡ x + y > 4 is contained in ϕ (i.e., we check whether

increasing x+ y in ϕc does not encounter boundaries in ϕ). This is not the case, and the

counterexample is the point p2, shown in Fig. 3.1, that lies on the boundaries x = 3 and

y = 3.

Thm. 2 formalizes this construction using equivalence classes and states its correctness

for proving that a template is unbounded in ϕ. To proceed with the proof, we first show

that the following lemma holds.

Lemma 1. Given a L formula ϕc defining a convex polyhedron (i.e., conjunction of linear

inequalities), if p |= ϕc, [p] ⊆ [p′], t(p) 6 t(p′) and @p′′ |= ϕc · t(p) 6 t(p′′) ∧ [p] ⊂ [p′′],

then p′ |= ϕc.

Proof. Formula ϕc ∧ [p] can be written as a system of linear inequalities as follows:

Ax = b (4.1a)

Cx > d (4.1b)

By definition, p satisfies Eq. 4.1 and [p] corresponds to Eq. 4.1a. After introducing

slack variables corresponding to the inequality constraints, we can transform inequality

constraints into equality constraints, i.e.,
n∑
j=1

cijxj > di becomes
n∑
j=1

cijxj − si = di.

Ax + 0s = b (4.2a)

Cx− 1s = d (4.2b)

s > 0 (4.2c)

Here s = Cx−d is the vector of slack variables. Because [p] ⊆ [p′], p′ must satisfy [p]

(Eq. 4.2a). Eq. 4.2b is always satisfied by definition. Suppose p′ 2 ψc, then there exists

some k such that sk > 0 for p and sk 6 0 for p′, which is equivalent to

ck · p− dk > 0

ck · p′ − dk 6 0

Chapter 4. Symba: The Symbolic Abstraction Algorithm 21

We now show that there exists a point p′′ = αp+(1−α)p′ (0 6 α < 1) in the convex

hull of p and p′ such that ck · p′′ − dk = 0. Since t(p) 6 t(p′), it is easy to show that

t(p) 6 t(p′′). Let ck · p = dk + δ1, ck · p′ = dk − δ2 (δ1 > 0, δ2 > 0), α = δ2
δ1+δ2

, we have

ck ·p′′ = dk. This contradicts with the condition, as {ck ·x = dk} /∈ [p]∧{ck ·x = dk} ∈
[p′′], i.e., [p] ⊂ [p′′]. Therefore, p′ |= ψc.

Theorem 2 (Soundness of Unbounded). Given a formula ϕ in logic L and a linear

expression t over the variables of ϕ, then @k ∈ R · ϕ ⇒ t 6 k (i.e., t is unbounded) if

and only if there exist p1, p2 |= ϕ such that

1. t(p1) < t(p2)

2. [p1] = [p2]

3. @p3 |= ϕ · t(p2) 6 t(p3) ∧ [p2] ⊂ [p3]

Proof. (⇐) We prove this direction by contradiction. First, let p1, p2 |= ϕ be two models

satisfying the three conditions of the theorem. Suppose there is a point p∗ |= ϕ such that

t(p∗) is the upper bound for t in ϕ. We show that there is always a point p′2 |= ϕ such

that t(p′2) > t(p∗).

Pick a point p′2 such that p′
2 = p2 + λ(p2 − p1). It follows that t(p′2) > t(p∗) when

λ > (p∗−p2)·t
(p2−p1)·t . The notation p denotes the vector representation (p(x1), . . . , p(xn)) of the

model p : Vars→ R, where Vars = {x1, . . . , xn}.
Let the formula ϕ′ define a convex polyhedron such that p2 |= ϕ′ and ϕ′ ⇒ ϕ. Let

ϕc ≡ ψ′ ∧∧
[p2]. We know that:

1. ψc defines convex polyhedron (by its definition).

2. @p′′2 |= ϕc · t(p2) 6 t(p′′2) ∧ [p2] ⊂ [p′′2] (by condition 3 of the theorem).

3. [p2] ⊆ [p′2] (since p′2 is in the affine set of p1 and p2).

4. t(p2) 6 t(p′2) (since λ > 0).

Following the result of Lemma 1, p′2 is in ϕc which is also in ϕ. This contradicts the

assumption that t(p∗) is the least upper bound for t. Therefore, term t is unbounded in

ϕ.

(⇒) Given that t is unbounded in ϕ, we look for two models p1, p2 |= ϕ that satisfy the

required conditions. Pick p1, p2 |= ϕ such that [p1] = [p2], t(p2) > t(p1), t is unbounded in

ϕ∧∧[p1], and there does not exist an equivalence class c ⊃ [p1] such that t is unbounded

in ϕ ∧∧
c. We know that such a class exists because t is unbounded in ϕ.

Chapter 4. Symba: The Symbolic Abstraction Algorithm 22

If there are no classes c ⊃ [p1], or for every c ⊃ [p1] we have ϕ ∧∧
c⇒ false, then p1

and p2 satisfy the three conditions of the theorem. Otherwise, let m = maxp|=ϕ∧ψt(p),

where ψ ≡ ∨
c⊃[p1]

∧
c (i.e., all classes larger than [p1]). We know that m is defined (i.e.,

not ∞) because of our assumption on the class [p1]. If m < t(p2), then p1 and p2 satisfy

the three conditions of the theorem. Otherwise, since t is unbounded in ϕ ∧ ∧
[p1], we

can find two models p′1, p
′
2 |= ϕ such that m < t(p′1) < t(p′2) and [p1] = [p′1] = [p′2]. As a

result, p′1 and p′2 satisfy the three conditions in the theorem.

In other words, if the Unbounded rule was applied, then ϕc ≡ [p2] ∧ t > t(p2) is

contained in ϕ. In the theorem, conditions 1 and 2 imply that t is unbounded within ϕc,

and condition 3 implies that increasing t in ϕc does not encounter any boundaries of ϕ,

i.e., [p2] ∧ t > t(p2) is subsumed by ϕ. It follows from this theorem that Unbounded

maintains the invariant U v α̂(ϕ), since the best abstraction cannot have a least upper

bound for t if it is unbounded.

Theorem 3 (Soundness of Symba). If GlobalPush does not apply, i.e., ϕ∧¬γ̂(U)⇒
false, then U = α̂(ϕ).

Proof. (sketch) Follows trivially from the invariant U v α̂(ϕ).

4.4 Termination

We now discuss sufficient conditions for ensuring termination of Symba. For simplicity

of presentation, we assume that T contains a single template t. We start by defining a

fairness condition on the scheduling of Symba’s rules that ensures termination.

A fair scheduling is an infinite sequence of actions a1, a2, . . . , where

ai ∈ {GlobalPush,Unbounded,Unbounded-Fail},

and the following conditions apply:

1. GlobalPush appears infinitely often, and

2. if a point p is added toM along the execution sequence, then both Unbounded(p, t)

and Unbounded-Fail(p, t) eventually appear.

Condition 1 ensures that Symba does not get stuck in local maxima. Condition

2 ensures that we visit every local maximum by visiting every equivalence class, thus

guaranteeing that either the least upper bound of t is found or it is proved unbounded.

