
Ufo: A Framework for Abstraction- and
Interpolation-Based Software Verification

Aws Albarghouthi1, Yi Li1, Arie Gurfinkel2, and Marsha Chechik1

1Department of Computer Science, University of Toronto, Canada
2Software Engineering Institute, Carnegie Mellon University, USA

Abstract. In this paper, we present Ufo, a framework and a tool for
verifying (and finding bugs in) sequential C programs. The framework
is built on top of the LLVM compiler infrastructure and is targeted at
researchers designing and experimenting with verification algorithms. It
allows definition of different abstract post operators, refinement strate-
gies and exploration strategies. We have built three instantiations of
the framework: a predicate abstraction-based version, an interpolation-
based version, and a combined version which uses a novel and powerful
combination of interpolation-based and predicate abstraction-based al-
gorithms.

1 Introduction

Software model checking tools prove that programs satisfy a given safety prop-
erty by computing inductive invariants that preclude erroneous program states.
Over the past decade, software model checking tools have adopted a number
of different techniques for computing invariants which we categorize as Over-
approximation-Driven (OD) and Under-approximation-driven (UD).

OD tools, e.g., Slam [4], Blast [6], and SATAbs [10], utilize an abstract
domain based on predicate abstraction [11] to compute an over-approximation of
the set of reachable states of a program. In the case of false positives, such tech-
niques employ an abstraction refinement loop [9] to refine the abstract domain
and eliminate false positives.

UD tools, spearheaded by Impact [15] and Yogi [17], compute invariants
by generalizing from infeasible symbolic program paths, thus bypassing the po-
tentially expensive computation of the abstract post operator. For example, Im-
pact and Wolverine [13] use Craig interpolants, extracted from the proofs
of unsatisfiability of formulas encoding an infeasible path to error, in order to
eliminate a potentially large number of paths to error and prove a program
safe. Whale [2] extends Impact to the interprocedural case by using under-
approximations of functions to compute function summaries. Similarly, Yogi
uses weakest-preconditions (instead of interpolants) along infeasible program
paths, chosen based on concrete test-case executions, in order to strengthen a
partition-graph of the state space of a program.

In this paper, we present Ufo, a framework and a tool for verifying and
falsifying safety properties of sequential C programs. The features of Ufo are:



Optimizations
for

verification

Optimized
program P o Cutpoint

Graph (CG)
constructor

Weak Toplogical
Ordering (WTO)

Preprocessing Phase

CG
WTO

Analysis Phase

ARG Constructor
(main algorithm)

CG

SMT
solver

interface

Interpolating
SMT solver

Program P with
assertions

Abstract
post

Refiner

C to
LLVM

bitcode

Expansion
strategy

Counterexample
or certificate of

correctness

Fig. 1. The architecture of Ufo.

1. It is a framework for building and experimenting with UD, OD, and com-
bined UD/OD verification algorithms. It is parameterized by the abstract post
operator, refinement strategy, and expansion strategy.

2. It comes with a number of instantiations whose novel features are described
in [1]: several predicate abstraction-based OD instantiations, an interpolation-
based UD instantiation, and several combined OD/UD instantiations that use
different forms of predicate abstraction to augment and strengthen interpolation-
based analysis, a technique that we have shown to be quite powerful in [1]. To
the best of our knowledge, Ufo is the first available tool to implement a com-
bined UD/OD algorithm. Moreover, these instantiation of Ufo implement a
novel interpolation-based refinement strategy that computes interpolants (ab-
stractions) for multiple program paths encoded in a single SMT formula. That
is, unlike other tools that enumerate paths explicitly, e.g., [15, 13, 6], Ufo dele-
gates path enumeration to an SMT solver.

3. It is implemented on top of the open-source LLVM compiler infrastruc-
ture [14]. Since LLVM is a well-maintained, well-documented, and continuously
improving framework, it allows Ufo users to easily integrate program analyses,
transformations, and other tools built on LLVM (e.g., Klee [8]), as they be-
come available. Furthermore, since Ufo analyzes LLVM bitcode (intermediate
language), it is possible to experiment with verifying programs written in other
languages compilable to LLVM bitcode, such as C++, Ada, and Fortran.

