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Abstract

Reinforcement learning (RL) agents seek to maximize the cu-
mulative reward obtained when interacting with their environ-
ment. Users define tasks or goals for RL agents by designing
specialized reward functions such that maximization aligns
with task satisfaction. This work explores the use of high-
level symbolic action models as a framework for defining
final-state goal tasks and automatically producing their cor-
responding reward functions. We also show how automated
planning can be used to synthesize high-level plans that can
guide hierarchical RL (HRL) techniques towards efficiently
learning adequate policies. We provide a formal characteri-
zation of taskable RL environments and describe sufficient
conditions that guarantee we can satisfy various notions of
optimality (e.g., minimize total cost, maximize probability of
reaching the goal). In addition, we do an empirical evaluation
that shows that our approach converges to near-optimal so-
lutions faster than standard RL and HRL methods and that it
provides an effective framework for transferring learned skills
across multiple tasks in a given environment.

1 Introduction
Reinforcement learning (RL) methods represent the state
of the art for solving complex continuous control prob-
lems in robotics (Van Hoof et al. 2015; Kumar, Todorov,
and Levine 2016; Kumar et al. 2016; Falco et al. 2018;
Andrychowicz et al. 2018; Akkaya et al. 2019). For instance,
the OpenAI lab recently showed that model-free RL can be
used to learn to control a human-like robot hand to purpose-
fully manipulate complex objects, such as a Rubiks Cube
(Akkaya et al. 2019). The strength of model-free RL comes
from being able to learn policies that maximize an external
reward signal by directly interacting with the environment—
without requiring a predefined model of the complex physics
equations that control it (nor trying to learn them).

This generality comes with a cost, though. As the environ-
ment dynamics and reward structures are initially unknown,
RL methods mostly rely on random exploration to collect
rewards and then improve their current policy accordingly.
As such, these methods are sample inefficient (i.e., require
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billions of interactions with the environment before learning
better-than-random policies). Further, these systems are typ-
ically not taskable. If you would like an RL agent to solve
task A, then you would have to program a reward function
such that its optimal policy would solve A. If, later on, you
would like the agent to perform task B, then you would have
to program a new reward function for B and the RL agent
would have to learn a brand new policy for B from scratch—
which is a problem known as transfer learning (Taylor and
Stone 2009). A number of approaches have been proposed
to address these shortcomings including efforts to learn hier-
archical representations (Dietterich 2000), to define options
or macro-actions that can be used by the RL system (Sutton,
Precup, and Singh 1999), or to learn skills that are indepen-
dent of the state space where they were learned (Konidaris
and Barto 2007).

Our interest in this paper is in leveraging high-level sym-
bolic planning models and automated plan synthesis tech-
niques, in concert with state-of-the-art RL techniques, with
the objective of improving sample efficiency and creating
systems that are human taskable. Our efforts are based on
the observation that some approximated understanding of
the environment can be characterized as a symbolic plan-
ning model—a set of properties of the world and a formal
description of actions that cause those properties to change
in predictable ways—while leaving (possibly complex) low-
level aspects of the environment (e.g., the frame by frame
outcome of dropping a pen) unspecified.

As a result, our AI agent gets the best of both worlds: (1) it
is taskable as the user can define tasks as goal conditions in
the symbolic domain (and a reward function is automatically
computed for such a task), (2) it improves sample efficiency
as the high-level plans can be used for transferring learning
from previously learned policies, and (3) it can learn com-
plex low-level control policies as it relies on model-free RL
to accommodate for all the information missing in the high-
level model. To achieve this, we build on ideas for learn-
ing by instructions in RL (Andreas, Klein, and Levine 2017;
Toro Icarte et al. 2018a; 2018c). That work shows that sam-
ple efficiency can be improved if a manually generated de-
scription of the task is given to the agent. In this work, we
propose to automatically generate useful instructions for RL



agents using the high-level model of the environment and
describe an approach—based on hierarchical reinforcement
learning (HRL)—that exploits such instructions. We com-
pare our approach to standard forms of HRL and show that
the combination of high-level symbolic planning and low-
level reinforcement learning is an effective method for spec-
ifying tasks to RL agents and, more importantly, for learn-
ing high-quality policies—for previously unseen tasks—up
to an order of magnitude faster than using standard RL.

Note that the idea of combining high-level symbolic plan-
ning with low-level RL has a long history. Some well-known
examples include work done by Ryan (2002), Grounds
and Kudenko (2008), Grześ and Kudenko (2008), Yang et
al. (2018), and Lyu et al. (2019). Informed by this previous
work, we contribute a formal characterization of a relevant
problem, which we call taskable RL, and a novel approach to
transfer learned policies and guide exploration in RL based
on high-level plans. Building on this, we provide theoretical
analysis regarding sufficient conditions for ensuring our ap-
proach satisfies various notions of optimality and show em-
pirical results that validate the efficiency of our approach.

2 Preliminaries
In this section we establish relevant notation and review key
aspects of reinforcement learning and automated planning.
In addition, we describe a simple running example.

Reinforcement Learning
For the purposes of this work, we will say that the environ-
ment in which an RL agent acts is formalized as an Markov
Decision Process (MDP) M = 〈S,A, r, p, γ〉, where S is its
set of states,A is the set of available actions, r : S×A×S →
R is its reward function, p(st+1|st, at) is its transition prob-
ability distribution, and γ ∈ (0, 1] is the discount factor. A
policy for M is defined as a probability distribution π(a|s)
that establishes the probability of the agent taking action a
given that its current state is s. Then, the RL problem con-
sists of finding an optimal policy π∗ that maximizes the ex-
pected discounted future reward obtained from all s ∈ S:

π∗ = arg max
π

∑
s∈S

vπ(s)

where vπ(s) is known as the value function and models the
expected discounted future reward obtained when starting at
state s ∈ S and selecting actions according to π:

vπ(s) = Eπ

[ ∞∑
t=0

γtrt

∣∣∣∣∣s0 = s

]
Crucially, the agent is not given access to the model of

the environment (i.e., p and r). Instead, the agent must learn
optimal behaviour by interacting with the environment. At
any time step, the agent observes the current state s ∈ S
and executes an action a ∈ A according to its current pol-
icy π. As a result, the environment returns the next state
s′ ∈ S (sampled from p(s′|s, a)) and an immediate reward
r′ = r(s, a, s′). The experience (s, a, r′, s′) is then used by

the agent to improve its current policy π. The main distinc-
tions between RL methods are on how to select the next ac-
tion and how to improve the current policy using sampled
experiences.

