
CSLICERCLOUD: A Web-Based Semantic History Slicing
Framework

Yi Li
University of Toronto
liyi@cs.toronto.edu

Chenguang Zhu
University of Texas at Austin

cgzhu@utexas.edu

Julia Rubin
University of British Columbia

mjulia@ece.ubc.ca

Marsha Chechik
University of Toronto
chechik@cs.toronto.edu

ABSTRACT

Traditional commit-based sequential organization of software ver-
sion histories is insufficient for many development tasks which
require high-level, semantic understanding of program function-
ality, such as porting features or cutting new releases. Semantic
history slicing is a technique which uses well-organized unit tests
as identifiers for corresponding software functionalities and ex-
tracts a set of commits that correspond to a specific high-level func-
tionality. In this paper, we present CSlicerCloud, a Web-based
semantic history slicing service tailored for Java projects hosted on
GitHub. It is accessible through Web browsers and powered in the
backend by a collection of history slicing techniques underneath.
We evaluated CSlicerCloud on a dataset containing developer-
annotated change histories collected from 10 open source software
projects. A video demonstration which showcases the main features
of CSlicerCloud can be found at https://youtu.be/7kcswA0bQzo.

KEYWORDS

Version histories, software evolution, program semantics

ACM Reference Format:

Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2018. CSlicer-
Cloud: A Web-Based Semantic History Slicing Framework. In ICSE ’18
Companion: 40th International Conference on Software Engineering , May
27-June 3, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3183440.3183491

1 INTRODUCTION

Software ConfigurationManagement systems (SCMs) are widely used
in software development practices. These systems, such as Git [4]
and SVN [21], are useful for recording incremental changes made by
developers, examining or reverting changes, identifying developers
responsible for a specific change, and more. Incremental changes
are manually grouped by developers to form commits. Commits are
stored sequentially and ordered by their time stamps, so that it is
convenient to trace back to any version in the history. To facilitate

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5663-3/18/05.
https://doi.org/10.1145/3183440.3183491

parallel development, branches are used, for example, to store a still-
in-development prototype version of a project or multiple project
variants targeting different customers.

However, the text-based organization of changes lacks support
for many tasks that require high-level, semantic understanding of
program functionality [13, 16]. For example, developers often need
to locate and transfer functionality from one branch to another,
either for porting bug fixes or for splitting large chunk commits
into multiple functionally-independent pull requests. Several SCM
systems provide mechanisms of “replaying” commits on a different
branch, e.g., the cherry-pick command in Git. Yet, little support
is provided for matching high-level functionality with commits
that implement it: SCM systems only keep track of temporal and
text-level dependencies between the managed commits. The job of
identifying the exact set of commits implementing the functionality
of interest is left to the developers.

Motivated by these challenges, several semantic history slicing
techniques [10–12] have been recently proposed. A semantic history
slice [12] is a set of related changes in the original history which
preserve the target test behaviors (a.k.a. the slicing criteria). In this
paper, we describe aWeb-based semantic history slicing framework,
CSlicerCloud, which provides users with a flexible and intuitive
way to interact with the underlying history slicing techniques and
implements a number of optimizations to improve both the quality
and the efficiency of slicing. The tool and more detailed information
are available at: http://www.cs.toronto.edu/~liyi/cslicer.

We see applications of CSlicerCloud in many different software
evolution management scenarios.
A1. Porting Functionalities Across Versions. Often, a devel-
oper works on multiple functionalities at the same time which
could result in mixed commit histories concerning different issues.
However, when submitting pull requests for review, contributors
should refrain from including unrelated changes as suggested by
many project contribution guidelines. Despite the efforts of keeping
the development of each issue on separate branches, isolating each
functional unit as a self-contained pull request is still a challenging
task. For a particular pull request, the test cases created for valida-
tion can be used as slicing criteria to identify relevant commits from
the developers’ local histories in their forked repositories. CSlicer-
Cloud can identify the set of commits required for back-porting a
functionality to earlier versions of a software project.
A2. Creating Pull Requests. Even in very disciplined projects,
when such commits can be identified by browsing their associated

https://youtu.be/7kcswA0bQzo
https://doi.org/10.1145/3183440.3183491
https://doi.org/10.1145/3183440.3183491
http://www.cs.toronto.edu/~liyi/cslicer


ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik

log messages, the functionality of interest might depend on earlier
commits in the same branch. To ensure correct execution of the
desired functionality, all dependencies have to be identified and
migrated as well, which is a tedious and error-prone manual task.
Given test cases for the functionalities to be ported, CSlicerCloud
can automatically compute the required changes and, at the same
time, effectively avoid including unnecessary changes, i.e., it can
facilitate creation of logically clean and easy-to-merge pull requests.
A3. Cutting New Releases.Many software projects periodically
cut releases by cherry-picking commits corresponding to desired
functionalities from the develop branch to the release branches,
e.g., Bazel [1]. CSlicerCloud analyses the change history since
the last release and uses feature test cases to locate the desired set
of commits which guarantee not to cause merge conflicts and pass
the tests when moved to the release branch.
Organization. The rest of this paper is organized as follows: In
Sec. 2, we overview the architecture and user interface of CSlicer-
Cloud, illustrating it by an example use case A3. In Sec. 3, we
describe the back-end implementations of CSlicerCloud which
unifies a number of history slicing algorithms and enables sev-
eral optimizations, such as caching of slicing results. In Sec. 4, we
evaluate the performance and effectiveness of CSlicerCloud on
a dataset [24] of change histories collected from 10 open source
software projects. In Sec. 5, we discuss related work. We conclude
in Sec. 6.

2 OVERVIEW OF CSLICERCLOUD

In this section, we overview the architecture of CSlicerCloud and
demonstrate its user interface on an example use case (A1).

Client-Side

git-flow-vis.js jsTree.js DataTables.js

History View Test View Entity View

Server-Side

DatabaseCSlicer DefinerRepositories

Repo Driver Slicing Engine DB Driver

GitHub
Server

oauth

credential

HTTPclone

Figure 1: Architecture of CSlicerCloud.

Architecture. CSlicerCloud consists of a web-based front-end,
implemented on top of the Node.js JavaScript runtime [15], and a
server-side back-end. See Fig. 1 for an architectural overview. The
front-end obtains user credentials from the GitHub server through
the OAuth protocol [6] and uses them to authenticate users and
access their repository meta data. The front-end also collects user
requests and communicates to the back-ends via HTTP connections.
The back-end retrieves repository data from the GitHub server; the
slicing engine performs history slicing as per the users’ requests,

indexes version histories and caches slicing results, storing them in
the database; finally, the results are communicated back to the front-
end. Currently, the slicing engine supports two different slicing
algorithms: CSlicer [10] and Definer [11].

The user interface of CSlicerCloud consists of four components
– the slicing parameter panel, history view, test view, and entity view.

Imagine that a developer wants to migrate a feature – “Adding a
placeholder in the Lexer and CSV parser to store the end-of-line
string” which was introduced in version 1.5 of the Apache Common
CSV project [3] – to another branch, but he/she is unsure which
commits are required for the target feature to work correctly on
the target branch.

Figure 2: Setting slicing parameters: start commit, end com-

mit, test cases, and slicing algorithm.

Slicing Parameter Panel. In order to use CSlicerCloud for iden-
tifying the commits required, a user must specify a number of
slicing parameters. Fig. 2 shows the slicing parameter panel of
CSlicerCloud. A user defines a history range by specifying the
“start commit” and the “end commit”, in this case, the commits
“#99be47e” and “#259812e”, respectively. This can also be done by
directly clicking on the commits in the history view.

Figure 3: The test view of CSlicerCloud.

