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View-Based Recognition Using an Eigenspace
Approximation to the Hausdorff Measure

Daniel P. Huttenlocher, Ryan H. Lilien, and
Clark F. Olson

Abstract—View-based recognition methods, such as those using eigenspace
techniques, have been successful for a number of recognition tasks. Such
approaches, however, are somewhal limited in their ability to recognize objects
that are partly hidden from view or occur against cluttered backgrounds. In order to
address these limitations, we have developed a view matching technique based
on an eigenspace approximation 1o the generalized Hausdorff measure. This
method achieves the compact storage and fast indexing that are the main
advantages of eigenspace view matching techniques, while also being tolerant of
partial occlusien and background clutter. The method applies to binary feature
maps, such as intensity edges, rather than directly to intensity images.

Index Terms—Model-based recognition, Hausdorif matching, subspace methods,
image matching.
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1 INTRODUCTION

IN this paper, we describe a subspace recognition method (cf. [3],
[4], [5]), [7], [8]) that handles clutter and partial occlusion by using
the generalized Hausdorff measure [1], rather than the sum
squared difference (S85D), as the underlying image comparison
measure. This is in contrast to other subspace approaches that
handle clutter and partial occlusions by decomposing objects into
small subregions (e.g., [2]). Our method is based on using an eigen-
decomposition 1o approximate the computation of the generalized
Hausdorff measure. This provides the compact storage and fast
indexing of eigenspace methods while having the robustness to
partial occlusion of the generalized Hausdorff measure.

In the following section, we describe how to approximate the
generalized Hausdorff measure using an eigen-decomposition. We
then present some results contrasting our approach with a
traditional $SD-based subspace matching approach. A key
difference with most other subspace methods is that the general-
ized Hausdorff measure is defined for binary images. Thus, our
technique operates on features extracted from images, such as
edges or the sign of the Laplacian. Finally, we illustrate how the
Hausdorff eigenspace approach can be incorporated into an image
search engine such as that in [6] in order to quickly search a large
image for instances of any stored model view.

2 APPROXIMATING THE HAUSDORFF FRACTION

First, we briefly review the generalized Hausdorff measure and,
then, introduce a subspace approximation for the measure. Given
two point sets P and @, with m and n points, respectively, and a
fraction, 0 € f <1, the generalized Hausdorff measure is defined in
(1] [6] as
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hy(P, Q) = frep min [Ip — 4l (1)
qGQ

where f;gpg(p), 0 < f <1, denotes the fth quantile of g(p) over the
set P. For example, the 1th quantile is the maximum and the 1th
quantile is the median. Equation (1) generalizes the classical
Hausdorff distance, which uses the maximum rather than a
quantile,

There are two complementary ways in which the generalized
Hausdorff measure has been used for image matching problems.
In this paper, we consider the case in which the distance, d, is fixed,
and the fraction f measures the quality of the match between the
sets P and Q. In other words, the measure is the largest f such that
hs(P, Q) < d. Intuitively, this measures what portion of P is near
Q, for some fixed neighborhood size, d. This measure is called the
Hausdorff fraction because it measures the fraction of points within
the given distance, d.

For digital images, the points of the two sets P and @ have
integer coordinates. Thus, we let P be a binary image denoting the
set P, with each 1 in the binary image P corresponding to a point
in P (and zero otherwise); likewise, for @ and Q. Let Q¢ be the
dilation of @ by a disk of radius d (i.e.,, each 1in @ is replaced by a
“disk” of 1s of radius d). The Hausdorff fraction can then be
expressed as

d
(P, Q) = *"“;(7’},)@),

where #(5) denoies the number of 1s in a binary image S and A
denotes the logical and (or the product) of two bitmaps. The result
is the fraction of points in P that are within distance d of points in
Q). Note the asymmetry of the measure: One set is dilated and the
other is not. Furthermore, note that, when the dilation is zerop, the
Hausdorff fraction is simply a normalized binary correlation. The
eigenspace approximation to the Hausdorff fraction presented here
is thus also an approximation to binary correlation.