For example, q-learning (Watkins and Dayan 1992) is an
RL approach that learns optimal policies (in the limit) by us-
ing sampled experiences to estimate the optimal q-function
q∗(s, a) for every state s ∈ S and action a ∈ A. The opti-
mal q-function q∗(s, a) is equal to the expected discounted
future reward received by performing action a in state s and
following an optimal policy afterwards. Given an experience
(s, a, r′, s′), the q-value estimate q̃(s, a) is updated as fol-
lows:

q̃(s, a)
α←−
(
r′ + γmax

a′∈A
q̃(s′, a′)

)
,

where x α←− y is shorthand notation for x← x+α · (y− x)
and α ∈ (0, 1] is a hyperparameter called the learning
rate. Note that an optimal policy π∗ can be extracted from
q∗(s, a) by always selecting the action a ∈ A with the
largest q-value for the current state s. To explore the en-
vironment, q-learning uses an ε-greedy exploratory policy.
This is, it selects a random action with probability ε and the
action with the largest q̃(s, ·) value with probability 1− ε.
Temporal Abstraction Standard RL techniques are faced
with significant issues when applied on large-scale prob-
lems. In practical terms, RL algorithms need a large amount
of training steps in order to converge. A popular technique
for dealing with these issues is to consider temporally-
extended macro-actions that represent useful high-level be-
haviours. In particular, the options framework proposes the
use of policies that are trained for achieving specific high-
level behaviours, coupled with well-defined criteria for their
termination (Sutton, Precup, and Singh 1999). Given the cur-
rent state, an agent acting within this framework chooses one
among the high-level options and executes its policy until it
terminates. In order to select which options will be executed,
the agent has a higher order policy or meta-controller which
can also be learned through RL.

For a given environment M = 〈S,A, r, p, γ〉, an option
is formalized as o = 〈πo, ro, To〉 where πo is the option’s
policy, ro is a reward function used for training option o,
and To ⊆ S is the set of states where the option terminates.

In the options framework, a set of predefined options O
is given to the agent. Then, learning occurs at two levels. At
the options’ level, the policies are updated using the usual
experiences s, a, s′, and the reward that comes from ro. If q-
learning were used, then one q-function q̃o would be learned
per option o ∈ O (where q̃o(s, a) = 0 for all s ∈ To) and all
of them would be updated as follows:

q̃o(s, a)
α←−
(
ro(s, a, s

′) + γmax
a′∈A

q̃o(s
′, a′)

)
.

At the level of the meta-controller, the learning task consists
of finding an optimal policy π∗(o|s) to select the next option
o ∈ O to execute given the current state s ∈ S. Learning at
the level of the meta-controller occurs only when the current
option terminates. If option owas executed in state s and ter-
minated in state s′ after executing k actions at and receiving



k immediate rewards rt, then a q-learning algorithm would
use this experience to update the meta-controller estimate of
the q-function q̃ as follows:

q̃(s, o)
α←−

(
k∑
t=1

γk−1rt + γk max
o′∈O

q̃(s′, o′)

)
.

Symbolic Planning
We specify planning domains in terms of a tuple D =
〈F ,A〉. F is a set of propositional symbols, called the flu-
ents ofD, andA is the set of planning actions in the domain.
Planning states are specified as subsets of F , so that state
S ⊆ F represents the situation in which the fluents in S are
all true and those not in S are false. An action a ∈ A is
defined by a tuple a =

〈
pre+, pre−, eff+, eff−

〉
where each

of its elements is a subset of F . Here, pre+ and pre− (eff+

and eff−) are disjoint and represent the positive and negative
preconditions (effects) of a, respectively. We say a ∈ A is
applicable over state S when pre+ ⊆ S and pre− ∩ S = ∅.
The result of applying a over state S is a state given by the
function δ(S, a) =

(
S r eff−

)
∪ eff+. When a is not appli-

cable over S, δ(S, a) is undefined.
A planning task for domain D is formalized as T =

〈D, I,G〉, where I is an initial state and G is the task’s goal
condition. The goal G = 〈G+,G−〉 where G+ and G− is a
pair of disjoint subsets ofF that, respectively, represent pos-
itive and negative subgoals. Any state S such that G+ ⊆ S
and G−∩S = ∅ is said to be a goal state. A sequence of ac-
tions Π = [a0, a1, · · · , an] is known as a sequential plan for
a task when it is possible to sequentially apply the actions
starting at I, and doing so reaches a goal state.

Partial-Order Plans Partial-order plans generalize se-
quential plans by relaxing the ordering condition over the
actions. A partial-order plan is represented by a tuple Π =〈
A,≺

〉
, where A is its set of action occurrences and ≺ is

a partial order over A. The set of linearizations of Π, de-
noted Λ(Π), is the set of all sequences of the action occur-
rences in A that respect the partial order ≺. Any lineariza-
tion Π ∈ Λ(Π) is a sequential plan for the task. Intuitively,
a partial-order plan represents a family of related sequential
plans. Note that a plan may require using the same action
twice. As such, two action occurrences in A may be repeti-
tions of the same action, distinguished only for the purposes
of defining the particular partial-order plan.

