
Managing Software Evolution through Semantic

History Slicing

Yi Li

Department of Computer Science

University of Toronto

Toronto, ON, Canada

liyi@cs.toronto.edu

Abstract—Software change histories are results of incremental
updates made by developers. As a side-effect of the software
development process, version history is a surprisingly useful
source of information for understanding, maintaining and reusing
software. However, traditional commit-based sequential organi-
zation of version histories lacks semantic structure and thus
are insufficient for many development tasks that require high-
level, semantic understanding of program functionality, such as
locating feature implementations and porting hot fixes. In this
work, we propose to use well-organized unit tests as identifiers for
corresponding software functionalities. We then present a family
of automated techniques which analyze the semantics of historical
changes and assist developers in many everyday practical settings.
For validation, we evaluate our approaches on a benchmark of
developer-annotated version history instances obtained from real-
world open source software projects on GitHub.

Index Terms—software changes; version histories; program
analysis; software reuse.

I. PROBLEM

Software Configuration Management systems (SCMs) are

widely used in software development practices. These systems,

e.g., Git [1] and SVN [2], are useful for capturing incremental

changes made by developers, examining or reverting changes,

identifying developers responsible for a specific change, cre-

ating development streams, and more. Incremental changes

are manually grouped by developers to form commits (a.k.a.

change sets). Commits are stored sequentially and ordered by

their time stamps, so that it is convenient to trace back to any

version in the history. Branching is another construct provided

by most modern SCM systems. Branches are used, for example,

to store a still-in-development prototype version of a project or

to store multiple project variants targeting different customers.

However, the sequential organization of changes is inflexible

and lacks support for many tasks that require high-level,

semantic understanding of program functionality [3], [4].

For example, developers often need to locate and transfer

functionality from one branch to another: either for porting

bug fixes or for splitting large chunk commits into multiple

functionally-independent pull requests. Identifying failure-

inducing changes in version histories is another challenge

that developers face in their work.

Several SCM systems provide mechanism of “replaying”

commits on a different branch, e.g., the cherry-pick

command in Git. Yet, little support is provided for matching

high-level functionality with commits that implement it: SCM

systems only keep track of temporal and text-level dependencies

between the managed commits. The job of identifying the exact

set of commits implementing the functionality of interest is

left to the developers.

Motivated by these challenges, we propose a new semantics-

based view of software version histories, where a set of related

changes satisfying a common high level property (a.k.a. slicing

criteria) is known as a semantic history slice. As one concrete

instantiation, test cases exercising a software functionality can

be used as slicing criteria to identify the changes implementing

the particular functionality. This dissertation hypothesizes that

the proposed organization of version histories is effective in

software evolution tasks including software understanding,

maintenance, and reuse.

II. RELATED WORK

The proposed semantic history slicing problem is most

related to change impact analysis and change history analysis

including history understanding and manipulation.

Change Impact Analysis. Change Impact Analysis [5] solves

the problem of determining the effects of source code mod-

ifications. It usually means selecting a subset of tests from

a regression test suite that might be affected by the given

change, or, given a test failure, deciding which changes might

be causing it.

Research on impact analysis can be roughly divided into

three categories: the static [6], [5], dynamic [7] and com-

bined [8], [9] approaches. The work most related is on the

combined approaches to change impact analysis. Ren et al. [8]

introduced a tool, Chianti, for change impact analysis of Java

programs. Chianti takes two versions of a Java program and a

set of tests as the input. First, it builds dynamic call graphs

for both versions before and after the changes through test

execution. Then it compares the classified changes with the

old call graph to predict the affected tests; and it uses the new

call graph to select the affecting changes that might cause the

test failures. FaultTracer [9] improved Chianti by extending

the standard dynamic call graph with field access information.

Similar techniques can be used to identify changes relating to

a slicing criterion. However, another challenge in our problem

is to process and analyze the identified changes and ensure

that the final results are semantics-preserving and well-formed.

978-1-5386-2684-9/17 c© 2017 IEEE ASE 2017, Urbana-Champaign, IL, USA
Doctoral Symposium

Accepted for publication by IEEE. c© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

1014



History Understanding and Manipulation. There is a large

body of work on analyzing and understanding software histories.

