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Abstract

In images of complex scenes, objects are often occluding each other which makes
perception tasks such as object detection and tracking, or robotic control tasks
such as planning, challenging. To facilitate downstream tasks, it is thus important
to reason about the full extent of objects, i.e., seeing behind occlusion, typically
referred to as amodal instance completion. In this paper, we propose a variational
generative framework for amodal completion, referred to as Amodal-VAE, which
does not require any amodal labels at training time, as it is able to utilize widely
available object instance masks. We showcase our approach on the downstream task
of scene editing where the user is presented with interactive tools to complete and
erase objects in photographs. Experiments on complex street scenes demonstrate
state-of-the-art performance in amodal mask completion, and showcase high quality
scene editing results. Interestingly, a user study shows that humans prefer object
completions inferred by our model to the human-labeled ones.

1 Introduction

One of the most remarkable properties of the human visual system is the ability to rapidly recognize
objects and understand their spatial extent in complex visual scenes, even when objects are barely
visible due to occlusion [9, 42]. This is important, as it allows humans to more accurately anticipate
what can happen a few moments into the future, and plan accordingly. We expect such a capability to
also benefit robotic systems. Reasoning about objects and their extent is also key in other contexts,
for example, in semantic image editing tasks. Imagine a user that wants to erase an object from a
photograph, and possibly even manipulate objects that are partially hidden behind it. To do this, an
A.I. system needs to be able to “complete” the occluded objects in the scene, both in their spatial
extent, i.e., their masks, as well as in appearance. This problem is typically referred to as amodal
instance completion, and is an important component of many applications.

However, most research in the domain of semantic segmentation, has focused on the “modal” per-
ception of the scene [6, 11, 34], i.e., segmenting visible pixels of the objects, for which large-scale
annotated datasets are available [7, 23, 41]. The lack of labeled data for amodal segmentation is
likely due to the difficulty and ambiguity of the annotation task. Amodal annotation of occluded
objects requires a human labeler to draw an imagined contour rather than tracing a visible contour in
an image, which requires drawing skills that not all annotators possess. In cases where objects are
highly occluded there may also be multiple valid hypotheses for a plausible completion.

In this work, we propose a variational generative framework for amodal instance completion, called
Amodal-VAE. It does not require amodal labels at training time, and exploits instance masks of
visible parts of the objects that are widely available in current datasets. Our approach learns to
reconstruct full objects from partial masks by training a variational autoencoder in carefully designed
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Figure 1: We present a new method for amodal object completion (top), and showcase our work on scene
editing (bottom). User is presented with interactive tools to complete, erase, and manipulate objects in an image.

stages that allow us to model the complete mask with a low-dimensional latent representation. The
probabilistic framework naturally incorporates the ambiguity in the mask completion task, and is able
to produce multiple plausible completions which existing work cannot. We showcase our approach
on the downstream task of scene editing where the user is presented with interactive tools to complete
and erase objects in an image. Experiments demonstrate significant improvements over the recently
released state-of-the-art approach [39]. A user study further reveals that participants strongly prefer
amodal masks produced by our model over the human-annotated amodal masks.

2 Related Work

We focus our review on amodal mask completion which is the primary contribution of our work.
The task of amodal instance segmentation aims at segmenting both visible and occluded parts of
an object instance. This is in contrast to traditional semantic segmentation [34, 6] or instance
segmentation tasks [11, 28, 1, 24], which aim to segment only the visible pixels of an object. Prior
work usually decomposes amodal instance segmentation into instance segmentation and amodal mask
completion. Supervision is needed for both stages, typically resorting to either synthetic datasets or
human-provided labels, which we discuss below.

Real Datasets: Recently, human-labeled real datasets have been collected for amodal instance seg-
mentation. Authors extended KITTI [10] to create KINS [27], and COCO [23] to create COCOA [42].
However, there is little available labeled data, in part due to the ambiguity of the labeling task.