Running Example
We consider a version of the OFFICEWORLD domain de-
scribed by Toro Icarte et al. (2018c). The low-level envi-
ronment is represented by the grid displayed in Figure 1. A
robot situated in any cell can try to move in any of the four
cardinal directions, succeeding only if the movement does
not go through a wall. The symbols in the grid represent im-
portant features of the environment and different events oc-
cur whenever the robot reaches a marked cell. Specifically,
the robot will pick up coffee or mail when it reaches the
locations marked with blue cups or the green envelope, re-
spectively. If the robot is already carrying coffee or mail, it

will deliver it to the office upon reaching the cell marked
with the purple writing hand. The robot can also visit the
four named locations (A, B, C, D). The locations marked [
are places that the robot should not step on, and doing so
results in a large penalty or negative reward (−10). All other
successful actions result in a small penalty (−1), whereas
failed actions (i.e., attempting to move through a wall) are
heavily penalized (−10).

3 Taskable Reinforcement Learning
One of the great advantages of symbolic planning is that
specifying new simple tasks for a given domain model is
very easy. It is with this in mind that we define the problem
of taskable RL, where final-state goal tasks can be specified
trivially for a given RL environment.

To define goals for tasks in such an environment, we as-
sume the existence of a set of high-level propositions, P , and
a labeling function L : S → 2P that establishes a mapping
between low-level states and high-level propositions. These
propositions are supposed to represent important state prop-
erties that may affect the outcomes of actions or their costs,
or that may be of significance to an end user of the system.
Finally, we also assume the existence of a constant R that
establishes a reward bonus received by the agent when it
accomplishes a task. With this, we define taskable RL envi-
ronments and their associated final-state goal tasks.

Definition 1 (Taskable RL Environment). A taskable rein-
forcement learning environment is defined by a tuple E =
〈S,A, r, p, γ, P, L,R〉, where 〈S,A, r, p, γ〉 is an MDP, P is
a set of propositional variables, L : S → 2P is a labeling
function, and R ∈ R is a parameter called the goal reward.

Definition 2 (Final-state Goal Task). A final-state goal task
for taskable RL environment E = 〈S,A, r, p, γ, P, L,R〉 is
defined as a tuple G = 〈G+, G−〉 where its elements are
disjoint subsets of P . We say a state g ∈ S is a goal state
when G+ ⊆ L(g) and G− ∩ L(g) = ∅. We denote the set
of all goal states as G. The objective for this task is to find
the optimal policy for the MDP MG = 〈S,A, rG, pG, γ〉,
where rG and pG are defined as follows:

rG(s, a, s′) =


R+ r(s, a, s′) if s′ ∈ G and s 6= s′

0 if s′ ∈ G and s = s′

r(s, a, s′) otherwise

pG(s′|s, a) =


0 if s ∈ G and s 6= s′

1 if s ∈ G and s = s′

p(s′|s, a) otherwise

Intuitively, the goal conditions are used for defining fic-
tional terminal states in the environment. The modified tran-
sition probabilities ensure that exiting a goal state is impos-
sible. In turn, the modified reward function ensures that a
reward bonus is given when a goal state is first reached, and
that no further reward can be accrued after that.

The main motivation behind Definitions 1 and 2 is to al-
low end-users to define tasks for RL agents with minimal
effort. In the same spirit, the main guarantee that we should
provide to that end-user is that the RL agent will optimize its
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Figure 1: The OFFICEWORLD running example.

behaviour towards actually accomplishing their tasks. Inter-
estingly, whether a taskable RL environment provides such
a guarantee depends on how it defines r, γ, and R.

Important Properties of Taskable RL
The purpose of this section is to identify sufficient condi-
tions under which optimal low-level policies would reach
the high-level final-state goal defined by the user. We also
provide some understanding of the quality of such policies.
To do so, we begin by introducing the notion of proper poli-
cies, which comes from the stochastic shortest path litera-
ture (Eaton and Zadeh 1962; Bertsekas and Tsitsiklis 1991):
Definition 3 (Proper Policy). Given a final-state goal task
G, we say a policy π for its corresponding MDP MG =
〈S,A, rG, pG, γ〉 is a proper policy if the probability of
eventually reaching a goal state by starting at any s ∈ S
and following π is 1. A policy that is not proper is said to be
improper.

Proper policies formalize the intuition behind the main
property that we would expect from any taskable RL envi-
ronment: the optimal low-level policies are proper policies
for reaching the high-level goals defined by the user. With
this, we can establish three theorems that identify sufficient
conditions under which such a property holds (Theorems 1
and 2), or a best-case scenario for environments where the
property does not hold (Theorem 3). The conditions outlined
by the theorems are the ones that should be taken into con-
sideration when designing taskable RL environments.
Theorem 1 (Cost based problems). Let taskable RL envi-
ronment E = 〈S,A, r, p, γ, P, L,R〉 be such that r is of the
restricted form r : S×A×S → R−, γ = 1, and R = 0. Let
G be a final-state goal task for E. If there exists at least one
proper policy for MG, then the optimal policy is a proper
policy that minimizes the expected cost of reaching a goal
state.

Proof sketch. First, assume that the optimal policy, π∗, is
improper. Then, there exists at least one state s ∈ S such that
the probability of never reaching a goal state when follow-
ing π∗ from s is greater than 0. Since rewards are negative
everywhere except when reaching a goal state, this means
that the expected future reward obtained by following π∗

from s tends to −∞ and, therefore, the value obtained from
summing over all states in S also tends to −∞. Note, how-
ever, that any proper policy has, for any state, finite expected

future reward. Then, any proper policy has higher expected
reward than π∗, and since we know that proper policies exist
this leads to a contradiction that proves π∗ must be proper.
Now, by definition, π∗ maximizes the cumulative expected
reward. Since all traces must eventually reach a goal state,
and no reward is given after this, then π∗ minimizes the ex-
pected cost of reaching a goal state.