(2)

2.1 The Eigenspace Approximation

Given a collection of images, Ir,...,Ix, let z, be the
representation of I, as a column vector. Consider the matrix
X =z —e ..., 25 — |, where ¢ is the average of the z,5. X is an
M x N matrix where M is the number of image pixels and N is the
number of images in the collection. The eigenvectors of XX7 are
an orthogonal basis in terms of which the w5 can be rewritten
{(and other, unknown, images as well). Let A;, 1 <i < M, denote
the ordered (from largest to smallest) eigenvalues of XX and let
e; denote each corresponding eigenvector. Define E to be the
matrix [e1,...,es] of the eigenvectors. Then, g = E7 (&m — ¢} is
the rewriting of 2., in terms of the orthogonal basis defined by the
eigenvectors of X X7.

The original vector x;, is then simply the weighted sum of the
eigenvectors

M
LTy = E Om, €i + ¢,
i=1

where g, is the ith element of the vector g,. A good approxima-
tion (in the least squares sense) to x,, is obtained using only the
first k& terms in this summation rather than all M terms,

k
jm = E fm;ei +C

i=1

The central idea underlying subspace methods is to use this
approximation. Let fm = (gm,,- -+, 9m,» 0, .. -, 0), the first k elements
of gm. Each image I, {actually, its corresponding column vector
) 18 then represented by fn, which can be viewed as a point in
the space defined by the % eigenvectors (e),...,e;). This can be
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TABLE 1
Summary of Results for the Subspace Image Matching Expariments

Grey-Level | Directed | Bidirectional | Normalized
Image change SSD Hausdorff | Hausdorffl | Correlation
Unperturbed 100% (600) : 96% (575) | 99% (593) | 89% (532)
Background=>50 | 94% (564) | 95% {567) | 98% (585) | 89% (535)
Background=100 | 41% (248) | 95% (568) | 95% (571) | 8% (530)
25% occlusion 52% (314) | 88% (528) | 97% (583) | 87% (523)
50% occlusion 51% (309) | 85% (510) | 90% (538) | 84% (503)

The first column is for the normalized correlation of the gray-level images. The second column is for the Hausdorff fraction of the edge maps. The third column is for the
bidirectional Hausdorff fraction described in the paper. The fourth colurn is for the normalized correlation of the edge maps. All results are using a subspace

approximation with 76 coefficients.

thought of as projecting the vector g, into the subspace defined by
these & eigenvectors (hence the name subspace method).

Given two binary images I, and I, as above, let z,, be the
representation of I, as a column vector and, further, let z’, be the
representation of I¢ {throughout, we use primes to denote vectors
corresponding to dilated images). The Hausdorff fraction $(I,,,, I%)
in (2) can then be written as

_ 2
= Z
[l

because ™ and 2/, are both binary vectors and, thus, their dot
product is the number of ones in the logical and of the two vectors.

Given this formulation of the Hausdorff fraction &, we now
look at how it can be approximated using a subspace approach. As
just described above, given some set of images, and the
corresponding eigenvectors, E of X X7, consider the rewriting of
Zm and 2', in the coordinate system defined by these eigenvectors,

&(I,, T

(3)

(m — e+ )T (2 —c+0)

= (@n— &) (&0 — O+ {2m — ) e+ (2 — ) e+ ||o?

T, ./
Ty =

T 2
=ghg +alct+a’lc— e’

The last step follows from ghg| = (BT (zy — N ET(a/y — ¢) =
(am — QT EET (&' — o) = (@m — )7 (@' — €) (Le., dot products are
preserved under an orthogonal change of basis).

Now, using the subspace approximation, replacing g, with f,
and g, with £} (the first & coefficients) vields

sLa = fofn+aler e | @)

Note that £, is no longer in general a binary vector. However,
# 27 = al s, Le., the dot product, is still an approximation of the

dot product of the complete binary vectors.

2.2 Using the Subspace Approximation

We now describe the steps for constructing the eigenspace given a
set of binary model views, zi,... First, form the matrix
X =[z1 —¢,...,axy — ¢, as above, where ¢ is the centroid of the
zms. Compute and save the first k eigenvectors of X X7 (i.e., those
corresponding to the k largest eigenvalues). Note that it is
generally more efficient to compute the eigenvectors of X7X,
since this matrix is usually considerably smaller (fewer images in
the model set than pixels in each image). If e is an eigenvector of
XTX, then Xe is an eigenvector of XX7 and the ordering of the
eigenvectors by eigenvalue is the same.