Synthetic Datasets: One plausible way to get amodal labels is to exploit graphics renderers [14,
43, 17]. In [14], a photo-realistic video dataset is extracted from the GTA-V game along with pixel-
accurate masks. In [16], 3D models are aligned with images from PASCAL 3D+ [36] and rendered
along with their annotated 3D pose to obtain masks and amodal bounding boxes. In [8], the authors
created DYCE by taking snapshots from 3D synthetic scenes [43]. While 3D content provides labels
for “free" via rendering, it is not widely available and typically lacks diversity and realism.

Simulated Data: A simple way to utilize real data annotated with instance (but not amodal) masks
is by simulating occlusion, i.e., by overlaying objects on top of other objects [21, 37, 39]. One
problem with this type of approach is that the composited images do not look natural and thus
appearance-based models may not generalize well to real images. [37] created OVD (Occluded
Vehicle Dataset) by randomly placing pedestrians and vehicles on base images and exploited the
Deep Harmonization [35] technique to make synthetic images look natural. Our work, while also
relying on occlusion simulation, does so only for object masks, ignoring appearance altogether. Our
method can thus exploit either rendered masks, or masks from one dataset for use on another dataset.

Methodology: In most prior work, labels, either real or synthetic, are used in a standard supervised
framework. In [21], the authors perform amodal segmentation by iteratively expanding the bounding
box around an instance mask based on heat intensity. [27] proposes an occlusion classification branch
on top of RPN [28]. In addition to the standard mask prediction loss, [37] utilizes a discriminator loss
to encourage amodal predictions to look more similar to amodal masks rendered via the Shapenet
dataset [5]. Our work also bears similarity to the recent De-occlusion paper [39] due to the application
to scene editing. However, the approaches for mask completion differ in methodology, where ours
frames the problem probabilistically, while [39] is a deterministic method.
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Related to our work is [32, 38], where the authors train a VAE [20] to learn a 3D shape prior. This
prior is then used to generate closed 3D meshes [32] from partial point cloud observations.

Several unsupervised methods have also been proposed for amodal mask completion. Prior works
treat amodal completion as a contour completion problem, usually recovered by minimizing shape
energy. [18] uses Euler spirals, [30] exploits Contour-Completion Random Fields and [22] utilizes
minimum Hamiltonian cycles and Bezier curves. However, most of these unsupervised methods
focus on simple shapes and cannot easily be scaled to real world datasets.

3 Background and Problem Formulation

In this section, we review Variational Autoencoders (VAEs) and we formally define the problem of
amodal instance completion, which we are addressing.

3.1 Variational Autoencoders

Given a dataset D = {yi}
N
i=1, the VAE framework enables us to learn a latent variable generative

model p(y, z) = pw1
(y|z)p(z), where p(z) is a prior distribution over latent variables and pw1

(y|z)
is a likelihood distribution, usually interpreted as a decoder and typically parametrized by a neural
network with parameters w1 [20, 29]. Since the true posterior distribution p(z|y) is intractable,
VAEs employ an auxiliary approximate posterior distribution or encoder qw2

(z|y), parametrized by
another neural network with parameters w2. When additional information about the data is available,
such as the samples’ classes or categories c, the framework can be extended to conditional VAEs, in
which the encoder, prior and decoder can be conditioned on this class information [19, 31].

VAEs are trained via variational inference, maximizing the Evidence Lower BOund (ELBO). Here,
we consider the case in which only the encoder is conditioned on additional class information c that
is available for all samples in the dataset D. The ELBO then is

LVAE(w1,w2) = Ey,c∼D

[

Ez∼qw2
(z|y,c)[log pw1

(y|z)]− λDKL(qw2
(z|y, c)‖p(z))

]

(1)

When calculating gradients during training, the expectation over the data is estimated using mini-
batches and the expectation over the latent variables z is usually calculated using a single sample from
the approximate posterior. Parameter updates are done with stochastic gradient descent, employing
the re-parameterization trick [20, 29]. Due to the KL-regularization, the model learns to encode
data y in an efficient low-dimensional latent representation z. Although strict variational inference
corresponds to λ = 1, it has been shown that different values of λ allow us to carefully control the
balance between the KL and the reconstruction terms [3, 40, 2, 13, 4], which can be beneficial.