Theorem 2 (Goal reward problems). Let taskable RL envi-
ronment E = 〈S,A, r, p, γ, P, L,R〉 be such that γ < 1,
R = 1, and r(s, a, s′) = 0 for any s, a, s′. Let G be a final-
state goal task forE. If there exists at least one proper policy
for MG, then the optimal policy is a proper policy that min-
imizes the expected number of steps before reaching a goal
state.

Proof sketch. By following a similar argument to the one
used in the proof of Theorem 1, we know that π∗ must be a
proper policy. Again, by definition, we know that π∗ maxi-
mizes the cumulative discounted expected reward. Since re-
ward is only given when a goal is reached, and it is dis-
counted with γ < 1, we immediately know that π∗ mini-
mizes the expected steps before reaching a goal.

Theorem 3 (Max-prob problems). Let taskable RL environ-
mentE = 〈S,A, r, p, γ, P, L,R〉 be such that γ = 1,R = 1,
and r(s, a, s′) = 0 for any s, a, s′. LetG be a final-state goal
task for E. Here, the optimal policy for MG maximizes the
probability of reaching a goal state.

Proof sketch. Define a function g : S → R as follows:

g(s) =

{
1 s ∈ G
v∗(s) otherwise

Where, v∗ is the value function for the optimal policy of
MG. Since v∗(s) = 0 at every s ∈ G and v∗ is optimal, we
immediately know that g is optimal. We will show that g(s)
represents the maximum achievable probability of eventu-
ally reaching a goal state from s. The proposition is trivial
for s ∈ G. For s 6∈ G, we know:

g(s) = v∗(s) = max
a∈A

∑
s′∈S

pG(s′|s, a) · (r(s, a, s′) + v∗(s′))

We can split the sum over S into a sum over G and one over
SrG. Note that for every s′ ∈ G we know that r(s, a, s′) =
1 and v∗(s′) = 0, and that for every s′ 6∈ G we know that
r(s, a, s′) = 0 and v∗(s′) = g(s′). Then, we can rewrite as:

g(s) = max
a∈A

∑
s′∈G

pG(s′|s, a) +
∑
s′ 6∈G

pG(s′|s, a) · g(s′)

This corresponds exactly to the functional equation that de-
fines g(s) as the maximum probability of eventually reach-
ing a goal state from s.

Finally, it is worth noting that other combinations of
forms of r and values of γ and R may occasionally result
in undesirable behaviour. For instance, allowing for positive
rewards might cause the agent to prefer to collect those re-
wards instead of achieving the goals set by the user. On the



other extreme, using only negative rewards but γ < 1 might
cause the agent to prefer to stay in an area where it will pay
a small penalty for eternity instead of paying the possibly
high immediate penalty required for achieving a goal state.
The same behaviour might occur if we use only negative re-
wards, γ = 1, and a finite horizon.

Taskable RL and the Running Example
We now explain how to represent the OFFICEWORLD run-
ning example as a taskable environment. Given that its low-
level states must be able to distinguish the current position of
the robot, whether it is carrying coffee or mail, whether it has
already delivered coffee or mail, and whether it has already
visited the office or any of the other named locations, then
we can define a set of high-level propositions that contains
most of the same information, but omits the exact position of
the robot, including instead some propositions that represent
if the robot is currently at some of the marked locations:

P = {have-coffee,have-mail,
delivered-coffee,delivered-mail,

visited-office,visited-A,

visited-B,visited-C,visited-D,

at-office,at-A,at-B,at-C,at-D}.
This would allow an end-user to easily define tasks for the
agent as goal conditions over these propositions. For ex-
ample, we could ask the agent to deliver both coffee and
mail to the office by defining the following goal condition:
〈{delivered-coffee,delivered-mail} ,∅〉.

Finally, as the objective of a final-state goal task is still
to learn policies for a particular MDP, it can be potentially
solved by any RL algorithm. Given, however, that we know
of the existence of the high-level propositions in P and the
labeling function L, we devise a specialized RL algorithm
based on symbolic planning that can learn effective policies
considerably faster than off-the-shelf RL methods.

4 Planning Models in RL
The general idea is to use planning models and solutions
computed for them as guidance for solving RL tasks in
the low-level environment. To do so, we associate symbolic
models to taskable RL environments. Given a taskable envi-
ronment E = 〈S,A, r, p, γ, P, L,R〉, a symbolic model for
E is specified asM = 〈D, α〉, whereD = 〈F ,A〉 is a plan-
ning domain withF = P and α : A → 2P×2P is a function
that associates planning actions with conditions over P .

We will use α to associate finite-state goal tasks for the
taskable RL environment E with the planning actions. Each
such task defines an option. Whenever the task is accom-
plished, the option terminates. Formally, given a condition
C = 〈C+, C−〉, we can define the set of all low-level states
that satisfy it as T (C) = {s ∈ S | C+ ⊆ L(s), C−∩L(s) =
∅}. Then, for each planning action a ∈ A, we can define an
associated option with termination set Ta = T (α(a)) and
reward function ra = rα(a) (see Definition 2). Finally, we
will define an option set O consisting of one option for each
distinct α(a) generated this way. Note that two or more plan-
ning actions may be associated with the same option.

Model Quality
Intuitively, we would expect that following a high-level plan
for a task by sequentially executing its associated low-level
option policies should reach a goal state with probability 1.
However, to provide such a formal guarantee we need to as-
sume certain properties about the relation between the plan-
ning models and the low-level environment. These proper-
ties are formalized in the following definition:
Definition 4 (Consistency of symbolic models). We say a
symbolic modelM = 〈D, α〉 is consistent with a taskable
environment E = 〈S,A, r, p, γ, P, L,R〉 if D = 〈F ,A〉,
F = P , α : A → 2P × 2P , and every optimal option policy
π∗α(a) associated with any planning action a ∈ A terminates
with probability 1 and respects δ(S, a). This is, if π∗α(a) ini-
tiates in state si ∈ S and might terminate in state st ∈ S,
then L(st) =

(
L(si) r eff−a

)
∪ eff+a for every state si ∈ S

where a is applicable (pre+ ⊆ L(si) and pre−∩L(si) = ∅).
Note that defining consistent models is non-trivial since it

requires considering the behaviour of optimal policies act-
ing in a possibly complex low-level environment. As such,
we do not assume that models are necessarily consistent
throughout the rest of the paper (except when analyzing for-
mal properties of our approach).