The basic research goals are retrieving useful information from

change histories to help understand development practices [4],

[10], [11], [12], localize bugs [13], [14], and support predic-

tions [15], [16].

The most relevant take on history analysis is to create

flexible views of the change histories at various granularities

instead of using the fixed commit-based representation. Some

notable approaches include history slicing [12] and history

transformation [17], [4]. The promise of these techniques is

to provide users the most convenient and effective ways of

interacting with change histories and better facilitate the specific

software evolution tasks at hand. For example, Muşlu et al. [4]

introduced the concept of semantics summarization view which

clusters original sequence of commits into semantically related

high-level logical groups. Our proposed approach can be viewed

as an implementation of this concept.

Delta debugging [13] uses divide-and-conquer-style iterative

test executions to narrow down the causes of software failures.

It has been applied to minimize the set of changes which cause

regression test failures. This problem can be considered as

finding minimal semantic history slices with respect to the

failure-inducing properties.

III. PRELIMINARIES

Functionality Tests. We assume that high level software

functionalities such as features and bug fixes can be captured

by tests and the execution trace of a test is deterministic [18].

A test t is a predicate t : P 7→ B such that for a given program

p, t(p) is true if the test succeeds, and false otherwise. A test

suite is a collection of tests that can exercise and demonstrate

the functionality of interest. Let a test suite T be a set of test

cases {ti}. We write p |= T if and only if a program p passes

all tests in T , i.e., ∀t ∈ T · t(p).

Commit and Commit History. Let a commit be a partial

function ∆ : P 7→ P which takes a program version p and

transforms it to produce a new program version ∆(p). A

commit is a collection of hunks [19], [20] {δ0, . . . , δn}, in

no particular order, each representing a set of line changes

with an approximate locality. Composing hunks is equivalent

to applying the original commit, i.e., ∆ = δ0 ◦ · · · ◦ δn.

A commit history is a sequence of commits H =
〈∆1, . . . ,∆k〉. A sub-history is a sub-sequence of a history,

i.e., a sequence derived by removing changes from H without

altering the ordering. We write H ′ ⊆ H indicating that H ′

is a sub-history of H , and refer to 〈∆i, . . . ,∆j〉 as Hi..j . We

use SH(H) to denote the set of all sub-histories of H .

IV. PROPOSED SOLUTIONS

To tackle the problem described in Sect. I, we propose a

formal definition of semantics-preserving slice and then discuss

two different approaches for finding such history slices.

SH(H): all sub-histories of H

H

(non-minimal)

semantics-
preserving slices

H∗

minimal slices

1-minimal
H ′ ⊆T H

Fig. 1. Relationships between various history slices.

A. Semantics-Preserving History Slices

Consider a program p0 ∈ P and its n subsequent versions

p1, . . . , pn such that they are all well-formed. Let H be the

original commit history from p0 to pn, i.e., H1..i(p0) = pi for

all integers 0 ≤ i ≤ n. Let T be a set of tests passed by pn,

i.e., pn |= T ; T is fixed once chosen.

Definition 1. (Semantics-preserving slice [20]). A semantics-

preserving slice of history H with respect to T , denoted by

H ′
⊳T H , is a sub-history of H , i.e., H ′ ⊆ H , such that

H ′(p0) |= T .

Definition 2. (Minimal semantics-preserving slice [21]). A

semantics-preserving slice H∗ is a minimal if ∀Hsub ⊂ H∗ ·
Hsub 6|= T .

As shown in Fig. 1, there are several special kinds of

semantics-preserving slices. First, H is a semantics-preserving

slice of itself, but it may not be minimal. Second, minimal

semantic slices (H∗) are slices which are semantics-preserving

and cannot be reduced further. Finally, computing minimal

semantics-preserving slices is expensive [21], so we often

compute an approximation known as the 1-minimal semantic

slice – a slice which cannot be further reduced by removing

any single commit. In practice, 1-minimal slices are often

minimal [22].