Chapter 4. Symba: The Symbolic Abstraction Algorithm 23

Recall the 3-D example from Sec. 3, where T = {y}. Suppose our execution only applies

the GlobalPush rule. Then U might grow asymptotically towards the least upper

bound of y, e.g., y 6 2, y 6 2.1, y 6 2.11, etc., never reaching y 6 3. Condition 2

forces computing models that lie on one or more of the boundaries E(ϕ), thus avoiding

this asymptotic behaviour. But applying Unbounded and Unbounded-Fail alone

without applying GlobalPush might get us stuck in local maxima. For example, on

point p4 in Fig. 3.2, Unbounded(-Fail) are inapplicable. Condition 1 ensures that we

eventually find a model outside the current under-approximation (see p5), thus escaping

the local maximum.

A k-sequence for a template t is a sequence of points p1, . . . , pk, where ∀i > 1 · pi |=
ϕ ∧ ([pi] ⊂ [pi+1]) ∧ t(pi) 6 t(pi+1), and Unounded-Fail(pk, t) fails to apply. For

example, in Fig. 3.2, p1, p2, p3, p4 is a k−sequence.

Since there are at most 2|Atoms(ϕ)| equivalence classes, a k-sequence is of length at most

k = 2|Atoms(ϕ)|. Lemma 2 states that the last model p of a k-sequence always exhibits the

largest value of t in its equivalence class [p].

Lemma 2. Let ϕ be a formula, and t be a template bounded in ϕ. Then, in every execu-

tion of Symba, the last element p in every k-sequence for t satisfies t(p) = max{t(pi) |
pi |= ϕ ∧ [p]}.

Proof. According to the definition of a k-sequence, Unbounded-Fail(p, t) does not

apply. Since t is bounded, there does not exist p′ |= ϕ ∧ [p] such that t(p) < t(p′). Thus,

t(p) = max{t(pi) | pi |= ϕ ∧ [p]}.

We are now ready to prove termination of any fair execution of Symba. We assume

that Symba terminates when GlobalPush is no longer applicable, i.e., ϕ⇒ γ̂(U).

Theorem 4. Symba terminates after a finite number of actions in any fair execution.

Proof. We split the proof into two cases as follows:

Case 1: t is bounded within ϕ. Suppose Symba is non-terminating. Then, in any fair

scheduling, there are infinitely many k-sequences. Following Lemma 2, there are infinitely

many models p in the execution sequence such that p |= ϕ and t(p) = max{t(pi) | pi |=
ϕ∧[p]}. We denote the set of such points by P . In any fair execution, GlobalPush must

appear after p is added to M . Therefore, there exists a point p′ ∈ P such that t(p) < t(p′).

As a result, there is a sequence of points p1, p2, . . . in P such t(p1) < t(p2) < t(p3) < · · · .
Hence, ∀i, j · i 6= j ⇒ [pi] 6= [pj]. Since the number of equivalence classes is finite, Symba

eventually finds the least upper bound of t and terminates.

Chapter 4. Symba: The Symbolic Abstraction Algorithm 24

Case 2: t is unbounded. Using the same argument as above, Symba eventually finds a

point in an unbounded equivalence class (due to the finite number of equivalence classes)

such that the three conditions in Thm. 2 hold. After that, GlobalPush becomes

inapplicable.

Chapter 5

Implementation

5.1 Tools and Technologies

Various tools and technologies have been used in the implementation of Symba. We

start by reviewing some of them in this section.

5.1.1 LLVM

LLVM [14] is a compiler infrastructure developed by the University of Illinois with the

goal of providing a modern, SSA-based compilation strategy capable of supporting both

static and dynamic compilation of arbitrary programming languages. LLVM has a collec-

tion of core libraries which provide a modern source- and target-independent optimizer.

These libraries are built around a well specified code representation known as the LLVM

intermediate representation (“LLVM IR”).

LLVM is a well documented framework designed with high modularity. It is easily

extensible to build tools of various purposes, such as virtual machines and program

analyzers. There are also a number of sub-projects based on it including the C language

family frontend Clang [22].

5.1.2 Z3

Z3 [23] is a high-performance theorem prover being developed at Microsoft Research. It

is targeted at solving problems that arise in software verification and software analysis.

Z3 integrates support for a variety of theories such as arithmetic, bit-vectors, arrays, and

uninterpreted functions. It can be used to prove theorems and find counter-examples for

non-theorems. Z3 has been used in model checking and testing tools including Boogie [24],

25

Chapter 5. Implementation 26

Pex [25], Yogi [26], etc.

5.1.3 APRON

APRON numerical abstract domain library [27] is designed for the static analysis of the

numerical variables of a program by Abstract Interpretation. The APRON library is

intended to be a common interface to various underlying libraries as well as abstract

domains and to provide additional services that can be implemented independently. The

latest version of APRON supports abstract domains including intervals, octagons, convex

polyhedra and linear equalities. The library finds its applications both in compilation

and optimization as well as verification and debugging.

5.1.4 UFO

UFO [13] is a framework and a tool developed by University of Toronto for verifying

and falsifying safety properties of sequential C programs. The framework is built on top

of LLVM and is targeted at researchers designing and experimenting with verification

algorithms. It allows definition of different abstract post operators, refinement strategies

and exploration strategies.

UFO comes with a number of instantiations ranging from predicate abstraction-based

over-approximation driven (OD) to interpolation-based under-approximation driven (UD)

and several combined OD/UD instantiations that use different forms of predicate ab-

straction to augment and strengthen interpolation-based analysis. We have implemented

Symba as an abstract domain in UFO. Details will be given in the following sections.

5.2 Implementation

We have implemented Symba in C++, using the Z3 SMT solver for satisfiability queries.

Our implementation accepts a formula ϕ and a set of templates T in the standard SMT-

LIB2 [28] format (more details will be given in Sec. 6.1). It then computes the best

abstraction α̂(ϕ) and returns the result.

5.2.1 Scheduling Policy

The policy is shown in Fig. 5.1. We maintain two vectors, namely, U and O, that

represent the under- and over-approximation of α̂(ϕ). In contrast to the declarative

rules in Fig. 4.1, we do not have a set of all visited models M explicitly. Instead, we

Chapter 5. Implementation 27

1: ∀t ∈ T · U [t]← −∞, O[t]←∞, L(t)← ∅
2: Q← ∅
3:

4: function Join(p, T)
5: for all t ∈ T such that t(p) > U [t] do
6: PushListAdd(L(t), [p])
7: U [t]← t(p)
8: Q.push(L(t))

9: function SymbaMain(ϕ, T)
10: while (p←GlobalPush ()) succeeds do
11: Join (p, T)
12: while ub < forcePush ∧Q 6= ∅ do
13: l← Q.pop()
14: while l is not empty do
15: c← l.pop()
16: Join (UnboundImpl(c, l.t),T)

17: return U

Figure 5.1: Deterministic implementation of scheduling policy.

create a push list L(t) for each template t to store the active equivalence classes w.r.t.

t, i.e., classes in which models are produced. Essentially, a push list captures a number

of ongoing directions for exploring the upper or lower bounds of a particular template.