Planning Models in the Running Example
In the running example domain, we consider the following
set of high-level actions:

A = {get-mail,get-coffee,deliver-mail,
deliver-coffee,visit-A,visit-B,

visit-C,visit-D,visit-office}.

Figure 2 shows the preconditions and effects for two of these
actions. In addition, it shows the termination conditions for
their corresponding options. Note, however, that the final-
state goal task associated with the deliver-coffee ac-
tion makes no reference to the coffee itself. This is by de-
sign and it serves an important purpose: the same final-

get-coffee:
pre+: ∅
pre−: ∅
eff+: {have-coffee}
eff−: ∅

α(get-coffee): 〈{have-coffee},∅〉

deliver-coffee:
pre+: {have-coffee}
pre−: ∅
eff+: {delivered-coffee,

at-office}
eff−: {have-coffee}

α(deliver-coffee): 〈{at-office},∅〉

Figure 2: Example actions in the OFFICEWORLD, including
associated option termination.



state goal—and option—will be associated with other plan-
ning actions that have different preconditions and effects
but are realized through the same low-level actions as
deliver-coffee (e.g., the deliver-mail action).

For the example task of delivering both coffee and mail,
we consider a planning task with initial state I = ∅ and goal
G = 〈{delivered-coffee,delivered-mail} ,∅〉.
Here, a reasonable solution plan might be the following:

Π = [get-coffee,get-mail,deliver-coffee,

deliver-mail].
Note that the actual number of low-level actions needed to
execute the high-level actions depends on the actual posi-
tion of the robot in the grid. This means that—even if we
have optimal low-level policies for performing each of the
high-level actions—the plan may be optimal or suboptimal
depending on the exact low-level initial state.

5 Executing Plans
For a given symbolic model and planning task, we can eas-
ily compute a sequential plan by using an off-the-shelf plan-
ner. Such a plan can subsequently be used as a naive meta-
controller for an HRL system by directly executing—in the
provided order—each of the options associated with the ac-
tions in the plan. For the example task and correspond-
ing plan, this would result in first executing a policy that
achieves have-coffee. After this, the system would ex-
ecute a policy that terminates when have-mail becomes
true. It would continue by executing the option policy asso-
ciated with the deliver-coffee action, which achieves
at-office. At this point, the system would attempt to
execute the policy associated with deliver-mail. Since
at-office is already true in the current state, the policy
would immediately terminate.

This approach has a number of issues, though. First, it
may be significantly better to execute the actions in a dif-
ferent order than the strict one defined by the plan. In the
example, it may be better to attempt getting the mail be-
fore the coffee. Second, if the model is inconsistent with the
environment, then executing an option policy might affect
propositions that are not mentioned in the description of its
high-level action—possibly invalidating the current plan.

To address the first problem, we consider the use of
partial-order plans instead of sequential ones. The execution
of a partial-order plan Π =

〈
A,≺

〉
consists on selecting, at

every step, some action occurrence a ∈ A such that there
is no other action occurrence a′ ≺ a that has not already
been executed. Thus, we can use a partial-order plan as a
meta-controller that is restricted to choose among the op-
tions that correspond to the high-level actions that can ad-
vance the execution of the plan. This meta-controller can be
further trained in order to eventually learn the optimal way
to execute the partial-order plan.

In the running example, the plan Π can be relaxed into a
partial-order plan with the same four actions and the follow-
ing ordering constraints:

get-coffee ≺ deliver-coffee

get-mail ≺ deliver-mail.

In the initial state, the get-coffee and get-mail ac-
tions are valid for the execution of the plan. The meta-
controller policy will, then, learn to select one of them based
on the low-level state, which includes relevant information
about the position of the robot.

To address the second issue, where an option policy af-
fects some propositions other than those mentioned in the
corresponding high-level action’s effects, we use the no-
tion of regression of a plan to identify—for each action in
the plan—the conditions that ensure the plan is still valid.
Formally, the regression of a condition given as a pair of
positive and negative conditions C = 〈C+, C−〉 for an ac-
tion a =

〈
pre+, pre−, eff+, eff−

〉
such that eff+ ∈ C+ and

eff− ∈ C− is defined as

R(C, a) = 〈(C+ r eff+) ∪ pre+,

(C− r eff−) ∪ pre−〉.

The regression of a goal G for a plan Π, denoted R?(G,Π),
is just the repeated application of R backwards through all
actions in the plan starting from G. For example, if Π =
[a0, a1, a2] thenR?(G,Π) = R(R(R(G, a2), a1), a0).

Note that R?(G,Π) represents the necessary and suffi-
cient conditions that a state I must satisfy for Π to be a
valid plan for reaching G from I. Moreover, given Π =
[a0, a1, · · · , an], we have that R?(G, [ai, ai+1, · · · , an])
represents the conditions that need to be satisfied before
applying the suffix [ai, ai+1, · · · , an] of Π. Following this
idea, Fritz and McIlraith (2007) defined an execution moni-
toring policy that, given a state, checks for the shortest suffix
such that its condition is satisfied and returns the first ac-
tion in it. This system takes advantage of serendipitous un-
expected outcomes, skipping parts of the plan that become
unnecessary, and can recover from some negative outcomes.

This approach can be extended to work for partial-order
plans, effectively regressing through all possible lineariza-
tions without having to explicitly construct them (Muise,
McIlraith, and Beck 2011). Intuitively, the regression ex-
ploits the structure of the partial-order, taking advantage of
the shared conditions and actions across multiple lineariza-
tion suffixes. In our work, we use this approach and the
simple sequential plan regression approach to produce high-
level policies to guide the selection of options.