B. Finding Semantics-Preserving Slices

With the presence of adequate tests for a functionality, and

the corresponding development history, semantic history slicing

is a technique which uses tests (slicing criteria) to identify

commits in the history (i.e., a semantics-preserving slice) that

contribute to the implementation of the given functionality.

A trivial but uninteresting solution to this problem is the

original history H itself. Shorter slicing results are preferred

over longer ones, and the optimal slice is the shortest sub-

history that satisfies the above properties. However, the

optimality of the sliced history cannot always be guaranteed by

polynomial-time algorithms. Since the test case can be arbitrary,

it is not hard to see that for any program and history, there

always exists a worst case input test that requires enumerating

all 2k sub-histories to find the shortest one. The naïve approach

of enumerating sub-histories is not feasible as the compilation

and running time of each version can be substantial. Even if a

1015



compile and test run takes just one minute, enumerating and

building all sub-histories of only twenty commits would take

approximately two years. In fact, it can be shown that the

optimal semantic slicing problem is NP-complete by reduction

from the set cover problem. We omit the details of this argument

here.

To balance between performance and precision, we devise

two different algorithms for semantic history slicing, namely

the static slicing and dynamic slicing approaches.

Static Slicing Based on Dependency Analysis. The static

approach mostly relies on static analysis of dependencies

between change sets and is therefore much cheaper in terms

of running time. CSLICER [20] is an efficient static slicing

algorithm which requires only a one-time effort for compilation

and test execution.

The actual slicing process consists of two phases, a generic

history slicing algorithm which is independent of any specific

SCM system in use, and an SCM adaptation component that

adapts the output produced by the slicing algorithm to specifics

of SCM systems. The slicing algorithm conservatively identifies

all atomic changes in the given input history that contribute to

the functional and compilation correctness of the functionality

of interest. The SCM adaptation component then maps the

collected set of atomic changes back to the commits in the

original change history. It also takes care of merge conflicts that

can occur when cherry-picking commits in text-based SCM

systems such as SVN and Git. CSLICER is designed to be

conservative in the first phase and thus can be imprecise.

Dynamic Slicing Through Delta Refinement. In contrast, the

dynamic approach executes tests multiple times and directly

observes the test results while attempting to shorten the history

slices iteratively. The semantic slices found by the dynamic

approach are guaranteed to be minimal, but the running time

is usually much longer.

DEFINER [22] derives a small and precise semantic slice

through the more expensive repeated test executions in a divide-

and-conquer fashion that is very similar to delta debugging [13].

The high-level idea is to partition the input history by dropping

some subset of the commits and opportunistically reduce the

search space when the target tests pass on one of the partitions,

until a minimal partition is reached. To speed up the process,

DEFINER also uses observed test pass/fail signals and dynamic

program invariants to predict the significance of change sets

with respect to the target tests.

DEFINER operates on the commit-level, and the history

slices produced by DEFINER is guaranteed to be 1-minimal –

removing any single commit from the history slice will break

the desired semantic properties.

V. APPLICATIONS

We have successfully applied the history slicing techniques in

many development tasks including back-porting bug fixes [20],

creating self-contained and easy-to-merge pull requests [21],

locating feature implementations and building feature mod-

els [23] to assist evolution understanding.

Feature Relationship Graph

Release

f1

f2

f3

relates-to

history

depends-on

∆1 ∆2 ∆3 ∆4

Fig. 2. Feature-implementing changes and feature relationship graph extracted
from a release history.

A1. Porting Functionalities Across Versions. The first use

case of semantic slicing is to identify the set of commits

required for back-porting a functionality to earlier versions of

a software project. Even in very disciplined projects, when such

commits can be identified by browsing their associated log

messages, the functionality of interest might depend on earlier

commits in the same branch. To ensure correct execution of

the desired functionality, all change dependencies have to be

identified and migrated as well, which is a tedious and error-

prone manual task. Given test cases for the functionalities to be

ported, semantic slicing techniques can automatically compute

the required changes and, at the same time, effectively avoid

including unnecessary changes.