To effectively manage the push list, one should remove all weaker classes from the list

whenever a stronger equivalence class is added, in order to move forward on a k-sequence

and avoid non-terminating behaviours (this is implemented by PushListAdd called on

line 6). When a point p is sampled, we use it to update the under-approximation (line 7),

and the directions (push lists) in which p has extended the frontier of U are scheduled

for further investigation (line 8). The scheduling is achieved by maintaining a queue of

push lists Q in a certain order. We have experimented with some heuristics for picking

good push lists from Q to work on. Details can be found in Section 5.2.7.

In the SymbaMain function, we start by applying the GlobalPush rule to obtain

an initial point p. We generate a k-sequence starting at p (for each t ∈ T) by applying

UnboundedImpl until either Unbounded is applicable in which case the template is

unbounded, or Unbounded-Fail is not applicable, in which case we apply Global-

Push to obtain a new initial point and start the process again. It is easy to check that

this is a fair sequence, and therefore this process always terminates.

To evaluate different schedules, we added a parameter forcePush and forced a Glob-

alPush call after forcePush calls to UnboundedImpl (line 12). When forcePush is set

to ∞, the scheduling policy is as described above.

5.2.2 Checking Unbounded Templates

Our implementation of Unbounded and Unbounded-Fail exploits the incremental

(Push/Pop) interface that most SMT solvers supply. Moreover, instead of implementing

the Bounded rule explicitly, we show how to update the over-approximation for free, as

a side effect of applying the Unbounded rules.

Fig. 5.2 shows our implementation of the Unbounded rules. We assume that there

Chapter 5. Implementation 28

1: function UnboundImpl(c ∈ P(E(ϕ)), ti ∈ T)
2: Push()
3: Assert(ti > U [ti])
4: if UNSAT then
5: O[ti]← U [ti]; Pop(); return

6: Assert(
∧

c)
7: if UNSAT then
8: RemoveStronger(L(t), c); Pop(); return

9: Assert(
∨

(E(ϕ) \ c)))
10: if SAT then . Unbounded-Fail
11: Pop(); return GetModel()
12: else . Unbounded
13: O[ti]←∞
14: Pop(); return

Figure 5.2: Implementation of Unbounded and Unbounded-Fail.

is a global SMT context in which the formula ϕ has been asserted. An active equivalence

class c and a template ti are passed in as parameters. U(i) and O(i) refer to the i-th

element of the vector representing the abstract states U and O, respectively. SAT and

UNSAT refer to the current state of the SMT context, and GetModel() returns a

model satisfying the current state of the context if one exists. Push() and Pop() are

used to store and restore the state of the context, respectively.

We start by incrementally asserting the conditions of Unbounded implicitly. Given c

and ti, we know that there is a previously sampled point p1 |= c such that ti(p1) 6 U [ti].

First, in lines 3-8, we check if there exists a model p2 |= ϕ such that ti(p2) > ti(p1)

and [p2] = [p1]. We do this in two stages. We first check if there exists p2 such that

ti(p2) > ti(p1). If not, we can update the over-approximation O accordingly (line 5).

Otherwise, we check if there exists p′2 in the same equivalence class as p1 (line 6). If such

p2 does not exist, we can remove all equivalence classes that are stronger than c from

L(t) since this direction has been proved to be a dead end (line 8). Given that p2 exists,

we check for the existence of p3 in a stronger equivalence class (lines 9-13). If p3 exists,

we apply Unbounded-Fail; otherwise, we apply Unbounded.

5.2.3 Parallel Symba

Our non-deterministic description of Symba as a set of rules provides a natural way for

implementing parallel versions of Symba. Our implementation of Symba allows running

different threads of Symba, each one computing the best abstraction α̂(ϕ) w.r.t. a subset

of the templates in T . Specifically, given a formula ϕ and a set of templates T , we first

divide T into T1, . . . , Tn mutually exclusive subsets of T . We then run n instances of

Chapter 5. Implementation 29

Symba in parallel, each one with a different set of templates Ti. After all instances

return results, we can easily synthesize the best abstraction α̂(ϕ).

5.2.4 Dealing with Topologically Open Formulas

One limitation of Symba as well as other numerical abstract domains is that they ex-

pect topologically-closed formulas ϕ. But topologically-open formulas are inevitable

when dealing with real-life programs. To ensure that the queries made by UFO are

topologically-closed, we have to first convert topologically-open formulas into topologically-

closed ones. There are two easy ways of doing this.

Approximation. The first way is to find a topologically-closed counterpart of the

formula that over-approximates it, i.e., find ϕ′ such that ϕ⇒ ϕ′ and ϕ′ is closed. It can

be easily shown that if ϕ is in negation normal form (NNF), then replacing all the strict

inequalities (<,>) by their non-strict counterparts (6,>) produces a topologically-closed

formula ϕ′ that subsumes ϕ.

The problem with this approach is that the resulting approximation ϕ′ might lose too

much precision. For example, suppose we have an open formula ϕ ≡ x > 2∧ (x 6 2∨y >

3). The best abstraction of ϕ over AT with templates T = {x, y} is x > 2 ∧ y > 3. But

the best abstraction for the closed formula ϕ′ ≡ x > 2 ∧ (x 6 2 ∨ y > 3) is x > 2. In

fact, we completely lose the information of y carried in ϕ.

To our knowledge, there is no easy way to avoid this precision loss other than con-

verting the formula into disjunctive normal form (DNF) first. However, this step alone

can be exponentially expensive.

Under Integer Assumption. Another workaround to this problem is to make the

assumption that all variables are integer-valued. This assumption is valid in our case, as

UFO works only on integer-valued programs and all data can be represented by integers.

Using integers, we can replace atoms of the form A < B by A 6 B − 1 and A > B by

A > B+1 (assuming the formula is in NNF). As a result, we end up with a topologically-

closed formula ϕ′ in L that is equivalent to ϕ under integer assumption.

We have implemented this method in our experiments. Therefore, the results com-

puted by Symba preserve the precision of the original formulas.

5.2.5 Integer Rounding

The integer rounding (IR) rule, shown in Fig. 5.3, is a simple optimization that improved

the performance of Symba. Integer rounding extends the upper bounds of a template

Chapter 5. Implementation 30

U = (k1, . . . , kn) ki ∈ R p |= ϕ ti(p) = dkie
IR(ti ∈ T)

〈M,U,O〉 → 〈M ∪ {p}, U t α̂(p), O〉
Figure 5.3: Integer rounding rule.

ti to the closest integral value, if possible. We have found that applying this rule after

Unbounded-Fail enables faster convergence and decreases the number of SMT solver

calls required. Details are shown in Chapter 6.