3.2 Amodal Instance Completion

Let D = {ŷi}
N
i=1, be a dataset of “partial” instance object masks ŷi ∈ Ŷ in images. We can define

an Amodal Mask Completion method as a mapping f : Ŷ → Y with completed masks yi ∈ Y. In
words, the amodal instance completion task recovers the occluded part of a particular object from the
partially occluded instance mask. If available, we can use additional information in the function f ,
such as the images’ RGB pixel values or the instances’ classes ci, like in the VAE framework. Note

that, formally, the set of realistic complete masks Y is a subset of all possible partial masks Ŷ.

4 Variational Object Completion

A trivial solution to the task of Amodal Mask Completion would be collecting a training dataset
Dtrain = {yi, ŷi}

N
i=1 consisting of paired partial masks ŷi and corresponding complete masks yi

(and potentially additional information, such as instance classes ci). Then, we could fit a parametric
model, i.e. a neural network, to it by treating it as an image segmentation problem. However,
annotating an amodal dataset is challenging, time-consuming, expensive and sometimes ambiguous,
as objects resulting from occlusions may not even be well-defined. The resulting annotations may
vary from individual to individual, which could also make learning more difficult. Instead, we exploit

a weakly-supervised approach, where we have access to data with only partially visible masks (Ŷ)
and separate data with only full masks (Y). As shown in Figure 2, we are using a VAE framework,
in which we first encode partially visible masks ŷ into a smooth latent space and then decode the
resulting latent codes z into the full masks y.
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Figure 2: Amodal-VAE: We first encode partially visible masks ŷ into a low-dimensional latent space and then
decode the latent code z into the full mask y and resize it. Furthermore, we can sample different latent codes
from the approximate posterior distribution. These samples correspond to different plausible mask completions.

A crucial advantage of the probabilistic VAE-based framework is that it naturally captures the
ambiguity when completing partial masks in its posterior distribution (see Fig 6). Furthermore, it
also deals gracefully with inputs that it is uncertain about. Since the model is trained such that all
points under the prior distribution map to realistic completed masks, slightly erroneous latent code
predictions still decode into well-defined outputs. We denote our model as Amodal-VAE. Next,
we present our Amodal-VAE and how we train it in order to overcome the previously discussed
challenges in more detail.

4.1 Learning to Reconstruct Full Objects

We start by presenting the high-level architecture of Amodal-VAE. For simplicity, we assume a
factorial Normal prior distribution p(z) ∼ N (0, I) and factorial Normal approximate posteriors
qw2

(z|y, c) and q̂w3
(z|y, c) with means and standard deviations parametrized via convolutional

neural networks that also see the objects’ categories c, which are available in all datasets we are
working with or can be predicted if necessary. The decoder pw1

(y|z) is a factorial Bernoulli
distribution, predicts binary masks, and is parametrized using a deconvolutional neural network (see
supplementary material for details). To best leverage the two separate datasets Y with fully visible

masks and Ŷ with partially visible masks, we train Amodal-VAE in three stages.

(1) Full-Mask-only Training: We want Amodal-VAE to generate only realistic full masks, even
when provided with partial masks that are significantly occluded as input. Hence, during the first step
we focus on learning the generative component pw1

(y|z)p(z) of the model and we train Amodal-
VAE on full masks only. Amodal-VAE is trained using the ELBO defined in Eq. 1 on Y. It learns
low-dimensional representations of complete masks of real objects in its continuous latent space.