SN

For each of the z,s, compute f, = (gm,....9m,), where
9m; = el (& — ¢). Then, compute the scalars zhc and |lZm . Store
the vector f,, and these two scalars for each x,,. This, in addition to
the k eigenvectors with the largest eigenvalues, is all the
information needed to match the set of model views to unknown
images.

An unknown image is processed by dilating it by 4, forming the
vector z', from this dilated image, and computing the kvector f,
and the scalar £'7 e, Then, the set of model views is compared to the
unknown image by computing the subspace approximation to the
Hausdorff fraction, &, for each z,, and the {dilated) unknown z',,
Using (3) and (4), this approximation is

T 2
f;z; :’x + .ch-l— z.r"c — ”C”

@(:cm, ) = 3
A llzml

(8)

Note that the scalars 7 ¢, [|lz.]]%, and |i¢||* were precomputed and
stored in forming the eigenspace and the scalar z'Zc is computed
once for an unknown image. Thus, the only term that is computed
for each pair of model view and unknown image is f7 f/. Hence,
matching a given view in the eigenspace to an unknown image
only requires a dot product of two k length vectors {just as in the
traditional eigenspace matching techniques), plus a division and a
few additions.

One issue with approximating the Hausdorff fraction is that the
unknown images may not be well approximated by the eigenspace
simply because all of the model views are undilated, whereas each
unknown image is dilated. For “thin” features like intensity edges,
the dilated images are quite different in appearance and, thus, are
not necessarily well represented by the eigenspace. For edge
features, better performance is achieved if the subspace is created
using both dilated and undilated versions of each model view (ie.,
using both ©,, and 2, to represent each stored model view I).
This approach is taken for the experiments reported in the
following section.

3 EXPERIMENTAL RESULTS

We now consider some simple experiments that illustrate the -
matching performance of the Hausdorff eigenspace technique. We
are particularly interested in comparing this technique with 58D-
based eigenspace matching techniques using gray-level images

when the background is unknown or when the object is partially
occluded. The experiments reported here (summarized in Table 1)
use the image set from [4]. We used 30 evenly spaced views of each
of 20 objects as the set of model views and 30 different evenly
spaced views of the same objects as the test images. Each of the
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* Fig. 1. A cluttered image with some occlusion that was used to test the image search. {a) The originai image. (b} The edges detected in the image. {¢) The best matching
view of the Anacin box. (d) The edges of the Anacin box overlaid on the full edge image at the lecation of the best match.

1,200 images is split into a foreground (object) and a background
(which has intensity value zero).

For each recognition experiment, all 600 test views (not used in
constructing the eigenspace} were classified as being one of the 20
objects, based on the closest matching model view in the eigen-
space. That i3, a trial was considered successful if the best
matching model view was from the same object as the test view,
regardless of the viewpoint of the test view and the best matching
model view. For the gray-level 55D-based matching, we used a
standard subspace technique, normalizing the model vectors to
magnitude 1 and using the coefficients for the 76 largest
eigenvalues. (Note that Murase and Nayar [4] use a more
sophisticated method where each object is represented by a
manifold in the eigenspace. This manifold is approximated from
the points corresponding to individual views using a spline
interpolation technique.) For the binary matching, we computed
edge maps and used the technique described above, again with the
76 largest coefficients.

When the original (unperturbed) test views are used, the 55D
subspace matching technique vields perfect performance, while
the Hausdorff subspace matching technique is successful 96 per-
cent of the time {575 of 600 trials). One model, a Tylenol box,
accounted for 16 of these unsuccessful trials, with three other
models accounting for the remaining unsuccessful trials. It should
be noted that using the true Hausdorff fraction ¢ (without the

subspace approximation) did not exhibit perfect performance
either (it was also successful in 96 percent of the trials). In cases
where the true Hausdorff fraction was unsuccessful, it was
typically due to a test view that had dense edges. In such cases,
a very high fraction of pixels in the model view are near image
pixels in the test view and, thus, match very well, This is due to the
asymmetry of the Hausdorff distance, which only measures the
degree to which the model is accounted for by the image and not
vice versa.

When comparing uncluttered images, such as those used in this
experiment, better results are obtained using the bidirectional
Hausdorff fraction min(®(I,, %), ®(I,,I%)). However, using the
bidirectional fraction makes the measure more sensitive fo clutter
because of the insistence that a high fraction of feature points in the
unknown image lie near feature points of the model view. The
subspace approximation of the bidirectional Hausdorff fraction was
successful 99 percent of the time (593 of 600 trials).