5.2.6 Constraints Reduction

An effective optimization technique is to limit E(ϕ) to a “relevant” subset when applying

the Unbounded rule. In our experiments, we noticed that the set E(ϕ) of equality

constraints can be quite large, which burdens the SMT solver. Removing irrelevant

equality constraints decreases the size of the SMT queries. To find the set of “relevant”

constraints, we define a relation ∝: Atoms(ϕ)×Atoms(ϕ) as follows: P ∝ P ′ if and only

if

1. Vars(P) ∩ Vars(P ′) 6= ∅, or

2. ∃P ′′ ∈ Atoms(ϕ) · P ∝ P ′′ ∧ P ′′ ∝ P ′,

where Vars(P) is the set of variables appearing in P . This relation can be imple-

mented using the union find algorithm. We maintain a disjoint-set data structure that

is partitioned into a number of disjoint subsets with each subset containing a number

of “related” variables and expressions. We pre-process all the constraints in E(ϕ) and

templates in T to make sure that an equality constraint and a template appear in the

same subset if and only if they are “related”.

We then define the equivalence class of p w.r.t. t as

[p]t = {a ∈ E(ϕ) | p |= a ∧ t ∝ a}.

Removing constraints that are not ∝-related to t corresponds to carrying out our al-

gorithm on the projection of ϕ onto a lower-dimensional space, where the projection is

guaranteed to have the same maximum value for t as ϕ; thus, correctness is not affected.

5.2.7 Priority Function

As mentioned in Section 5.2.1, we maintain a queue of push lists to manage the ongoing

directions for exploration. In our experience, the sequence of exploration can have a

Chapter 5. Implementation 31

drastic impact on the performance of Symba. To experiment with possible heuristics on

the sampling sequence, we used a priority queue for push lists, and the priorities of the

push lists are decided by a priority function.

One of the heuristics we tried is to take the variation trend of U [ti] (the maximum

value of template ti among all sampled points) into consideration. A pattern was observed

in some examples: templates that grow faster also terminate faster, i.e., a bound is found

or the template is proved unbounded. Therefore, we kept track of the value changes for

each U [ti] and calculated the priority as follows:

Priority(ti) = a× (U [ti]− U [ti]
′) + b× |L(ti)|,

where a and b are integers, U [ti]
′ is the previous value of U [ti] and L(ti) is the push

list for ti. We also consider the size of the push lists in the function because this helps

balance the distribution of the number of points sampled in all directions. By adjusting

the weight factors a and b, we can easily control the sequence of templates to work on

based on the variation trend of U [ti]. The weight factors we used in our experiments are

a = 1 and b = 10.

However, in our experiments, the effect of this priority function is still not fully

understood. The performance of Symba is largely improved for some benchmarks, while

decreased for some others.

Chapter 6

Evaluation

6.1 Benchmarks

6.1.1 Format

To ease the comparison of different symbolic abstraction algorithms and facilitate re-

search in this field, we define a standardized benchmark format for symbolic abstraction

problems. Each problem is encoded as a SMT-LIB2 assertion which is recognized by

most analysis tools. Given a formula ϕ and a template T , the asserted expression is an

implication ϕ⇒ ∧
ti∈T

ti < ki, where ki is some real constant.

1: (declare-const x Real)

2: (declare-const y Real)

3: (declare-const k1 Real)

4: (declare-const k2 Real)

5: (assert (=>

6: (and (and (<= 1.0 y) (<= y 3.0))

7: (or (and (<= 1.0 x) (<= x 3.0))

8: (>= x 4.0)))

9: (and (< y k1) (< (+ x y) k2))))

Figure 6.1: Problem file for the 2-D example.

Each SMT-LIB2 benchmark consists of a problem file and a result file. Recall the

formula ϕ used in the 2-D example in Section 3.1. Here, ϕ ≡ 1 6 y 6 3 ∧ (1 6 x 6

3 ∨ x > 4), and the template T = {y, x+ y} are encoded as the problem file in Fig. 6.1.

Fig. 6.2 is the solution file for the same example. It indicates that 1 6 y 6 3∧ 2 6 x+ y

is the best symbolic abstraction of ϕ in AT . 1

1Infinity is written as 1/0 in the solution file.

32

Chapter 6. Evaluation 33

1: (y:REAL) : [1,3]

2: ((x:REAL)+(y:REAL)) : [2,1/0]

Figure 6.2: Solution file for the 2-D example.

6.1.2 Benchmark Generation

Our benchmark suite consists of a set of C programs from the Software Verification

Competition (SV-COMP) [15]. The benchmarks cover a range of software, from Linux

and Windows device drivers to models of SSH and sequentialized concurrent SystemC

programs.2 We narrowed the set of 2,000+ benchmarks down to 604 C programs that

were not trivially discharged (proved correct or incorrect) by UFO.

We instrumented UFO to record abstract post queries, and collected 12K+ queries

made by UFO on these C programs. Each abstract post query is represented by a

formula encoding a set of initial states and a program fragment between two cutpoints

(as in large block encoding [7, 29]). For the set of templates, we used all variables (as well

as their negation) that are in scope at the destination cutpoint, effectively implementing

a symbolic abstraction of the intervals domain. The post queries and the corresponding

templates were combined as described in Sec. 6.1.1 and then converted into the SMT-

LIB2 problem files through the Z3 C API using the function z3 to smtlib2 with decl.

From the generated symbolic abstraction queries, we focused on the hardest 295

benchmarks, which took Symba greater than 0.4s to process. Our experiments were con-

ducted on a machine running Linux with an Intel i5 3.1GHz processor and 4GB of RAM.

The benchmark set is available at https://bitbucket.org/liyi0630/symba-bench.

Files are organized by directories named after the SV-COMP programs where the ab-

stract post queries were originated. Results produced by Symba are also published for

reference and comparison.

6.2 Experimental Evaluation

Our experimental evaluation is designed to evaluate the efficiency and precision of

Symba, to assess the effectiveness of our optimizations (e.g., integer rounding), and to

compare Symba against other symbolic abstraction techniques and also classical abstract

transformer implementations.

We conducted two classes of experiments: (1) an evaluation of the effects of different

optimizations on the efficiency of Symba, as well as comparison with other SMT-based

2We drew our benchmarks from the following SV-COMP categories: ControlFlowIntegers,
SystemC, ProductLines, and DeviceDrivers64.

https://bitbucket.org/liyi0630/symba-bench

Chapter 6. Evaluation 34

symbolic abstraction algorithms, and (2) a precision comparison of loop invariants gen-

erated by Symba’s symbolic abstraction algorithm against traditional implementations

of abstract transformers. We describe these below.

6.2.1 Evaluating Symba

Configurations of Symba

We evaluated several configurations of Symba:

1. SymbaIR(forcePush): Symba with integer rounding (IR), where forcePush repre-

sents the number of UnboundedImpl calls before GlobalPush is forced.

2. SymbaIROFF: Same as SymbaIR(∞), but with the integer rounding optimiza-

tion turned off.

3. SymbaPAR(i): A parallel version of SymbaIR(∞), where i represents the number

of templates per thread.

DNFBound

To compare Symba against other possible symbolic abstraction techniques, we imple-

mented DnfBound, a symbolic abstraction algorithm which can be viewed as a fully

symbolic implementation of the SMT-guided abstract interpretation algorithm described

in [30]. Given a formula ϕ, DnfBound starts with an under-approximation U = ⊥ of

α̂(ϕ). It works by lazily building the disjunctive normal form (DNF) of ϕ, computing

the best AT abstraction of each disjunct (conjunction of linear inequalities), and joining

it to the under-approximation until ϕ ⇒ γ̂(U). When ϕ encodes a program fragment,

each disjunct effectively encodes a path through the fragment. Our implementation of

DnfBound uses Z3 to check subsumption and sample disjuncts of ϕ, and the APRON

numerical abstract domain library to compute best abstractions of each disjunct.