A2. Creating Pull Requests. Another important use case

of semantic slicing is creating logically clean and easy-to-

merge pull requests. Often, a developer works on multiple

functionalities at the same time which could result in mixed

commit histories concerning different issues. However, when

submitting pull requests for review, contributors should refrain

from including unrelated changes as suggested by many project

contribution guidelines. Despite the efforts of keeping the

development of each issue on separate branches, isolating

each functional unit as a self-contained pull request is still a

challenging task. For a particular pull request, the test cases

created for validation can be used as slicing criteria to identify

relevant commits from the developers’ local histories in their

forked repositories.

A3. Identifying Features and Feature Relationships. Iden-

tifying features in cloned product line variants is important

for a variety of software development tasks such as sharing

features between variants and refactoring cloned variants

into single-copy software product line (SPL) representations.

Semantic slicing is an effective way of locating feature-

implementing changes in software version histories with the

presence of feature tests. For example, Fig. 2 shows the

mapping between features and their corresponding commits

identified by semantic slicing within a single release history:

f1 7→ {∆1}, f2 7→ {∆1,∆2,∆3}, f3 7→ {∆2,∆3,∆4}. In

1016



addition, the resulting feature relationship graph is useful

for understanding dependencies and connections between

features from an evolutionary view point. Each valid product

has to respect the inferred depends-on relationships in order

to function correctly. The relates-to relationships indicate

connections between features. They often reveal underlying

hidden dependencies which are essential across the system.

A4. Evolution Management Framework. In order to unify

different semantic slicing algorithms and provide software

developers a flexible and ready-to-use tool for various evolution

management tasks, we plan to build a cloud-based history

slicing service framework. The front-end of the tool chain is a

Web application closely integrated with the GitHub APIs to

allow access to users’ repository meta data and project version

histories. The user interface visualizes various options and

slicing results to allow more user friendly interactions with the

underlying techniques. The back-end runs on a central server

and implements a number of important optimizations including

parallelization and caching of slicing results. It also seamlessly

switches between different history slicing algorithms according

to specific usage scenarios.

VI. PLAN FOR EVALUATION

In our preliminary work, we have developed experimental

support to evaluate the efficiency and effectiveness of our

semantic slicing techniques. More specifically, we implemented

prototype tools for both the CSLICER and the DEFINER

slicing algorithms. The tools work with Java projects hosted

in Git repositories and they are available at: bitbucket.org/

liyistc/gitslice. We also constructed a dataset [24] of 100

history slicing problem instances collected from 8 real-world

software projects. The ground truth for each instance is obtained

through the delta debugging-style history partition, and thus

it is guaranteed to be 1-minimal. The dataset is available at:

github.com/Chenguang-Zhu/DoSC.

An additional evaluation strategy is the development of

case studies. We developed case studies on several evolution

management tasks in earlier work [20], [21], [23]. We plan

to conduct new case studies on additional development tasks,

especially with the proposed evolution management framework

mentioned in Sect. V.

Ultimately, we intend to evaluate our approach with a com-

prehensive user study on both experienced and inexperienced

developers. The study will help us evaluate the usability of our

tool chain and provide further confidence on the effectiveness

of our techniques through direct comparisons with manual

operations.

VII. CONTRIBUTIONS AND STATUS

This PhD work presents a new semantics-based view

of software version histories and proposes the use of the

semantic history slicing techniques to support various evolution

management tasks. We described the work done so far on

problem formalization and several alternatives for computing

the solutions. Specifically, two semantic slicing algorithms

have been proposed and implemented as prototype tools. We

demonstrated applications of the proposed techniques in many

practical usage scenarios (A1, A2 and A3). The construction

of an evolution management framework is still in progress

(A4). We also discussed next steps and presented a plan for

evaluation.

ACKNOWLEDGMENTS

This work is part of a PhD thesis supervised by Prof. Marsha

Chechik. Thanks to my supervisor and my collaborators, Julia

Rubin and Chenguang Zhu, for their valuable input.