The architecture and parameterization of Ufo and the underlying LLVM
framework provide users with an extensible environment for experimenting with
different software verification algorithms.

Ufo is available at http://www.cs.toronto.edu/~aws/ufo.

2



2 The Implementation and Architecture of Ufo

Ufo is implemented on top of the LLVM compiler infrastructure [14] – see
Figure 1 for an architectural overview. Ufo accepts as input a C program P
with assertions. For simplicity of presentation, let P = (V, T, φI , φE), where V is
the set of program variables, T is the transition relation of the program (over V
and V ′, the set of primed variables), φI is a formula describing the set of initial
states, and φE is a formula describing the set of error states.

First, P goes through a preprocessing phase where it is compiled into LLVM
bitcode (intermediate representation) and optimized for verification purposes, re-
sulting in a semantically equivalent but optimized program P o = (V o, T o, φoI , φ

o
E).

Then, the analysis phase verifies P o and either outputs a certificate of correct-
ness or a counterexample. A certificate of correctness for P o is a safe inductive
invariant I s.t. (1) φoI ⇒ I, (2) I ∧ T o ⇒ I ′, and (3) I ∧ φoE is UNSAT.

2.1 Preprocessing Phase

We now describe the various components of the preprocessing phase.

C to LLVM. The first step converts the program P to LLVM bitcode using the
llvm-gcc or clang compilers.

Optimizations for Verification. A number of native LLVM optimizations are
then applied to the bitcode, the most important of which are function inlining
(inline) and static single assignment (SSA) conversion (mem2reg). Since Ufo
implements an intraprocedural analysis, it requires all functions to be inlined into
main. In order to exploit efficient SMT program encoding techniques like [12],

int x;

if (x == 0)

func1();

if (x != 0)

func2();

return 1;

Fig. 2. Example pro-
gram.

Ufo expects the program to be in SSA form. A number
of standard program simplifications are also performed at
this stage, with the goal of simplifying verification. The
final result is the optimized program P o. Mapping coun-
terexamples from P o back to the original C program P is
made possible by the debugging information inserted into
the generated bitcode by clang.

Before the above optimizations could be applied, we
had to bridge the gap between the semantics of C assumed by LLVM (built for
compiler construction) and the verification benchmarks. Consider, for example,
the program in Figure 2. After LLVM optimizations, it is reduced to the empty
program: return 1;. LLVM replaces undefined values by constants that result
in the simplest possible program. In our example, the conditions of both if-
statements are assigned to 0, even though they contradict each other. On the
other hand, verification benchmarks such as [5] assume that without an explicit
initialization, the value of x is non-deterministic. To account for such semantic
differences, a Ufo-specific LLVM transformation is scheduled before optimiza-
tions are run. It initializes each variable with a call to an external function
nondet(), forcing LLVM not to make assumptions about its value.

3



Cutpoint Graph and Weak Topological Ordering. A cutpoint graph (CG)
is a “summarized” control-flow graph (CFG), where each node represents a cut-
point (loop head) and each edge represents a loop-free path through the CFG.
Computed using the technique presented in [12], the CG is used as the main
representation of the program P o. Using it allows us to perform abstract post
operations on loop-free segments, utilizing the SMT solver (e.g., in the case
of predicate abstraction) for enumerating a potentially exponential number of
paths. A weak topological ordering (WTO) [7] is an ordering of the nodes of the
CG that enables exploring it with a recursive iteration strategy : starting with
the inner-most loops and ending with the outer-most ones.