Example. Recall the example from Sec. 3.2. We illustrate DnfBound on the same for-

mula in Fig. 6.3, where the set of templates is now extended to T = {x, y, z,−x,−y,−z},
i.e., we would like to find the least upper and greatest lower bounds for all the three

dimensions at the same time. Suppose the first point sampled is p1 = (1.3, 0.4, 1)

which satisfies all constraints in Atoms(ϕ) except 4y = 3x + 3. Thus, a disjunct of

ϕ satisfied by p1 is ϕd1 = 0 6 x 6 3 ∧ 0 6 z 6 2 ∧ 2y 6 −x + 4 (this is also

a prime implicant of ϕ, shown in bold in Fig. 6.3a). Then we update the under-

approximation to be α̂(ϕd1), a box hull surrounding the convex shape ϕd1 in this case,

Chapter 6. Evaluation 35

0

2

3

2

3

p1

z

x

y

(a)

0

2

3

2

3

p2

z

x

y

(b)

0

2

3

2

3

p2

z

x

y

(c)

0

2

3

2

3

z

x

y

(d)

Figure 6.3: Illustration of DnfBound on a 3-D example.

i.e., U = 0 6 x 6 3 ∧ y 6 2 ∧ 0 6 z 6 2 (shown in bold in Fig. 6.3b). After that, a

point p2 = (2.2, 2.4, 1) is picked outside of U . Obviously, it has to satisfy the disjunct

ϕd2 = 0 6 x 6 3 ∧ 0 6 z 6 2 ∧ 4y = 3x+ 3 (the hyperplane shown in bold in Fig. 6.3c),

which corresponds to U ′ = 0 6 x 6 3 ∧ 0.75 6 y 6 3 ∧ 0 6 z 6 2. After joining U ′ with

U , we get an under-approximation U = 0 6 x 6 3 ∧ y 6 3 ∧ 0 6 z 6 2 that subsumes ϕ

(shown in bold in Fig. 6.3d). Therefore, at this point, DnfBound terminates with the

best abstraction U of ϕ in AT .

Z3Qelim

We also compared against the strongest post-condition computation (a harder problem)

implemented using the highly efficient Z3 quantifier elimination algorithm Z3Qelim. We

Chapter 6. Evaluation 36

Configuration Total Time(s) # SMT Queries # Solved # GlobalPush # UnboundedImpl

1 SymbaIR(1) 1,707 136,766 295 69,321 32,948
2 SymbaIR(3) 560 74,217 295 16,138 30,861
3 SymbaIR(8) 562 65,185 295 6,734 31,948
4 SymbaIR(13) 538 65,019 295 5,502 32,603
5 SymbaIR(∞) 569 69,785 295 5,491 34,978
6 SymbaIROFF 708 72,680 295 5,478 35,910
7 DnfBound 1,562 208 48
8 Z3Qelim 669 - 39
9 SymbaPAR(2) 634.97 - 295
10 SymbaPAR(3) 522.63 - 295
11 SymbaPAR(4) 460.48 - 295

Table 6.1: Overall results on 295 SMT-LIB2 benchmarks.

start by constructing a formula

ϕ′ ≡ ∃x1, . . . , xn ∈ Vars(ϕ) · ϕ ∧
∧
{zi = ti | ti ∈ T},

where each zi is a fresh variable corresponding to ti. Then applying quantifier elimination

on ϕ′ (eliminating xi) corresponds to the best symbolic abstraction in the finite power

set of T .

Results

Table 6.1 summarizes the results of running all the aforementioned algorithms and config-

urations on the 295 SMT-LIB2 benchmarks with a timeout of 100 seconds per benchmark.

The average number of templates per benchmark is 69, with a minimum of 4 and a max-

imum of 380. The average number of variables per benchmark is 1,435, with a minimum

of 32 and a maximum of 19,152.

The results of running SymbaIR(∞) are summarized in row 6 of Table 6.1. It

successfully computed best abstractions for all 295 benchmarks in 569 seconds. In the

process, it made ∼70K SMT queries using 5,491 invocations of GlobalPush and 34,978

invocations of UnboundedImpl.

Rows 1-5 capture results of running SymbaIR(forcePush), where forcePush is 1, 3,

8, 13, and ∞, respectively. Total running times in all but the first case are comparable,

around 560 seconds. However, when forcePush is 1, the total time goes up to ∼1700

seconds due to the frequent calls to GlobalPush (after every call to UnboundedImpl).

This is reflected in the total number of SMT queries (∼130K), which is almost double

the number of queries made for higher values of forcePush (∼70K), and indicates the

sensitivity of the scheduling policy and the importance of applying the GlobalPush

rule sparingly.

Chapter 6. Evaluation 37

Row 6 (SymbaIROFF) of Table 6.1 summarizes the effect of running Symba with-

out the integer rounding rule. It requires the total of 708 seconds (compared to 569

seconds for SymbaIR(∞), which is the same configuration but with integer rounding).

The extra computation time is spent in unnecessary SMT queries. While the total num-

ber of GlobalPush calls is almost the same in both configurations, the number of

UnboundedImpl calls in SymbaIROFF is greater. Since we are dealing with integer

programs, the vast majority of least upper bounds we compute are integers. Therefore,

enabling the integer rounding heuristic often allows faster convergence without the need

of calling the potentially expensive UnboundedImpl.

DnfBound (see row 7 of Table 6.1) was able to solve only 48 benchmarks. In-

terestingly, it made a small number of calls to Z3: we observed that the bottleneck is

calling APRON, since the disjuncts can involve a large number of linear inequalities. To

minimize the number of disjuncts, we used UNSAT cores produced by Z3 to compute

prime implicants of the disjuncts. While this optimization often significantly reduces

the size of a disjunct, it only slightly improved the overall performance of DnfBound.

(The version of DnfBound reported here includes this optimization.) In comparison to

DnfBound, all configurations of Symba including the least efficient ones solved all of

the benchmarks. This is a strong indication of the power and utility of Symba’s symbolic

abstraction approach.

We have also tried using Z3 to compute the strongest post condition over the TCM

domain by performing quantifier elimination (row 8). The results show that our bench-

marks are quite difficult – Z3 was only able to solve 39 of them in the allotted time.

Finally, we compared our parallelized version SymbaPAR(i) with the sequentialized

SymbaIR(∞). The results of running SymbaPAR(i) are summarized in rows 9-11.

When the number of templates per thread is 2 (i = 2), i.e., d|T |/2e instances of Symba

are running in parallel, the total time is longer than the sequentialized version (row 9).

This implies that the overhead of pre-processing and threading has exceeded the benefits

brought by the parallelization. When i = 3 and i = 4, the total running time is 523

and 460 seconds, respectively, which is shorter than all the other configurations. But the

performance gain is far from linear in the number of threads running. Parallelism still

does not work ideally for the current implementation of Symba.