Test View. Then, a set of feature test cases needs to be provided as
the slicing criteria. The test view visualizes the unit tests of a Java
project, and a user can select the tests he/shewants to use for history
slicing tasks. Fig. 3 gives a screenshot of the test view showing the
test cases organized in an expandable tree structure. Each top-level
node represents a Java test file, e.g., “CSVParserTest.java”. The
leaf nodes become visible when a test file node is expanded. They
represent the test methods contained in the corresponding test file.
For instance, there are three test cases associated with the target fea-
ture, “testFirstEndOfLineCrLf”, “testFirstEndOfLineLf”, and
“testFirstEndOfLineCr”. Each method also comes with a check
box which allows it to be included as one of the slicing criteria.



CSLICERCLOUD: Semantic History Slicing Framework ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden

History View. The history view visualizes the version histories
of a given software repository and allows users to define a his-
tory range for the subsequent history slicing tasks. Fig. 4 shows
a screenshot of the history view displaying the version histories
of the Common CSV project. The left pane depicts the branches
and commits graphically while the right pane lists other metadata
including log messages, authors, and SHA-1 commit IDs of the
corresponding commits. Each item in the commit list is clickable
such that a history range can be defined by selecting a starting and
an ending commit.

When the history slicing process is finished, the slicing results
are shown in the history view; in our case, the commit #aae6f90
is highlighted. CSlicerCloud can also create a new branch with
the computed history slice as a migration dry-run (see Fig. 4).

Figure 4: The history view of CSlicerCloud. Slicing results

are highlighted.

The graphical visualization of Git version histories is powered
by the JavaScript library GitFlowVisualize [5]. GitFlowVisualize
accepts commit and branch data as JSON [9] objects parsed from
the target project Git repositories. We have modified the library to
enable history selection and result highlighting.
Entity View. The entity view displays the code entity-level signifi-
cance scores [11] inferred from runningDefiner for all code entities
changed within the analysis range. The significance score indicates
the estimated relative importance of a code entity with respect to
the target tests for a particular input history. Fig. 5 shows an ex-
ample entity view which displays the significance scores in a table.
For instance, the third row in the table shows that the method
“CSVParser.getFirstEndOfLine()” has a significance score of
10.0. This indicates the relative importance; absolute value car-
ries little meaning other than a positive score indicates that the
changes on the entity can potentially affect the test results. The
entities with negative scores are less likely to impact the tests.

3 BACK-END IMPLEMENTATION

The server-side back-end consists of three components: the slicing
engine, the DB driver and the Repo driver.
Slicing Engine. The slicing engine is the core of the server-side.
It acts as a wrapper of the underlying history slicing techniques,
dispatching slicing job requests coming from multiple users with
various configuration parameters. When idle, the slicing engine can
index cached version histories in order to speed up future history

Figure 5: The entity view of CSlicerCloud.

slicing computations. The significance score of changes with respect
to a test case can also be precomputed and stored for future use.
Repo Driver. The Repo driver hides the low-level details of reposi-
tory operations and provides an abstracted interface for the slicing
engine. The supported high-level operations include cloning repos-
itories from the GitHub server, compiling source code with Maven,
retrieving test cases, running tests with Surefire [20] and processing
test results. The Repo driver runs asynchronously, with callbacks
for time-consuming operations. This prevents the progress of the
clients from being blocked.

In order to extract the list of available test cases and display it
in the test view, we first check out the repository to the selected
“end commit”. We then compile the tests into byte code and use
the BCEL [2] library to analyze the byte code and output the fully
qualified test method names as JSON objects.
DB Driver. The DB driver supports writing to and querying from
the database which maintains the “runs” and “significance” tables.
They record the parameters and the results of each history slicing
run, and the significance scores of all analyzed code entities, respec-
tively. If a subsequent slicing request matches one of the entries in
the database, the cached result is immediately returned. Otherwise,
the significance scores of the relevant entities are queried from the
“significance” table to initialize a new slicing run.

4 EVALUATION

In this evaluation, we used 98 functionality-history pairs from 10
open source projects from the DoSC dataset [24] where each of the
functionalities came with a set of tests, a set of commits annotated
by developers in log messages as related to functionalities. We then
ran CSlicerCloud with Definer chosen as the underlying slicing
algorithm to compute a semantic history slice and compared it with
the commits labeled by developers. The studies were conducted on a
desktop computer running Linux with an Intel i7 3.4GHz processor
and 16GB of RAM. All results of CSlicerCloud were verified to
be 1-minimal [11], meaning that removing a single commit would
result in a set that no longer passes the tests.

