UNIVERSITY OF

TORONTO

Running Example

, , Symbol Meaning
B >eS el C
& A Agent
' ' S Furniture
> “ = A -® Coffee machine
- = Mail room
A S S D s Office
A, B, C, D Marked locations

Motivation — Taskability

— Specify high-level, goal-directed tasks to an agent
— Avoid reexploration of the environment

Task examples

T1. Deliver mail to the office
T2. Deliver coffee and mail to the office
T3. Visitlocations A, B, C, and D (in any order)

Possible approches

— Model-based Reinforcement Learning

— Hierarchical Reinforcement Learning
— Reward Shaping

— Modular RL and Policy Sketches

— Structured and Decomposable Reward Functions

In this work

— Where do the options come from?
— Where do reward functions come from?

— Where do policy sketches come from?

Answer: Typically, from a human expert.

The expert has a working model of the environment in mind and
chooses options, designs reward functions, or sketches policies
based on that. Given a new task, most of the expert’s work will
need to be repeated.

Our approach: Use an explicit high-level model.

Symbolic Planning and Model-Free Reinforcement Learning:
Training Taskable Agents

Ledn Ilanes! Xi Yan!

'Department of Computer Science, University of Toronto

— The model specifies abstract actions
— These correspond to relevant options

— New tasks are very easy to specity
— We automatically find abstract solutions
— We use these solutions to guide RL agent

Symbolic Planning

“Planning is the art and practice of thinking before acting.”
—Patrik Haslum

— State-space given by a set of state properties
— e.g., propositions
— Actions given as preconditions and effects

— Properties needed for the action to be applicable
— Properties that change after the action 1s applied

— Tasks are given by an 1nitial state and a goal condition
— Solutions or plans are sequences of actions

In the example

Actions:
get-mail/coffee
deliver-mail/coffee
go-to-A/B/C/D

Propositions:
have-mail/coffee

delivered-mail/coffee
visited-A/B/C/D

deliver-coffee:
pre: have-coffee
eff: delivered-coffee,
not have-coffee
obs: office

get-coffee:
pre: (none)
eff: have-coffee
obs: coffee-machine

Plans

T1. (get-coffee,deliver-coffee)
T2. (get-coffee,get-mail, deliver-coffee, deliver-mail)

T3. (go-to-A,go-to-B,go-to-C,go-to-D)

Executing Abstract Plans

Even assuming we have perfect policies for the high-level ac-
tions, execution of the plans results in suboptimal behavior. Con-

sider the plan for T2 (left) versus the optimal (right):
B K 25 Q€ B K 25 ¢
- =

- < & ey - < - < & ey - <
Ax A

¥ ®
A st s =) A st s D

Can we relax the ordering constraints?

T1.

T2.

T3.

Rodrigo Toro Icarte!? Sheila A. Mcllraith!?

2Vector Institute

Partial-Order Plans

A collection of actions and a partial order over them

Every strict ordering that respects the partial order 1s a

valid sequential plan
Well established in the Planning literature

— Some planners can produce partial-order plans
— Sequential plans can be relaxed into partial-order plans

Examples

Actions: get-coffee, deliver-coffee
Order: get-coffee < deliver-coffee

Actions: get-coffee, get-mail,
deliver-coffee, deliver-mail
get-coffee < deliver-coffee,
get-mail < deliver-mail

Order:

Actions: go-to-A, go-to-B, go-to-C, go-to-D
Order: (none)

From POP to RL

We train a metacontroller to execute a given POP
The metacontroller is trained 1n a standard HRL manner

— It 1s a-priori restricted to only select options that advance the
execution of the POP

Implementation details

POPs are represented with Reward Machines
— Finite-state machines with transitions that match observations
1n the environment

The state 1n the machine represents which actions in the
POP have already occurred

The transitions depend on the observed environment

Example (T2)

uy: & us: {get-mail, deliver-mail}

ui: {get-coffee} ug: {get-coffee, get-mail, deliver-coffee}
up: {get-mail} u7: {get-mail, get-coffee, deliver-mail }
us. {get-coffee, get-mail} ug: {get-coffee, get-mail, deliver-coffee,

uy: {get-coffee, deliver-coffee}

deliver-mail }

VECTOR
INSTITUTE

]]
B 3 ® C

=3 £ D< = e @
A homh

L
- _
A =S = D -
' ' h— u2

|— metacontroller —I

l

get-coffee get-mail

Experiments

Assume we have a well trained set of policies for the high-level
actions. We compare our approach with standard HRL.

Discrete domains

OFFICEWORLD MINECRAFTWORLD

T T T T 1 T T T T 1
=10.9 - -10.9

Lo A w08 2 F o8
' d0.7 2 | -07
406 = | 0.6
05 S | Hos
0.4
0.3
0.2
0.1

0

0 10K 20K 30K 40K S0K 0 100K 200K 300K 400K 500K
Number of training steps Number of training steps

Normalized discounted reward

Continuous domain

FARMWORLD Solution quality
I T NI e P n/a

T T T T 0.5
g
S -10.4
2
=
£ 403 3
S :
: 8
S “
- 0.2 =
s
gL HRL /! (seq) 401
2 HRL, (pop) '

HRL (seq)
HRL (pop) -----
]] : : 0
0 200K 400K 600K 800K 1000K
Number of training steps
0 100 200 300 400 500 n/a
HRL (pop)

— Specify abstract state and action models
— State properties, action preconditions and effects
— Use them to define tasks and solve them more efficiently

— Find a family of abstract plans and train a metacontroller to
instantiate it into a single plan