Fig. 6.4 shows the number of benchmarks solved as we increase the timeout limit for

various Symba configurations. Note that SymbaIR(∞) solves most of the benchmarks

in under 3 seconds, with only a few taking longer than 10 seconds. Most of these “slow”

examples were generated from email* benchmarks in the ProductLines category of SV-

COMP. While the programs are relatively small (∼5KLoC), most of the computation

Chapter 6. Evaluation 38

0 50 100

Timeout (in seconds)

240

260

280

300

S
ol
ve
d
in
st
an

ce
s

SymbaIR(∞)

SymbaIROFF

SymbaIR(1)

Instances solved within a given timeout

Figure 6.4: Number of benchmarks solved vs. timeout in seconds for several configura-
tions of Symba.

AbsDom # Completed Time(s) # Safety Proofs Precision Gain(%)

SymbaIR(∞) 592 4,024 47 73
Intervals 604 121 0 0

Table 6.2: Overall results for loop invariant generation on 604 C benchmarks.

occurs within a single loop, making loop-free program fragments very large and resulting

in the largest formulas in our benchmark suite, with 3K+ variables.

6.2.2 Symba for Invariant Generation

We have integrated Symba into the UFO verification and analysis framework, and used

it to generate loop invariants. We applied UFO/Symba to the set of 604 C programs,

of which 373 are safe and 231 are unsafe, with a total of ∼2.7MLoC, drawn from the

SV-COMP benchmarks. We instantiated Symba with the set of interval templates.

We compared the precision of loop invariant generation using Symba against a stan-

dard intervals analysis, Intervals, where abstract post is performed over single instruc-

tions. Table 6.2 shows the aggregate results of this comparison. Within a timeout of 500

seconds, Symba computed loop invariants for 592 programs in 4,024 seconds. Compared

with Intervals, Symba produced more precise loop invariants for 73% of the loops in

the benchmark suite. For the remaining 27%, the generated invariants were equivalent.

Since these benchmarks were drawn from the Software Verification Competition, they

contain assertions encoded as an error location. Symba’s invariants proved the error

location is unreachable for 47 out of 373 safe benchmarks, while invariants generated by

Chapter 6. Evaluation 39

0 250 500

Timeout (in seconds)

300

400

500

600

S
ol
ve
d
in
st
an

ce
s

SymbaIR(∞)

Instances solved within a given timeout

Figure 6.5: Number of C files analyzed using SymbaIR(∞) as the abstract transformer
vs. timeout in seconds.

Intervals could not prove any of the benchmarks safe.

In terms of total time, Symba required 4,024 seconds compared to 121 seconds for

Intervals. Symba timed out for 12 benchmarks. To examine where most time is

spent, consider Fig. 6.5 which shows the number of benchmarks analyzed by Symba as

the timeout limit is increased. This figure shows that most benchmarks are solved within

a 20 second timeout. A closer look at the benchmarks shows that the hardest programs to

analyze come from two SV-COMP categories: (1) email* programs from ProductLines,

which (as we discussed previously) exhibit very large loop-free fragments; and (2) Linux

device drivers from DeviceDrivers64, which include over 140 templates per query. To

address (1), we could avoid computing abstract post over large program fragments by

adding artificial cutpoints in the program, e.g., as proposed for predicate abstraction

in [31], thus shrinking the size of symbolic abstraction queries at the expense of precision.

To address (2), we could utilize the over-approximation of the best abstraction maintained

by Symba. That is, if a symbolic abstraction query exceeds a time limit, we could halt

the algorithm prematurely and use the over-approximation as the result.

6.2.3 Symba in an Abstraction Refinement Loop

We have also integrated Symba in an abstraction refinement loop [11] where interpolants

are used to iteratively strengthen invariants produced by abstract interpretation. Due

to the unpredictability of the refinement process, it is not obvious how the increased

precision afforded by Symba over Intervals will impact overall analysis results. Our

Chapter 6. Evaluation 40

results show that Symba generally decreases the number of refinements required, and

can verify examples that Intervals cannot.

6.2.4 Summary

Our experiments indicate the power of our proposed symbolic abstraction technique and

its SMT-based implementation for computing precise abstract post in the TCM domain

over loop-free program fragments. For our first set of experiments, we evaluated different

configurations of Symba, as well a path-based symbolic abstraction algorithm, on a large

number of symbolic abstraction queries. Our experiments demonstrated the efficiency of

Symba’s approach and the importance of the integer rounding optimization and careful

rule scheduling.

For loop invariant generation, our evaluation on 600+ C programs (with a total of

∼2.7MLoC) shows more precise invariants for 73% of the loops when using Symba versus

a traditional implementation of abstract post (with imprecision due to joins and abstract

transformers over single instructions). The precision gain is reflected in the number

of benchmarks proved correct by Symba’s invariants (47 out of 373). Using a standard

intervals domain, we could not prove any benchmark correct. Of course, due to the SMT-

heavy nature of Symba, it took a larger amount of time than the intervals domain. We

have shown, though, that the vast majority of programs were analyzed within 20 seconds,

and most of the time was spent on harder examples with very large loop-free fragments

and 100s of templates. We believe that the continuous improvements in the efficiency and

scope of SMT solvers will pave the way for more efficient symbolic abstraction algorithms,

and perhaps symbolic abstract domains that transcend linear numerical constraints, e.g.,

arrays or non-linear arithmetic.

Chapter 7

Related Work

7.1 Symbolic Abstraction of Numerical Domains

Sankaranarayanan et al. [12] proposed the TCM domain, which lies between the inter-

vals and the more general polyhedra domain. They showed that basic domain operations

of TCM can be posed as linear programming problems of polynomial time complex-

ity. Their method only applies to straight-line code, i.e., transfer functions represented

as conjunctions of inequalities. Monniaux [32] also presented an approach that finds

the best transformer in TCM domain for straight-line code, using quantifier elimination

techniques. In contrast to [12, 32], Symba uses SMT solvers to compute precise TCM

post for arbitrary loop-free program fragments, thus making it more general and allowing

it to avoid imprecision due to joins.

In [30], Monniaux and Gonnord proposed a technique that lazily enumerates program

paths in loop-free fragments in order to avoid imprecise join operations. The idea is to

compute abstract post over individual program paths and use an SMT solver to check if

all paths are subsumed by the computed abstract state. We have implemented a similar

algorithm (DnfBound) for the TCM domain and compared it with Symba in Section 5,

showing scalability limitations of the former. Furthermore, Symba is a fully symbolic

technique: The SMT solver is not only used to check if a given approximation is an

abstraction of the formula, but it also used to compute the abstraction.

Recently, Thakur and Reps [18] proposed a generalization of St̊almarck’s SAT solving

method [33] to richer logics. The algorithm attempts to prove a formula ϕ unsatisfiable by

iteratively refining an over-approximation of ϕ starting from > until arriving at ⊥. They

showed how the algorithm can be instantiated with abstract domains, such as polyhedra,

and used to compute best abstractions of formulas in QF LRA. Their approach is a

general framework for symbolic abstraction that is applicable to a wide range of logics

41

Chapter 7. Related Work 42

and abstract domains. In contrast, Symba is a domain-specific algorithm, designed with

efficiency in mind, that exploits the state-of-the-art in SMT solving. Unfortunately, there

is no available implementation that we could compare against, and no evaluation of their

approach exists for computing precise abstract post over numerical domains.