Fig. 6 shows the results of our comparison. The vertical and hori-
zontal axises represent the precision and recall of CSlicerCloud’s
results w.r.t. the developers’ annotations. On most examples (75/98),



ICSE ’18 Companion, May 27-June 3, 2018, Gothenburg, Sweden Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik

0 20 40 60 80 100
0

20

40

60

80

100

Recall (%)

P
re
ci
si
o
n
(%

)

Figure 6: Precision and recall of CSlicerCloud w.r.t. devel-

oper annotations.

CSlicerCloud was able to find all the commits labeled by develop-
ers. Also, in the majority of these cases, CSlicerCloud found more
commits which were missed by developers. Since the results pro-
duced by CSlicerCloud were already minimal, it shows that the
developer-annotated commits are often inadequate for preserving
the test behaviors.

CSlicerCloud can find fewer commits in some other cases,
mainly due to the inadequacy of tests. There have been three ex-
amples where CSlicerCloud got zero precision and recall. After
inspecting the documentation and the content of the commits, we
found that in these cases, the target functionalities were aimed to
improve performance instead of implementing new features. For
example, CALCITE-13371 improves performance of an existing
functionality and thus the labeled commits also affect performance
but not the passing/failing of the associated tests.

5 RELATEDWORK

Analysis and understanding software histories is an active area
of research, aimed at retrieving useful information from change
histories to help understand development practices [14, 19], localize
bugs [17, 23], and support predictions [8, 25].

History slicing [19] and history transformation [7, 13] further aim
to create flexible views of the change histories at varying granu-
larities, instead of the fixed commit-based representation, to better
facilitate the specific software evolution task at hand. For exam-
ple, Muşlu et al. [13] introduced several history transformation
operators such as Collapse, Expand and Move which manipulate
changes and produce customized history views. Our proposed ap-
proach can be used in combination with these operations to create
high-level semantic views of the histories.

Delta debugging [23] uses divide-and-conquer-style iterative test
executions to narrow down potential causes of software failures.
This problem can be considered as a special case of semantic history
slicing: given a series of changes which cause a program failure,
the goal is to locate the minimal cause of the failure, or, in other
words, the changes which preserve the failure-inducing property.
Traditional bug localization techniques [18, 22], based on infor-
mation retrieval, take a bug report as input and identify source
code files/methods that need to be fixed. It is possible to extend
current bug localization solutions to use semantic history slicing
1https://issues.apache.org/jira/browse/CALCITE-1337

for identifying problematic commits. This would provide additional
traceability to the bug localization results and enable more accurate
issue management.

6 CONCLUSION

In this paper, we described the architecture of CSlicerCloud, its
user interface, prominent optimizations, and showed the effective-
ness of our tool by evaluating it on a dataset collected from open
source software projects. The flexible architecture of CSlicerCloud
enables the integration of many different underlying history slicing
algorithms, and itsWeb-based interface allows users to easily access
the history slicing services within a browser.

ACKNOWLEDGEMENTS

We thank Shayan Kousha for his help with implementing the front-
end. The work was supported in part by NSERC.

REFERENCES

[1] Bazel 2017. https://bazel.build/support.html#releases. (2017).
[2] BCEL 2015. Apache Commons Byte Code Engineering Library. https://commons.

apache.org/proper/commons-bcel. (2015).
[3] CSV 2017. Using Apache Commons CSV. https://commons.apache.org/proper/

commons-csv. (2017).
[4] Git 2016. Git Version Control System. https://git-scm.com. (2016).
[5] GitFlow 2017. GitFlowVisualize. https://www.npmjs.com/package/git-flow-vis.