(2) Simulated Partial-to-Full-Mask Training: After (1), any point in latent space under the
prior maps to a realistic completed mask. Now, based on the full mask data, we simulate various
occlusions, hence generating a synthetic dataset of paired partial and complete masks of the form
Dtrain = {yi, ŷi}

N
i=1. Freezing the previously learnt decoder, i.e. the decoder pw1

(y|z), we then
learn a new encoder q̂w3

(z|ŷ, c) with parameters w3 that maps partial masks ŷ to points in latent
space z that decode into the correct completed masks y.

For constructing the synthetic dataset, we sample random instances yforeground and yinstance from Y

and mask out yinstance by randomly positioning yforeground in front of it, similar to [39]. We can now
maximize the following adapted ELBO objective

LAmodal-VAE(w3) = Eŷ,y,c∼Dtrain

[

Ez∼q̂w3
(z|ŷ,c)[log pw1

(y|z)]− λDKL(q̂w3
(z|ŷ, c)‖p(z))

]

(2)

where ŷ are the simulated partial masks, y are the full masks, and c is additional object class
information. Notice that only the new encoder parameters w3 are optimized and that we do not use
the RGB image information.
The composition of the new encoder with the frozen decoder forms the amodal instance completion
mapping, which we can formally express as f(ŷ, c) = pt

w1
(q̂µ

w3
(ŷ, c)), where we defined the

deterministic functions q̂µ
w3

(ŷ, c) as the mean of q̂w3
(z|ŷ, c) and pt

w1
(z) as the binary output mask

calculated from pixelwise Bernoulli probabilities pw1
(y|z) with threshold t.

Intuitively, the first term in Equation 2 is the reconstruction loss that guides the encoder to find an
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Figure 3: Qualitative results of amodal completion. Top: Results on KINS. Bottom: Results on Cityscapes.

GT Our Prediction GT Our Prediction

Figure 4: Results of Amodal-VAE vs human-annotated amodal masks. Results are shown on KINS test set.

appropriate position in the low dimensional Gaussian manifold which is decoded to Y. The second
term, the KL loss, regularizes the new approximate posterior q̂w3

(z|ŷ, c) to generate only encodings
that fall under the prior distribution p(z). Because of the first training step and since we keep the
decoder frozen, all such encodings z map to complete masks.

To aid the new encoder to more easily search the latent space, we exploit an additional latent code
distance loss. We pull encodings from complete and corresponding partial masks close to each other,
since they both need to decode into the same full masks. We minimize the following loss:

LLatentCode(w3) = Eŷ,y,c∼Dtrain

[

Eẑ∼q̂w3
(z|ŷ,c),z∼q̂w3

(z|y,c)
1

2
[ẑ − z]

2

]

, (3)

for paired ŷ and y. We approximate the inner expectation using single samples from the approximate
posteriors. We found adding this loss to the ELBO objective to slightly increase performance.
However we found that it can’t replace the reconstruction loss. The final loss becomes:

L(w3) = LLatentCode(w3) + LAmodal-VAE(w3) (4)

(3) Partial-Mask-only Finetuning: In the third training stage, we “finetune” the Amodal-VAE

by training its encoder in standard VAE-fashion using only partial masks from Ŷ, masking out all
non-visible pixels. Finetuning the Amodal-VAE in this way helps the model to deal with complex
realistic occlusions, which may not occur during the occlusion simulation in (2), for example since
we only use single foreground instances to create simulated occlusions. The decoder remains frozen.
For a partially visible mask ŷ, we define its visible pixels as ŷvis. We can define an ELBO as

LFinetuning(w3) = E
ŷ,c∼Ŷ

[

Ez∼q̂w3
(z|ŷ,c)[log pw1

(ŷvis|z)]− λDKL(q̂w3
(z|ŷ, c)‖p(z))

]

(5)

where we consider only the reconstruction loss on the visible pixels.

In training stages (2) and (3), we additionally apply a spatial transformer network on the output, that
learns to resize the completed masks such that they can be pasted back into the scene (see Sec 4.2).