2.2 Analysis Phase

The analysis phase, which receives the CG and the WTO of P o from the pre-
processing phase, is comprised of the following components:

ARG Constructor. The ARG Constructor is the main driver of the analysis.
It maintains an abstract reachability graph (ARG) [1] of the CG – an unrolling of
the CG, annotated with formulas representing over-approximations of reachable
states at each cutpoint. ARGs can be seen as DAG representations of abstract
reachability trees (ARTs) used in lazy abstraction [15, 6]. When the algorithm
terminates without finding a counterexample, the annotated ARG represents
a certificate of correctness in the form of a safe inductive invariant I for P o.
To compute annotations for the ARG, the ARG constructor uses three param-
eterized components: (1) the abstract post, to annotate the ARG as it is being
expanded; (2) the refiner, to compute annotations that eliminate spurious coun-
terexamples; and (3) the expansion strategy, to decide where to restart expanding
the ARG after refinement.
Abstract Post. The abstract post component takes a CG edge and a formula
φpre describing a set of states, and returns a formula φpost over-approximating
the states reachable from φpre after executing the CG edge. Ufo includes two
common implementations of abstract post – Boolean and Cartesian predicate
abstractions [3].
Refiner. The refiner receives the current ARG with potential paths to an error
location (i.e., the error location is not annotated with false). Its goal is either
to find a new annotation for the ARG s.t. the error location is annotated with
false, or to report a counterexample. Ufo includes an interpolation-based im-
plementation of the refiner.
Expansion Strategy. After the refinement, the ARG constructor needs to decide
where to restart expanding the ARG. The expansion strategy specifies this pa-
rameter. Ufo includes an eager strategy and a lazy strategy, both of which are
described in the following section.

SMT Solver Interface. Components of the analysis phase use an SMT solver in
a variety of ways: (1) The ARG constructor uses it to check that the annotations
of the ARG form a safe inductive invariant; (2) abstract post, e.g., using predicate
abstraction, encode post computations as SMT queries, and (3) the refiner can

4



use it to find counterexamples and to compute interpolants. All these uses are
handled through a general interface to two SMT solvers: MathSAT51 (used for
interpolation) and Z3 [16] (used for quantifier elimination).

3 Instantiations of Ufo

We have implemented the three instantiations of the algorithm of [1] in Ufo:
(1) an interpolation-based UD instantiation, (2) a predicate abstraction-based
OD instantiation, and (3) a combined OD/UD instantiation that uses predicate
abstraction to augment the interpolation-based analysis. In [1], we showed that
the combined instantiation can outperform both the UD and the OD instan-
tiations. All of these instantiations use a novel interpolation-based refinement
strategy where all paths in the ARG are encoded as a single SMT solver for-
mula, delegating path enumeration to the SMT solver instead of enumerating
them explicitly as done by Impact [15] and Yogi [17].

We now show how these instantiations are produced by defining the three
Ufo parameters: abstract post, refiner, and expansion strategy.

UD Instantiation. In the UD case, the abstract post always returns true, the
weakest possible over-approximation. The annotations returned by the refiner
are used as for the ARG; therefore, they can be seen as a guess of the safe
inductive invariant I. If the guess does not hold, i.e., it is not inductive, then
the lazy expansion strategy starts expanding the ARG from the inner-most loop
where the guess fails [1]. The ARG is then extended and a new guess for I is
made by the refiner.

OD Instantiation. In the OD case, the abstract post is based on either Boolean
or Cartesian predicate abstraction. The annotations returned by the refiner are
used to update the set of predicates but not to guess invariants (and thus an-
notate the ARG) as in the UD case. The expansion strategy used is eager :
expansion is restarted from the root of the ARG, i.e., in each iteration Ufo
computes an abstract post fixpoint from the initial states φI , but with a larger
set of predicates from the one used in the previous iteration.

Combined UD/OD Instantiation. In the combined UD/OD case, Ufo uses
Boolean or Cartesian predicate abstraction [3] to improve guesses of I found
through interpolants. In each iteration, Ufo starts with a guess I, that does
not hold, from the previous iteration. A new set of states Ip, where I ⇒ Ip,
is computed by applying an abstract fixpoint computation, based on predicate
abstraction, starting from the set of states I and using the transition relation
T . Technically, this is performed by expanding the ARG where the guess I
fails (as in the UD case). If Ip is not a safe inductive invariant, a new guess
is computed using interpolants, and the process is restarted. The trade-off in
this case is between the potential for computing invariants in fewer refinements
(guesses) using predicate abstraction and the potentially high cost of predicate
abstraction computations.