(2017).
[6] Dick Hardt. 2012. The OAuth 2.0 Authorization Framework. RFC 6749. RFC Editor,

Fremont, CA, USA. http://www.rfc-editor.org/rfc/rfc6749.txt
[7] Shinpei Hayashi, Takayuki Omori, Teruyoshi Zenmyo, Katsuhisa Maruyama,

and Motoshi Saeki. 2012. Refactoring Edit History of Source Code. In Proc. of
ICSM’12. 617–620.

[8] Kim Herzig and Andreas Zeller. 2013. The Impact of Tangled Code Changes. In
Proc. of MSR’13. Piscataway, NJ, USA, 121–130.

[9] JSON 2017. Introducing JSON. http://www.json.org. (2017).
[10] Yi Li, Julia Rubin, and Marsha Chechik. 2015. Semantic Slicing of Software

Version Histories. In Proc. of ASE’15. 686–696.
[11] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2016. Precise Semantic

History Slicing through Dynamic Delta Refinement. In Proc. of ASE’16. 495–506.
[12] Yi Li, Chenguang Zhu, Julia Rubin, and Marsha Chechik. 2017. Semantic Slicing

of Software Version Histories. IEEE Transactions on Software Engineering (2017).
[13] Kivanç Muşlu, Luke Swart, Yuriy Brun, and Michael D. Ernst. 2015. Development

History Granularity Transformations. In Proc. of ASE’15. 697–702.
[14] Emerson Murphy-Hill, Chris Parnin, and Andrew P. Black. 2012. How We

Refactor, and How We Know It. IEEE Transactions on Software Engineering 38, 1
(Jan 2012), 5–18.

[15] NodeJS 2017. Node.js. https://nodejs.org. (September 2017).
[16] Julia Rubin, Andrei Kirshin, Goetz Botterweck, and Marsha Chechik. 2012. Man-

aging Forked Product Variants. In Proc. of SPLC’12. 156–160.
[17] Ripon Saha and Milos Gligoric. 2017. Selective Bisection Debugging. In Proc. of

FASE’17. Springer-Verlag New York, Inc., 60–77.
[18] Ripon K. Saha, Matthew Lease, Sarfraz Khurshid, and Dewayne E. Perry. 2013.

Improving Bug Localization Using Structured Information Retrieval. In Proc. of
ASE’13. 345–355.

[19] Francisco Servant and James A. Jones. 2011. History Slicing. In Proc. of ASE’11.
452–455.

[20] Surefire 2017. Maven Surefire Plugin. http://maven.apache.org/surefire/
maven-surefire-plugin. (2017).

[21] SVN 2016. Apache Subversion (SVN) Version Control System. http://subversion.
apache.org. (2016).

[22] Shaowei Wang and David Lo. 2016. AmaLgam+: Composing Rich Information
Sources for Accurate Bug Localization. Journal of Software: Evolution and Process
28, 10 (2016), 921–942.

[23] Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Proc. of ESEC/FSE’99. 253–267.

[24] Chenguang Zhu, Yi Li, Julia Rubin, and Marsha Chechik. 2017. A Dataset for Dy-
namic Discovery of Semantic Changes in Version Controlled Software Histories.
In Proc. of MSR’17. 523–526.

[25] Thomas Zimmermann, Peter Weißgerber, Stephan Diehl, and Andreas Zeller.
2004. Mining Version Histories to Guide Software Changes. In Proc. of ICSE’04.
563–572.

https://issues.apache.org/jira/browse/CALCITE-1337
https://bazel.build/support.html#releases
https://commons.apache.org/proper/commons-bcel
https://commons.apache.org/proper/commons-bcel
https://commons.apache.org/proper/commons-csv
https://commons.apache.org/proper/commons-csv
https://git-scm.com
https://www.npmjs.com/package/git-flow-vis
http://www.rfc-editor.org/rfc/rfc6749.txt
http://www.json.org
https://nodejs.org
http://maven.apache.org/surefire/maven-surefire-plugin
http://maven.apache.org/surefire/maven-surefire-plugin
http://subversion.apache.org
http://subversion.apache.org