Motivation: One may ask, why separate training stages (1) and (2)? When learning the actual
amodal completion model in step (2), the approximate posterior sees different partial masks, which
can look entirely different due to different simulated occlusions, but that nevertheless map to similar
completed masks. Alternatively, similar partial masks may correspond to very different completed
masks. Training on such data constitutes a very difficult and ambiguous learning problem, unlike
regular VAE training. If the generative component, i.e. the decoder, was also trained like this, it
would result in a weaker model encoding less information in latent space. Therefore, we found it to
be beneficial to separately train the generative component in robust standard-VAE fashion with full
masks only first and then freeze it. After all, we know that we want to generate only ever full masks.
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In other words, we are separating the difficulty of learning a high quality generative component from
the difficulty of learning to map many different partial masks to similar completed masks and vice
versa. Note that we also have to train the spatial transformer in step (2). It is easier to first learn the
decoder on full masks only and then separately learn the spatial transformer on top of the “correct”
decoder, instead of training both simultaneously.

4.2 Resizing Completed Masks with Spatial Transformers

Both input and output of Amodal-VAE are tightly cropped 2D instance masks, separately resized
or squeezed to the model’s fixed input and output dimensions. Therefore, the output masks are not
in the same scale as the partial input masks. Because of that, we cannot simply resize and paste the
completed masks back into the image. To overcome this hurdle, we learn an affine transformation that
shifts and scales the output mask to correct for the discrepancy. The output mask can then be pasted
back into the full image using the resizing and positioning of the partial input mask (see Fig 2).

With an instance’s partial mask ŷ and completed mask y, generated by Amodal-VAE’s decoder in
the VAE’s fixed output dimensions, we learn a spatial transformation function gθ(y, ŷ) → y′ such
that the transformed y′ is the completed mask in the same scale and at the same position as the input
mask ŷ. Specifically, we first predict the transformation parameters

(tx, ty, sx, sy) = gθ(y, ŷ) Aθ =

[

sx 0 tx
0 sy ty

]

(6)

where gθ is a neural network and Aθ is a 2D affine transformation matrix that is applied to each pixel
in y and used to do differentiable image sampling as defined in [15]. The transformation defined
through gθ and Aθ is end-to-end differentiable and can be trained by backpropagation together with
the Amodal-VAE. The spatial transformer function, operating on the Amodal-VAE output, is trained
during training stages (2) and (3) (in training stage (1) we train on complete masks only).

5 Experiments

We now extensively evaluate our Amodal-VAE and show its application to interactive scene editing.
Please refer to supplementary material for training and model implementation details.

Dataset: We focus on street scenes in this paper. KINS [27] is a large scale dataset derived from
KITTI [10], which contains both instance and amodal annotations. The dataset consists of 7,474
images for training and 7,517 images for testing. There are 18,241 and 17,646 complete instances
in the training and test set respectively. Following [39], we use the first ≈ 10% images from the
test set as validation set (750 images in total). In this paper, we only exploit instance masks in
training and amodal ground truth labels are only used for evaluation. The Cityscapes dataset [7]
contains 5,000 images of driving scenes, including 2,975 images for training, 500 for validation,
and 1,525 for testing. In the training set, 11,251 out of 52,469 instances are without occlusion. The
instance masks in Cityscapes are finely annotated for the visible portions of the objects, however, no
amodal annotations are available. In this paper, we treat Cityscapes as an additional dataset to test
generalization of our approach.

5.1 Amodal Mask Completion

Comparisons: We first benchmark our approach for the task of amodal mask completion. To
compare with baseline models, we use the amodal completion setting introduced in [39], where at test
time RGB images and ground truth (GT) instance masks are provided as input to our model. Since our
model does not exploit specific foreground occlusion masks as input, we use the De-occlusion-NOG
(no order grounding) setting as a baseline.