REFERENCES

[1] Git Version Control System. [Online]. Available: https://git-scm.com
[2] Apache Subversion (SVN) version control system. [Online]. Available:

http://subversion.apache.org
[3] J. Rubin, A. Kirshin, G. Botterweck, and M. Chechik, “Managing Forked

Product Variants,” in Proc. of SPLC’12, 2012, pp. 156–160.
[4] K. Muşlu, L. Swart, Y. Brun, and M. D. Ernst, “Development History

Granularity Transformations,” in Proc. of ASE’15, November 2015, pp.
697–702.

[5] R. S. Arnold, Software Change Impact Analysis. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1996.

[6] D. C. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and C. Chen, “Change
Impact Identification in Object Oriented Software Maintenance,” in Proc.

of ICSM’94. IEEE Computer Society, 1994, pp. 202–211.
[7] J. Law and G. Rothermel, “Whole Program Path-Based Dynamic Impact

Analysis,” in Proc. of ICSE’03. IEEE, May 2003, pp. 308–318.
[8] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A Tool

for Change Impact Analysis of Java Programs,” in Proc. OOPSLA’04.
ACM, 2004, pp. 432–448.

[9] L. Zhang, M. Kim, and S. Khurshid, “Localizing Failure-inducing
Program Edits Based on Spectrum Information,” in Proc. of ICSM’11.
IEEE, 2011, pp. 23–32.

[10] E. Murphy-Hill, C. Parnin, and A. P. Black, “How We Refactor, and
How We Know It,” IEEE Transactions on Software Engineering, vol. 38,
no. 1, pp. 5–18, Jan 2012.

[11] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Early Detection
of Collaboration Conflicts and Risks,” IEEE Transactions on Software

Engineering, vol. 39, no. 10, pp. 1358–1375, Oct. 2013.
[12] F. Servant and J. A. Jones, “History Slicing,” in Proc. of ASE’11, 2011,

pp. 452–455.
[13] A. Zeller, “Yesterday, My Program Worked. Today, It Does Not. Why?”

in Proc. of ESEC/FSE-7. Springer-Verlag, 1999, pp. 253–267.
[14] R. Saha and M. Gligoric, “Selective Bisection Debugging,” in Proc. of

FASE’17. Springer-Verlag New York, Inc., 2017, pp. 60–77.
[15] T. Zimmermann, P. Weisgerber, S. Diehl, and A. Zeller, “Mining Version

Histories to Guide Software Changes,” in Proc. of ICSE’04. IEEE
Computer Society, 2004, pp. 563–572.

[16] K. Herzig and A. Zeller, “The Impact of Tangled Code Changes,” in
Proc. of MSR’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 121–130.

[17] S. Hayashi, T. Omori, T. Zenmyo, K. Maruyama, and M. Saeki,
“Refactoring Edit History of Source Code,” in Proc. of ICSM’12. IEEE,
September 2012, pp. 617–620.

[18] G. Rothermel and M. J. Harrold, “Analyzing Regression Test Selection
Techniques,” IEEE Transactions on Software Engineering, vol. 22, no. 8,
pp. 529–551, Aug 1996.

[19] J. Ferzund, S. N. Ahsan, and F. Wotawa, “Empirical Evaluation of Hunk
Metrics As Bug Predictors,” in Proc. of IWSM’09, 2009, pp. 242–254.

[20] Y. Li, J. Rubin, and M. Chechik, “Semantic Slicing of Software Version
Histories,” in Proc. of ASE’15, November 2015, pp. 686–696.

[21] Y. Li, C. Zhu, J. Rubin, and M. Chechik, “Semantic Slicing of Software
Version Histories,” IEEE Trans. on Software Engineering, 2017.

[22] Y. Li, C. Zhu, J. Rubin, and M. Chechik, “Precise Semantic History
Slicing through Dynamic Delta Refinement,” in Proc. of ASE’16,
September 2016, pp. 495–506.

[23] Y. Li, C. Zhu, J. Rubin, and M. Chechik, “FHistorian: Locating Features
in Version Histories,” in Proc. of SPLC’17, September 2017.

[24] C. Zhu, Y. Li, J. Rubin, and M. Chechik, “A Dataset for Dynamic
Discovery of Semantic Changes in Version Controlled Software Histories,”
in Proc. of MSR’17, May 2017, pp. 523–526.

1017