A generic overview of our approach is shown in Al-
gorithm 1. The algorithm maintains a policy π for the
meta-controller, and keeps references to the option policies
through the high-level actions (a.π for every a ∈ A). It first
computes a high-level plan (Π), and keeps track of the low-
level state (s) and the high-level action currently being ex-
ecuted (current). If no high-level action has been selected,
it queries the plan for the set of actions that could be ap-
plied (line 8) and queries the meta-controller policy for the
best action out of that set . The algorithm proceeds by eval-
uating the policy of the option associated with the current
high-level action to get a low-level action (line 11). After ex-
ecuting the action in the environment and receiving reward,
it updates all the option policies based on that experience
(line 16). If the option terminates, the algorithm updates the
meta-controller policy and the state of the plan (line 19).



Algorithm 1: Reinforcement Learning guided by a
partial-order plan.

Input: F ,A, I,G, O
1 Initialize π and a.π for a ∈ A
2 Π← plan(F ,A, I,G)
3 foreach episode do
4 s← get state from environment
5 current← None
6 foreach step do
7 if current is None then
8 HLAs← Π.next()
9 current← π(s,HLAs)

10 s0 ← s,R← 0

11 a← current.π(s)
12 s′ ← apply(s, a)
13 r′ = r(s, a, s′)
14 R← R+ r′

15 foreach option o ∈ O do
16 o.π.update(s, a, r′, s′)

17 if current.terminates(s′) then
18 π.update(s0, current, R, s′)
19 Π.advance(current)
20 current← None
21 s← s′

In what remains of this paper, we consider different in-
stances of this approach. The basic approach in which we
only use a sequential plan is denoted seq. An approach
that first relaxes the sequential plan into a partial-order plan
is called pop. For both cases, we also consider the use
of regression-based plan execution monitoring as described
above (seqm and popm). Finally, we compare and contrast
against two basic benchmark approaches. The first is the di-
rect use of q-learning over the low-level environment (ql).
The second is the use of the options framework over the set
of options associated with the model (hrl).

Theoretical Analysis
Before analyzing the properties of our approaches, it is im-
portant to understand the role that hierarchies play in RL. Hi-
erarchies impose constraints over policies. These constraints
effectively prune otherwise feasible policies from consider-
ation, allowing RL agents to focus their learning efforts on
the smaller set of hierarchically consistent policies. Unfor-
tunately, hierarchies might (unintentionally) prune optimal
policies too, denying the agent the possibility of converging
to globally optimal policies. As such, our HRL methods can
at best converge to a hierarchically optimal policy—which
were first introduced by Dietterich (2000):
Definition 5 (Hierarchically optimal policies). A hierarchi-
cally optimal policy for an MDP M is a policy that achieves
the highest cumulative reward among all policies consistent
with the given hierarchy.

We now analyze properties of hierarchically optimal poli-
cies for hrl, pop, and seq. We begin by identifying suffi-

cient conditions under which those policies are proper poli-
cies for reaching a goal state and then we compare their qual-
ity w.r.t. the amount of reward they get.

Theorem 4 (Optimal policies are proper policies). Let E =
〈S,A, r, p, γ, P, L,R〉 be a taskable RL environment where:

• r : S ×A× S → R−, γ = 1, and R = 0, or
• r(s, a, s′) = 0 for any s, a, and s′, and R = 1,

andM = 〈D, α〉 be a consistent symbolic model for E. Let
G be a final-sate goal task for E. If there exists a high-level
sequential plan Π that solves the planning task 〈D, L(s), G〉
from the initial low-level state s, then all hierarchically opti-
mal policies for hrl, pop, and seq reach a goal state from
s with probability 1.

Proof sketch. Since M is a consistent symbolic model for
E, we know that the policy π resulting from sequentially
executing the optimal low-level policies π∗a of each macro
action in the plan Π would reach a goal state with probability
1 from the initial state s. Moreover, the conditions imposed
on the taskable RL environment ensure that vπ(s) > vπ′(s)
for every policy π′ that does not reach a goal state with prob-
ability 1 (this follows from Theorems 1, 2, and 3). Finally, as
policy π is consistent with the hierarchies induced by hrl,
pop, and seq, then the hierarchically optimal policies for
each of those approaches must reach a goal state from swith
probability 1.

Theorem 5 (Dominance among optimal policies). Let E,
M, andG be defined as in Theorem 4. Let π∗h, π∗p , and π∗s be
the hierarchically optimal policy for the MDP correspond-
ing to G when using algorithms hrl, pop, and seq, re-
spectively. If there exists a high-level sequential plan Π that
solves the planning task 〈D, L(s), G〉 from the initial low-
level state s, then,

π∗ ≥ π∗h ≥ π∗p ≥ π∗s
where π∗ represents the optimal policy for the MDP corre-
sponding to G and π1 ≥ π2 iff vπ1(s) ≥ vπ2(s).

Proof sketch. Hierarchies constrain the space of feasible
policies. As such, the quality of the best hierarchically op-
timal policy can only decrease as more policies are pruned.
Given any high-level plan Π, we know that all the policies
consistent with seq are consistent with pop and all the poli-
cies consistent with pop are consistent with hrl. Therefore,
π∗h ≥ π∗p ≥ π∗s . Finally, as hrl imposes some constraints
over the set of feasible policies, then π∗ ≥ π∗h.