The performance of our model on KINS is shown in Table 1. Because occluded regions are relatively
small compared to full masks, the input instance masks have a high 87.03% mean Intersection over
Union (mIOU) with the GT full masks. For this reason, we separately evaluate mIOU on the invisible
area only as well. Results show that Amodal-VAE outperforms the state-of-the-art De-occlusion [39]
model by 5.66% for invisible mIOU and 0.64% for full mIOU, which is a significant improvement.

For another baseline experiment, we generate a synthetic dataset from the KINS training set. Using the
full mask data, for each mask we simulate 5 different occlusions by randomly pasting another mask
as foreground, hence generating a synthetic dataset of paired partial and complete masks consisting
of 91,205 examples. We can now use a nearest neighbor-based approach for mask completion. We
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Method GT Crop mIOU Invis. mIOU

Instance Mask ✗ 87.03 0

Nearest Neighbor Mask ✗ 93.71 54.97

De-occlusion ✗ 94.04 57.19

Amodal-VAE ✗ 94.68 62.85

RGB-Amodal-VAE ✗ 94.53 61.97

Amodal-VAE + GT Box X 97.64 82.30

Table 1: Amodal Completion on KINS. Invisible mIOU
means we evaluate mIOU only on invisible areas. GT Crop
denotes that input is cropped by GT amodal bounding box.

Method Full mIOU Invisible mIOU

Amodal-VAE 94.68 62.85

w/o. Full-Mask training 94.28 58.92

w/o. Simulated training 83.30 35.82

w/o. Likelihood training 94.04 57.04
- Latent Space L2 loss 94.02 56.90

w/o. Class Conditioning 93.56 53.03

Table 2: Ablation study of Amodal-VAE on KINS.
Table 3: Examples showing our shape and
appearance completion on KINS. Left: before
completion; Right: after completion

compute the cosine similarity between an input partial mask and the synthetic partial masks and then
use as output the full mask corresponding to the synthetic partial one with the highest similarity to the
input. Results show that Amodal-VAE outperforms this baseline (Nearest Neighbor Mask in Table 1).

We further ablate the use of the RGB information as additional input to the VAE. After the full-
mask-only training stage, we use a ResNet-50 pretrained on ImageNet, which takes cropped RGB
images as input, concatenate the ResNet’s features and the mask encoder output, add two further
convolutional layers to merge the two, and predict the latent code posterior distribution. The ResNet
is finetuned together with all other trainable parameters and we optimize the setup’s hyperparameters
and report the best result. As shown in Table 1, line RGB-Amodal-VAE, the additional RGB-based
image features do not boost performance. Hence, for our main Amodal-VAE model we discard the
RGB input for simplicity. It is possible that a more carefully designed model architecture will be able
to extract more useful information from the RGB input as the slight decrease in performance might
seem counterintuitive, but we leave this for future research.

In the experiments above, we always tightly crop the instance mask. However, in an interactive scene
editing tool, users can be asked to provide the amodal box. Thus, we evaluate our method also by
utilizing GT amodal bounding boxes, which precisely indicate the extent of the occluded area. In these
experiments (Amodal-VAE + GT Box), we achieve 97.64% and 82.30% mIOU, respectively. This
suggests that there is much room for improvement by better cropping the input masks automatically.

Posterior sampling: To further motivate the use of a probabilistic model, we show quantitative
results from multiple posterior predictions. For each partial mask instance, we sample 20 latent codes
from the approximate posterior distribution and decode to the corresponding completed masks. We
calculate mIOU using masks with the best visible area IOU or best amodal GT IOU. The results in
Table 4 show that by sampling we find masks that match the amodal GT significantly better than using
the approximate posterior mode. Hence, the approximate posterior incorporates diverse plausible
masks, correctly capturing the ambiguity. Using samples from the full posterior distribution may
benefit downstream applications. Additional results are provided in the supplementary material: We
analyze approximate posterior widths as a function of occlusion ratio and we also show prior samples.