1 http://mathsat.fbk.eu

5



4 Conclusion

In this paper, we have described Ufo, a framework and a tool for software verifi-
cation of sequential C programs. As we have shown, by varying the parameters of
Ufo, it can be instantiated into tools employing varying verification techniques,
including an interpolation-based tool, a predicate abstraction-based one, and a
tool that combines the two techniques.

Ufo’s architecture and the fact that is built on top of LLVM provide verifi-
cation algorithm designers with a flexible and extensible platform to experiment
with a wide variety of verification algorithms.

References

1. Albarghouthi, A., Gurfinkel, A., Chechik, M.: “From Under-approximations to
Over-approximations and Back”. In: Proc. of TACAS‘12 (2012)

2. Albarghouthi, A., Gurfinkel, A., Chechik, M.: “Whale: An Interpolation-based Al-
gorithm for Inter-procedural Verification”. In: Proc. of VMCAI’12 (2012)

3. Ball, T., Podelski, A., Rajamani, S.: “Boolean and Cartesian Abstraction for Model
Checking C Programs”. In: Proc. of TACAS’01. vol. 2031, pp. 268–283 (2001)

4. Ball, T., Rajamani, S.: “The SLAM Toolkit”. In: Proc. of CAV’01. LNCS, vol.
2102, pp. 260–264 (2001)

5. Beyer, D.: “Competition On Software Verification” (2012), http://sv-comp.

sosy-lab.org/
6. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: “The Software Model

Checker Blast”. STTT 9(5-6), 505–525 (2007)
7. Bourdoncle, F.A.: “Efficient Chaotic Iteration Strategies with Widenings”. In:

Proc. of FMPA’93. pp. 128–141. LNCS (1993)
8. Cadar, C., Dunbar, D., Engler, D.: “KLEE: Unassisted and Automatic Generation

of High-Coverage Tests for Complex Systems Programs”. In: Proc. of OSDI‘08. pp.
209–224 (2008)

9. Clarke, E., Grumberg, O., Jha, S., Lu, Y., Veith, H.: “Counterexample-Guided Ab-
straction Refinement”. In: Proc. of CAV’00. LNCS, vol. 1855, pp. 154–169 (2000)

10. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: “SATABS: SAT-based Predi-
cate Abstraction for ANSI-C”. In: Proc. of TACAS‘05. LNCS, vol. 3440, pp. 570–
574 (2005)

11. Graf, S., Säıdi, H.: “Construction of Abstract State Graphs with PVS”. In: Proc.
of CAV’97. vol. 1254, pp. 72–83 (1997)

12. Gurfinkel, A., Chaki, S., Sapra, S.: “Efficient Predicate Abstraction of Program
Summaries”. In: Proc. of NFM’11. LNCS, vol. 6617, pp. 131–145 (2011)

13. Kroening, D., Weissenbacher, G.: “Interpolation-Based Software Verification with
Wolverine”. In: Proc. of CAV’11. LNCS, vol. 6806, pp. 573–578 (2011)

14. Lattner, C., Adve, V.: “LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation”. In: CGO’04 (2004)

15. McMillan, K.L.: “Lazy Abstraction with Interpolants”. In: Proc. of CAV’06. LNCS,
vol. 4144, pp. 123–136 (2006)

16. de Moura, L., Bjørner, N.: “Z3: An Efficient SMT Solver”. In: Proc. of TACAS’08.
LNCS, vol. 4963, pp. 337–340 (2008)

17. Nori, A., Rajamani, S., Tetali, S., Thakur, A.: “The Yogi Project: Software Prop-
erty Checking via Static Analysis and Testing”. In: Proc. of TACAS’09. LNCS,
vol. 5505, pp. 178–181 (2009)

6