7.2 Other Symbolic Abstraction Techniques

Symbolic abstraction algorithms have been proposed for non-numerical domains as well.

Reps et al. [19] described an approach for computing the best abstract transfer function

over finite-height, but possibly infinite-size, abstract domains. Both Symba and the ap-

proach in [19] sample models of a formula and use them to grow an under-approximation.

In fact, [19] can be viewed as an iterative application of the GlobalPush rule. Conver-

gence is guaranteed by requiring a finite-height domain. To deal with the infinite-height

of TCM domains, Symba employs the additional Unbounded rule. Moreover, Symba

maintains both an under- and an over-approximation, allowing it to produce sound but

less precise results, if desired. Yorsh et al. [34] introduced a method similar to [19] for

computing α̂ over abstract domains that are used in shape analysis (“canonical abstrac-

tion” of logical structures [35]).

More recently, Thakur and Reps [21] proposed an algorithm that generalizes the sym-

bolic abstraction algorithm of King and Søndergaard [36] from Boolean affine relations

to the finite-height domains handled by [19]. In a similar fashion as Symba, it maintains

an under- and an over-approximation, but does not compute best abstract transformers

for domains with infinite height.

7.3 Predicate Abstraction

The use of decision procedures for computing abstract transformers was pioneered by

Graf and Säıdi in their work on predicate abstraction [37]. They showed how theo-

rem provers can be used to construct abstract transformers for abstract domains whose

elements are arbitrary Boolean combinations of a finite set of predicates, e.g., linear

inequalities. Cartesian predicate abstraction [38] is a less expensive (but less precise)

predicate domain whose elements are restricted to conjunctions of predicates. Similar to

Symba, software model checking techniques using predicate abstraction [7, 31, 39] encode

loop-free program fragments as formulas and use SMT solvers to compute abstract post.

Cartesian predicate abstraction can be viewed as a TCM domain with Boolean-valued

(rather than real-valued) templates. Therefore, Symba is more general than Cartesian

Chapter 7. Related Work 43

predicate abstraction in QF LRA.

7.4 Classification and Machine Learning

A fundamental problem in machine learning is classification: given a set of positive and

negative examples, find a classifier that predicts whether a given example is positive or

negative. For example, using Support Vector Machines (SVMs) [40], one can compute

linear inequalities separating positive and negative points in some space Rn.

Symba can be viewed as a sophisticated classification algorithm, where positive and

negative examples are models of ϕ and ¬ϕ, respectively. The goal is to find the best

classifier, represented by a conjunction of linear inequalities (templates), that does not

misclassify any of the positive examples (i.e., contains ϕ). Symba only samples positive

examples (from ϕ) and keeps weakening a classifier (the under-approximation U) until

it encompasses all positive examples. As Reps et al. point out in [19], weakening an

under-approximation by sampling more points is analogous to the approach of the simple

learning algorithm Find-S [41]. Find-S gradually weakens a classifier, starting from ⊥,

by iteratively taking into account more and more positive examples.

Chapter 8

Conclusions and Future Work

8.1 Conclusion

Numerical invariant generation is an important program analysis task with uses includ-

ing program optimization, verification, and bug finding. Abstract interpretation with

numerical abstract domains is one of the most studied and most efficient approaches for

numerical invariant generation. This efficiency is often achieved by employing imprecise

operations, such as join and abstract post. Moreover, expressive domains such as polyhe-

dra are expensive, and efficient domains such as intervals can lack expressivity required

for proving interesting program properties.

In this thesis, we have presented Symba: a novel approach that utilizes the power

of SMT solvers to implement precise abstract transformers over large loop-free program

segments encoded in linear real arithmetic. As a result, Symba does not suffer from

imprecision incurred by abstract post over single instructions or basic blocks, and avoids

imprecise joins by symbolically and efficiently enumerating program paths. Symba en-

ables invariant generation in the general Template Constraint Matrix domain, which

encompasses many popular domains including intervals, octagons, and octahedra.

We have implemented Symba in UFO, an analysis and verification tool, and ap-

plied it to a large number of C programs (a total of 2.7MLoC), ranging from Linux and

Windows device drivers to models of SSH and sequentialized SystemC programs. In

comparison with standard abstract transformers, Symba produced more precise loop in-

variants for 73% of the loops, allowing it to prove 47 (out of 373) programs safe; standard

abstract interpretation could not prove any. Furthermore, our results indicate the effi-

ciency of Symba’s technique in comparison with other symbolic abstraction approaches,

and highlight the power of our design choices.

44

Chapter 8. Conclusions and Future Work 45

8.2 Future Work

More efforts should be put into exploring various possible heuristics on the scheduling

policy of Symba. A change in the priority function for choosing push lists could po-

tentially alter the sequence of sampling drastically. It is still unclear whether or not an

optimal sequence exists. From an engineering perspective, the implementation of Symba

can be improved in terms of parallelism. Current results indicate that parallelization by

splitting the set of templates is not as effective as we expected. We would like to experi-

ment with rearranging and subdividing computation-intensive tasks such as SMT queries

in different ways.

We believe that the continuous developments in SMT solving and decision procedures

call for further investigation of their applications within an abstract interpretation con-

text. In the future, we would like to extend our approach to other SMT theories. For

example, it would be interesting to use the theory of arrays to reason about memory

operations and compute invariants within quantified abstract domains.

So far, we have only focused on the TCM domain. A natural extension of our work

is to apply our techniques to more precise domains, such as the polyhedron domain [5].

It would be interesting to examine the effects of such precision improvement on the

performance of real verification tools like UFO.

Bibliography

[1] R. Floyd, “Assigning Meanings to Programs,” Mathematical Aspects of Computer

Science, vol. 19, no. 19-32, p. 1, 1967.

[2] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice Model For

Static Analysis of Programs by Construction or Approximation of Fixpoints,” in

Proc. of POPL’77, pp. 238–252, 1977.

[3] P. Cousot and R. Cousot, “Static Determination of Dynamic Properties of Pro-

grams,” in Proceedings of the Colloque sur la Programmation, April 1976.

[4] A. Miné, “The Octagon Abstract Domain,” J. Higher-Order and Symbolic Compu-

tation, vol. 19, no. 1, pp. 31–100, 2006.

[5] P. Cousot and N. Halbwachs, “Automatic Discovery of Linear Restraints among

Variables of a Program,” in Proc. of POPL ’78, pp. 84–96, 1978.

[6] E. Clarke, D. Kroening, and F. Lerda, “A Tool for Checking ANSI-C Programs,” in

Proc. of TACAS’04, vol. 2988 of LNCS, pp. 168–176, Springer, March 2004.

[7] A. Gurfinkel, S. Chaki, and S. Sapra, “Efficient Predicate Abstraction of Program

Summaries,” in Proc. of NFM’11, vol. 6617 of LNCS, pp. 131–145, 2011.