Ablations: We first ablate the three training stages described in Sec. 4.1. The results in Table 2 show
that the performance drops by 3.93% if we omit the first Full-Mask-only training stage. Furthermore,
the model performs significantly worse without the second occlusion-simulation training stage,
because this is where the model learns to actually map partial to full masks. Likelihood-based (i.e.
using the ELBO) partial-mask-only finetuning as the third stage plays an important role, since it
brings real occluded instances into the training loop. Also, conditioning on class information is
crucial, as it helps the VAE to better infer the masks, especially when there is a large occlusion.

Next, we conduct cross dataset evaluations. We train Amodal-VAE on the Cityscapes training set and
evaluate on the KINS test set. Due to the mismatch in class categories across datasets, we merge the
bus and car classes into one class, and motorcycle and bicycle classes into another. Results in Table 5
show cross domain stability of our model. We consistently outperform the De-occlusion baseline.
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Method Full mIOU Invis. mIOU

Amodal-VAE 94.68 62.85

Search by vis. Mask 94.71 62.98

Search by amodal GT 95.82 69.96

Table 4: Mask completion results for predic-
tions using multiple posterior samples. We sam-
ple masks from approx. posteriors and search for
best samples via visible area or full amodal GT area
IOU. “Amodal-VAE” uses only the posterior mode.

Method GT Crop Full mIOU Invis. mIOU

Amodal-VAE ✗ 93.72 56.18

De-occlusion ✗ 93.19 48.23

Table 5: Cross Domain Amodal Completion. Models
are trained on Cityscapes and tested on KINS.

Amodal-VAE GT-box Ground Truth No Preference

46.68 39.50 13.8

Table 6: User Study. We evaluate our model against
human-annotated amodal masks in KINS via an Amazon
Mechanical Turk user study. Interestingly, subjects prefer
our object completions to the human-labeled ones.

Qualitative results: We show qualitative results in Figure 3. We also compare to human-annotated
masks in Figure 4. Our generated masks contain more details and look more natural than GT masks.
We further show shape variations by sampling from the approximate posterior distribution in Figure 6
and Figure 7. Different plausible completions are drawn from a single partial mask.

User study: We also evaluate our model against human-annotated amodal masks in KINS via an
Amazon Mechanical Turk user study. We assume that the user draws the amodal box which is
provided to Amodal-VAE. We randomly sampled 3260 instances from the KINS test set and asked
Turkers to indicate preference between Amodal-VAE’s amodal masks and GT annotated amodal
masks. Interestingly, as shown in Table 6, users prefer Amodal-VAE’s masks 46.68% of the time
versus 39.50% for ground truth. This demonstrates that Amodal-VAE outperforms the drawing skills
of the human annotators of the KINS dataset [27].

In the supplementary material, we provide additional results on amodal segmentation, where we first
predict modal segmentation masks using a standard segmentation model, and then use Amodal-VAE
to complete partial segmentation masks.

5.2 Object Manipulation Application

Here, we apply the Amodal-VAE to interactive scene editing and report the results.

Background and Instance Inpainting: Since Amodal-VAE can be used to predict complete
instance masks for all objects in a scene, we can use these inferred masks to move or delete objects.
Such operations will uncover previously occluded parts of the objects and the background. We
complete the missing content using an inpainting neural network, which takes RGB images with
missing content as input and generates a realistic completed output. Similar to [39], we are using the
convolutional inpainting network from [25], which employs partial convolutions and nearest neighbor
up-sampling in the decoding stage. Inpainting details are available in the supplementary material.