Finally, it is worth discussing (at least informally) the fol-
lowing properties. First, ql does converge to globally opti-
mal policies regardless of the quality of the symbolic model
(since it does not use it). For the same reasons, ql is ex-
pected to learn slower than our hierarchical methods. Sec-
ond, hierarchically optimal policies for seqm and popm also
reach goal states with probability 1 under the same condi-
tions detailed in Theorem 4. However, this is the case only if
monitoring is exclusively used for moving from a longer to a
shorter high-level plan. Third, there is no dominance on the
quality of hierarchically optimal policies when monitoring



is included. In fact, the hierarchically optimal policies for
seqm or popm might be better than π∗h under certain con-
ditions. However, they might also be worse than π∗s . Lastly,
note that the gap between the different policies in Theorem 5
partially depends on the quality of the symbolic model.

6 Empirical Evaluation
We evaluated our approach by considering two low-level en-
vironments and respective high-level models. To best eval-
uate the effectiveness at leveraging previous experience, we
also defined a sequence of 4 tasks for each environment, or-
dered roughly by level of complexity. For each tested algo-
rithm, the evaluation proceeded as follows. Each task was
trained on for a fixed number of training steps. Whenever
a goal state was reached, the task was restarted. If a task
ran for more than 1, 000 steps without reaching the goal,
it was also restarted. When the limit of total training steps
for a task was reached, the meta-controller policy was reset
and training began on the next task. When using seq, pop,
seqm, popm, or hrl, the trained policies for the options
were transferred between tasks. In all cases, option policies
and meta-controllers were trained by q-learning. To actually
evaluate the quality of the learned policies, we paused the
training every 10, 000 training steps and ran a number of in-
dependent trials using the policy as learned at that point.

Benchmark Environments
The first test environment is the OFFICEWORLD running ex-
ample. Each training episode was initialized with a random
initial state, and the evaluation trials were done from 10 dif-
ferent predefined initial states. To account for different out-
comes when tie-breaking, each such trial was run 10 times.

Our second environment is the Minecraft-inspired grid-
world described by Andreas, Klein, and Levine (2017). The
grid contains raw materials (e.g., wood, iron) and locations
where the agent can combine materials to produce refined
materials (e.g., wooden planks), tools (e.g., hammer), and
goods (e.g., goldware). The high-level actions allow for col-
lecting each of the raw materials, and for achieving the com-
binations. The types of tasks that we evaluated on include
examples such as “make a pickaxe,” which requires getting
wood and iron and taking them to various locations, or “get
a gem,” which requires first making a pickaxe and then go-
ing to the location with the gem. We ran experiments using
random initial states for training and evaluating on 5 prede-
fined initial states. Each experiment was run 5 times.

Results and Discussion
To adequately display how our approach is capable of con-
verging quickly to high-quality solutions, Figure 3 dis-
plays a comparison between our main approaches—seq
and pop—and the two basic baseline algorithms in both
benchmark domains. Each graph displays the reward ob-
tained after training with the labeled algorithm for the spec-
ified number of steps.

The experimental results show that—once the option poli-
cies are sufficiently well trained—our approach can signifi-
cantly outperform ql and hrl when the number of training

steps is limited. For instance, in the last task of the OFFICE-
WORLD, pop needed only 70, 000 training steps to con-
verge to a policy that resulted in traces that were typically
10 steps away from optimal. In contrast, hrl needed at least
1, 800, 000 steps before finding a policy of comparable qual-
ity and did not appear to converge to stability in less than the
5, 000, 000 training steps we allowed. That said, hrl did
reach policies that resulted in slightly better solutions—only
5 steps worse than optimal. Q-learning converged to opti-
mality after 3, 850, 000 training steps.

The tasks in the MINECRAFTWORLD domain are signif-
icantly harder than those of the OFFICEWORLD domain and
serve as a stress test for our approaches. In particular, the
planning model is not strictly consistent with the low-level
environment so the tasks exhibit a variety of pitfalls that
make accidentally undoing previous work very easy. For ex-
ample, if the agent is carrying a piece of wood and walks
through a cell marked as a tool bench, it will automatically
convert the wood into a wooden plank, even if it actually
needs the wood for some other reason. Despite this, our re-
sults show that seq leads to reasonable results after very
little training. In contrast, pop does not perform any bet-
ter than hrl. In Figure 4, we show what happens when we
address the unexpected outcomes with execution monitor-
ing. In the OFFICEWORLD, the policies obtained by seqm
seem to result in slightly more stable performance. For the
MINECRAFTWORLD, popm significantly outperforms pop,
even if it still does not converge to high-quality policies.

7 Related Work
In this section, we discuss a variety of work that touches
upon aspects that are related to taskable RL, or to the use of
symbolic planning to enhance RL systems.

Symbolic Planning and Reinforcement Learning
The idea of using a symbolic planning model to define
tasks, hierarchically decompose them, and provide high-
level guidance was first introduced by Ryan (2002). Our
work advances on the same direction by relaxing some key
assumptions and by developing further theoretical founda-
tions for the use of symbolic models in RL. In particular,
Ryan’s work uses a high-level planner to produce universal
and complete plans. That is, the plans produced are policies
that tell exactly what must be done for every possible high-
level state. In addition, the high-level actions are assumed to
be teleo-operators (Nilsson 1994): they are defined in terms
of preconditions and postconditions, but also require that
their preconditions hold throughout their whole execution.
Finally, the overall reward signal was restricted to be 1 when
a goal state is reached and 0 anywhere else.