[8] B. Cook, A. Podelski, and A. Rybalchenko, “Termination Proofs for System Code,”

in Proc. of PLDI’06, pp. 415–426, 2006.

[9] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko, “Synthesizing

Software Verifiers from Proof Rules,” in Proc. of PLDI’12, pp. 405–416, 2012.

[10] K. Hoder and N. Bjørner, “Generalized Property Directed Reachability,” in Proc.

of SAT’12, pp. 157–171, 2012.

[11] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “Craig Interpretation,” in Proc. of

SAS’12, vol. 7460 of LNCS, pp. 300–316, 2012.

46

Bibliography 47

[12] S. Sankaranarayanan, H. B. Sipma, and Z. Manna, “Scalable Analysis of Linear Sys-

tems using Mathematical Programming,” in Proc. of VMCAI’05, pp. 25–41, 2005.

[13] A. Albarghouthi, A. Gurfinkel, and M. Chechik, “UFO: A Framework for

Abstraction- and Interpolation-Based Software Verification,” in Proc. of CAV’12,

2012.

[14] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program

Analysis & Transformation,” in Proc. of CGO’04, pp. 75–88, 2004.

[15] D. Beyer, “Competition On Software Verification - (SV-COMP),” in Proc. of

TACAS’12, vol. 7214 of LNCS, pp. 504–524, 2012.

[16] K. G. Murty, Linear programming. Wiley, 1983.

[17] G. A. Kildall, “A Unified Approach to Global Program Optimization,” in Proceedings

of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles of program-

ming languages, POPL ’73, (New York, NY, USA), pp. 194–206, ACM, 1973.

[18] A. V. Thakur and T. W. Reps, “A Method for Symbolic Computation of Abstract

Operations,” in Proc. of CAV’12, pp. 174–192, 2012.

[19] T. Reps, M. Sagiv, and G. Yorsh, “Symbolic Implementation of the Best Trans-

former,” in Proc. of VMCAI’04, vol. 2937 of LNCS, 2004.

[20] T. Reps, M. Sagiv, and R. Wilhelm, “Static Program Analysis via 3-Valued Logic,”

in Proc. of CAV’04, vol. 3114 of LNCS, pp. 15–30, 2004.

[21] A. V. Thakur, M. Elder, and T. W. Reps, “Bilateral Algorithms for Symbolic Ab-

straction,” in Proc. of SAS’12, pp. 111–128, 2012.

[22] “Clang: A C Language Family Frontend for LLVM.” http://clang.llvm.org/.

[23] L. de Moura and N. Bjørner, “Z3: An Efficient SMT Solver,” in Proc. of TACAS’08,

vol. 4963 of LNCS, pp. 337–340, 2008.

[24] R. DeLine and K. R. M. Leino, “BoogiePL: A Typed Procedural Language for

Checking Object-oriented Programs,” tech. rep., Microsoft Research, 2005.

[25] N. Tillmann and W. Schulte, “Unit Tests Reloaded: Parameterized Unit Testing

with Symbolic Execution,” IEEE Software, vol. 23, no. 4, pp. 38–47, 2006.

http://clang.llvm.org/

Bibliography 48

[26] A. Nori, S. Rajamani, S. Tetali, and A. Thakur, “The Yogi Project: Software

Property Checking via Static Analysis and Testing,” in Proc. of TACAS’09, vol. 5505

of LNCS, pp. 178–181, 2009.

[27] B. Jeannet and A. Miné, “Apron: A Library of Numerical Abstract Domains for

Static Analysis,” in Proc. of CAV’09, pp. 661–667, 2009.

[28] C. Barrett, A. Stump, and C. Tinelli, “The SMT-LIB Standard: Version 2.0,” tech.

rep., Department of Computer Science, The University of Iowa, 2010. Available at

www.SMT-LIB.org.

[29] D. Beyer, A. Cimatti, A. Griggio, M. E. Keremoglu, and R. Sebastiani, “Software

Model Checking via Large-Block Encoding,” in Proc. of FMCAD’09, pp. 25–32,

2009.

[30] D. Monniaux and L. Gonnord, “Using Bounded Model Checking to Focus Fixpoint

Iterations,” in Proc. of SAS’11, LNCS, pp. 369–385, 2011.

[31] D. Beyer, M. E. Keremoglu, and P. Wendler, “Predicate Abstraction with

Adjustable-Block Encoding,” in Proc. of FMCAD’10, pp. 189–197, 2010.

[32] D. Monniaux, “Automatic Modular Abstractions for Template Numerical Con-

straints,” Logical Methods in Computer Science, vol. 6, no. 3, 2010.

[33] M. Sheeran and G. St̊amarck, “A Tutorial on St̊amarck’s Proof Procedure for Propo-

sitional Logic,” Formal Methods in System Design, vol. 16, pp. 23–58, 2000.

[34] G. Yorsh, T. W. Reps, and S. Sagiv, “Symbolically Computing Most-Precise Ab-

stract Operations for Shape Analysis,” in Proc. of TACAS’04, vol. 2988 of LNCS,

pp. 530–545, 2004.

[35] S. Sagiv, T. W. Reps, and R. Wilhelm, “Parametric Shape analysis via 3-Valued

Logic,” ACM TOPLAS, vol. 24, no. 3, pp. 217–298, 2002.

[36] A. King and H. Søndergaard, “Automatic Abstraction for Congruences,” in Proc.

of VMCAI’10, pp. 197–213, 2010.

[37] S. Graf and H. Säıdi, “Construction of Abstract State Graphs with PVS,” in Proc.

of CAV’97, vol. 1254, pp. 72–83, 1997.

[38] T. Ball, A. Podelski, and S. Rajamani, “Boolean and Cartesian Abstraction for

Model Checking C Programs,” in Proc. of TACAS’01, vol. 2031, pp. 268–283, 2001.

www.SMT-LIB.org

Bibliography 49

[39] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre, “Lazy Abstraction,” in Proc.

of POPL’02, pp. 58–70, 2002.

[40] J. C. Platt, “Fast Training of Support Vector Machines Using Sequential Minimal

Optimization,” in Advances in Kernel Methods, pp. 185–208, Cambridge, MA, USA:

MIT Press, 1999.

[41] T. M. Mitchell, Machine Learning. New York, NY, USA: McGraw-Hill, Inc., 1997.

	Introduction
	Overview
	Symbolic Abstraction
	Symbolic Abstraction with Symba
	Contributions
	Organization

	Background
	Vectors and Matrices
	The Geometry of Polyhedra
	Abstract Interpretation

	Symba by Example
	A 2-dimensional Example
	A 3-dimensional Example

	Symba: The Symbolic Abstraction Algorithm
	Definitions
	Symba Formalized
	Soundness
	Termination

	Implementation
	Tools and Technologies
	Implementation

	Evaluation
	Benchmarks
	Experimental Evaluation

	Related Work
	Symbolic Abstraction of Numerical Domains
	Other Symbolic Abstraction Techniques
	Predicate Abstraction
	Classification and Machine Learning

	Conclusions and Future Work
	Conclusion
	Future Work

	Bibliography