We benchmark the performance of instance inpainting. Since we do not have any ground truth
appearance for the invisible areas, we exploit Fréchet Inception Distance [12] (FID Score) to evaluate
the inpainting results. FID is a measure of similarity between two datasets of images. It was shown to
correlate well with human judgment of visual quality and is most often used to evaluate the quality of
samples from Generative Adversarial Networks. FID is calculated by computing the Fréchet distance
between two Gaussians fitted to feature representations of the Inception network [33]. In our case,
we use non-occluded instances in the KINS test set as a reference dataset. For each instance, we
use Amodal-VAE and the inpainting network to complete the mask and appearance. We compute
FID distances between the reference dataset and inpainting results based on predicted amodal masks.
Intuitively, the better and more natural the amodal mask is, the lower the FID score should be. Our
Amodal-VAE achieves 41.44 versus 50.36 for the baseline De-occlusion approach. Note that the
inpainting networks we use for both methods are identical. We thus conclude that the amodal masks
predicted by Amodal-VAE lead to more natural completions.

Instance Manipulation: Furthermore, we show how we can change the pose of objects, even of
those which are partially occluded. Since we are working with complex street scenes, we focus on
cars for this demonstration. We exploit GauGAN [26], which can separately take into account local
appearance and mask shape. We first infer an object’s complete shape and appearance as described
above. Then, we use GauGAN’s encoder to infer its latent representation, which captures only local
appearance information. When regenerating the image, we randomly sample complete shapes from
the test set and feed them to the SPADE layers. Due to the separation of local appearance and global
semantic information in GauGAN, the newly generated scene reflect any pose changes.

Qualitative results: We first show the qualitative inpainting results in Table 3. Conditioned on
the complete mask, the inpainting network recovers the invisible appearance successfully. We also
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Image Swap Order Move & Scale Change Pose

Figure 5: We demonstrate several object manipulation options in our interactive scene editing tool. We first
perform amodal mask completion and inpainting of the original object, then manipulate instance size and
position. We also rely on GauGAN to generate the pose-changed instances.

Figure 6: We sample masks from the approximate posterior distributions, which leads to different inpaintings
in invisible areas. Results are shown on KINS dataset.

Figure 7: We sample masks from the approximate posterior distribution. Results shown on Cityscapes dataset.

deleted the foreground mask by another background inpainting module. In Figure 5, we showcase
different functionalities in our interactive scene editing tool. Based on the amodal mask, our tool
supports swapping order, deleting, moving, and scaling objects. We also showcase how we can
change the pose of objects by utilizing GauGAN as described.

6 Conclusions

In this work, we propose Amodal-VAE, a simple probabilistic method for amodal instance completion,
which does not require amodal labels for training. In particular, our method is based on a variational
autoencoder that learns to reconstruct full object masks from partially occluded ones by using a
carefully designed training strategy. This exploits both full and partial instances available in existing
segmentation datasets. We quantitatively and qualitatively showcase the performance of our method
on the downstream task of scene editing of complex street scenes. Our experiments show significant
improvement over the recently proposed state-of-the-art method. We provide our method as an
interactive image editing tool where users can remove, move, or swap different objects in the image.

Note that training Amodal-VAE requires a high quality dataset with complete masks and each category
must contain a sufficient number of objects. Therefore, in this work we focus on driving scenes which
contain mainly rigid objects and for which sufficient data is available. Applying our model on more
complex scenes and in a setting with limited data is left for future work.
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7 Broader Impact

Our proposed model can be used in a wide range of applications that require reasoning on occluded
objects. These include planning tasks in robotics, object tracking, and editing a photo or video.
We focus on two significant impacts of using our model. The first is in the context of autonomous
driving. An autonomous driving car must infer the geometry and identity of surrounding objects
for its decision-making process. Partially visible objects could lead to wrong estimates for motion
planning, and thus reasoning about the full extent of objects can lead to much safer control. Our
approach infers the complete shapes of the occluded objects for this purpose. The other major impact
is on augmented reality. One could use our technology to snap a photograph of their environment,
and "delete" existing objects from the photograph, replacing them with alternatives. The crux of our
approach is in deleting content from an image, which could be subject to misuse. We encourage work
on detecting fakes as the standard technology to deal with image manipulation approaches.
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