Other work explored the use of a symbolic planner cou-
pled into an RL agent (Grounds and Kudenko 2008). There,
the planner produces an initial high-level plan and is sub-
sequently used to replan when the plan’s preconditions are
violated. A related approach uses a sequential plan to modify
the reward via reward shaping (Grześ and Kudenko 2008).
Both approaches rely on modifying the reward signal in or-
der to make progress towards solving the task. In contrast,
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Figure 3: Experimental performance obtained in two separate environments. We report the mean reward obtained by two
baseline algorithms, q-learning (ql) and standard HRL (hrl), by our basic approach in which a sequential plan is executed
directly (seq), and by our main approach in which HRL is restricted to execute a partial-order plan (pop).

seq pop seqm popm

 0  5x106  1x107  1.5x107  2x107
-1000
-900
-800
-700
-600
-500
-400
-300
-200
-100
 0

Task 1 Task 2 Task 3 Task 4

Av
er

ag
e 

ev
al

ua
tio

n 
re

w
ar

d

Number of training steps

(a) OFFICEWORLD

 0  5x106  1x107  1.5x107  2x107
-1000
-900
-800
-700
-600
-500
-400
-300
-200
-100
 0

Task 1 Task 2 Task 3 Task 4

Av
er

ag
e 

ev
al

ua
tio

n 
re

w
ar

d

Number of training steps

(b) MINECRAFTWORLD

Figure 4: Comparison of different variants of our approach. In addition to seq and pop, we display the results obtained when
regressing sequential and partial-order plans into structured policies (seqm and popm, respectively).

our approach relies on exploiting temporal abstractions from
Hierarchical RL—which allows for transferring previously
learned policies to solve new tasks faster. In fact, we per-
formed additional experiments where we included a reward
shaping approach to enhance ql and hrl. However, as the
results show, this had limited impact in the performance over
our benchmark domains (see Appendix).

Recently, Lyu et al. (2019)—building on the work done by
Yang et al. (2018)—proposed an agent that uses hierarchical
RL to integrate symbolic planning and reinforcement learn-
ing. Their problem setup considerably departs from taskable
RL, though. In their case, the high-level model is given as
prior knowledge of the environment without any particular
goal condition. As such, their main contribution relies on



how to generate meaningful goals for the planner in order to
learn a policy that optimizes the unknown reward function—
which is not an issue that arises in taskable RL.

There has also been work that has focused on learning ex-
plicit state-transition systems that represent high-level mod-
els (Zhang et al. 2018; Nasiriany et al. 2019; Eysenbach,
Salakhutdinov, and Levine 2019). Our work considers im-
plicit state-transition systems described as classical planning
domains. This allows us to consider highly combinatorial
problems that correspond to state-transition systems that are
far too large to be represented explicitly.

Taskable RL vs Multi-Task RL vs Multi-Goal RL
In Multi-Task RL, the goal is to create RL agents that get
better at finding policies for novel tasks over time. Formally,
the agent must learn strategies to maximize expected fu-
ture rewards over a probability distribution of MDPs. On
every episode, a completely new MDP is sampled and the
agent is expected to do well on it (Brunskill and Li 2013).
While related, the focus of taskable RL is different. It con-
siders an environment with fixed dynamics but changing
goal conditions—which are easy to specify by the user and
are given to the agent as key information for solving the task.

In Multi-Goal RL, the objective is to learn one policy that
can achieve different goals (e.g., Kaelbling (1993), Schaul et
al. (2015), and Andrychowicz et al. (2017)). A goal g ∈ G
is defined by a reward function rg , a function fg : S →
{0, 1} that identifies when the goal is achieved, and a set of
features φg to describe the goal. Then, the idea is to learn
a policy that can achieve any goal g ∈ G from any state
s ∈ S. While Multi-Goal RL takes a state-centric approach
to define a fixed set of possible goal conditions G, taskable
RL takes a property-centric approach—where a set of high-
level properties of the states are composed by the user to
define novel tasks for the agent on-demand.

Instructions and Advice in RL
Finally, our work exploits ideas from the learning from in-
structions (and advice) literature in RL. The main obser-
vation is that RL agents can benefit from having a formal
description of the task to be accomplished. These descrip-
tions can take the form of a policy sketch (Andreas, Klein,
and Levine 2017), a Linear Temporal Logic (LTL) formula
(Toro Icarte et al. 2018b), or an Automaton (Toro Icarte et
al. 2018c; Toro Icarte et al. 2019), among others. Given such
description, the sample efficiency of an RL agent can be im-
proved by task decomposition (Andreas, Klein, and Levine
2017), reward shaping (Camacho et al. 2019), or guiding the
exploration policy (Toro Icarte et al. 2018a).

8 Conclusions and Future Work
To conclude, we believe that the automatic generation of
goal-relevant instructions is one of the key aspects that will
enable RL systems to be both taskable and scalable. The
combination of symbolic action models with model-free RL
allows for solving problems that require both intricate con-
trol and long term combinatorial planning. Taskable RL rep-
resents a valuable formalism for describing problems of this

kind, and planning has shown to be a useful technique to aid
in improving sample efficiency by enabling structured meth-
ods of exploration and transfer learning.
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Appendix: Reward Shaping
The idea behind reward shaping is that artificially modifying
the reward signal of an MDP can improve sample efficiency
by providing better feedback to an RL agent. Potential-based
reward shaping methods (Ng, Harada, and Russell 1999)
guarantee that the optimal policy for the modified MDP is
also optimal for the original MDP by requiring the shaped
reward to be of the form r′(s, a, s′) = r(s, a, s′) +F (s, s′),
where F (s, s′) = γΦ(s′)−Φ(s) for some potential function
Φ: S → R. Grześ and Kudenko (2008) proposed a plan-
based potential function that serves to guide an RL agent to-
wards following a given high-level sequential plan Π. Given
the sequence of high-level states [S0,S1, · · · ,Sn] that re-
sults by following the execution of Π, define Φ(s) = i
for every s ∈ S such that L(s) = Si. That is, low-level
states increase in potential when their corresponding high-
level counterparts are closer to the goal according to Π. In
addition, states whose high-level representation does not ap-
pear in the plan are assigned the potential of the last state
visited that did correspond to the plan.

In Figure 5, we show the results of using this reward shap-
ing approach over ql and hrl (labeled sql and shrl, re-
spectively) in the MINECRAFTWORLD. We omit displaying
the results for the OFFICEWORLD, since the approach had
no discernible impact in the performance over this domain.
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Figure 5: Comparison of the basic benchmarks applied di-
rectly (ql and hrl) and over the plan-based shaped MDPs
(sql and shrl) in the MINECRAFTWORLD.
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