We next considered the case in which the test views were
modified so that the background intensity (which was zero in the
original images) was changed to a uniform nonzerc value. The
overall image was still normalized to have unit length for the gray-
level matching using the SSD. The edges of the test views were
recomputed after the change of background intensities for the
binary matching. When the background of the test views was
changed changed to 50, the gray-level technique was successful 94
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percent of the time (564 of 600 trials). When the background value
was changed to 100, the gray-level technique was successful only
41 percent of the time {248 of 600 trials). Thus, the gray-level
technique, not surprisingly, is fairly sensitive to large changes in
the background intensity because all pixel differences contribute
equally to the overall measure. These changes yielded little
difference for the Hausdorff techniques, yielding 95 percent
success in both cases (567 and 568 successful trials, respectively)
despite some changes in the edges due to the substantial changes
in background intensity.

For the final experiment, we again used test views with a black
background, but where each object was partly occluded. We
simulated occlusion of 25 percent of the object by setting the upper,
left quarter of the image to a black background in the gray-level
images and by erasing the edge pixels in this region for the edge
images. In this experiment, the gray-level fechniques were
successful in 314 trials, while the Hausdorff techniques were
successful in 528 trials. When the entire left half of the image was
occluded, the gray-level techniques yielded 309 successful trials
and the Hausdorff techniques vielded 510 successful trials.

Table 1 gives a summary of the results for the eigenspace
approximations to the gray-level SSD and for both the directed and
bidirectional Hausdorff fractions. For comparison, results are also
given for the approximation to the normalized correlation (simply
Hausdorff matching with a dilation d of zero). The main overall
result is that the edge-based measures, either Hausdorff or
correlation, suffer much less than the gray-level measures as the
background intensity is changed. This indicates that, while edge
detectors are sensitive to changes in illumination, they can be
considerably less sensitive than the normalized intensity values.
We believe that this suggests a view-based approach to recognition
which makes use of features extracted from views (not simply
edges, but multiple types of features) rather than the views
themselves.

The second overall result seen in Table 1 is that the Hausdorff
matching techniques have uniformly good performance, whereas
the gray-level techniques break down when the background is
changed and when the object is partially occluded. The Hausdorff
measure also performs significantly better than the normalized
binary correlation of the edge maps. The improvement over binary
correlation is to be expected because the Hausdorff fraction
handles small perturbations in the locations of image features
(whereas, for binary correlation, either feature points are directly
superimposed or they do not match).

4 IMAGE SEARCH

In many recognition tasks, the positions of objects that may be
present in the image are unknown. Moreover, cutrent segmenta-
tion methods cannot generally determine the regions of an image
that correspond to separate objects. For this reason, it is crucial to
have metheds for quickly searching an image for locations where
there may be a match of one of the views in a set of model views. In
this section, we describe how to integrate the Hausdorff-based
subspace matching technique into an image search engine. When
the set of model views is larger than about 200, we obtain
substantial speedup over techniques that separately search for
each model view in an unknown image. These running time
comparisons are using the Hausdoxff matching methods reported
in [1], [6], which have been heavily optimized.

We first consider the simple case of using the eigenspace
approximation to the Hausdorff fraction in order to rule out those
locations (translations}) in an unknown image that are a poox match
in the subspace. Note that the subspace techniques need not rule
out all of the incorrect translations of the model. As long as the vast
majority of the locations and models are eliminated, without
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eliminating the correct matches, we can use standard techniques to
check the remaining hypotheses, We rely on the fact that the
approximate Hausdorff fraction is nearly always close to the true
fraction as a heuristic to avoid ruling out correct matches. We use a
threshold for ruling out a location that is 0.05 smaller than that
specified by the maximal amount of occlusion allowed (because
our experiments indicate that the true fraction is nearly always
within 0.05 of the estimated one).

Fig. 1 shows an example of an image where a model (an Anacin
box) was partially occluded. We allow for 25 percent mismatch in
this case (due to the partial occlusion) and, thus, set the threshold
at 0.7, also allowing for an error of 0.05 in the approximate -
Hausdorff fraction. The best match shown in the figure yielded a
true Hausdorff fraction of (.702 and the subspace methods yield an
estimated fraction of 0.727. Over the entire image, 99.3 petcent of
the locations (translations) of the model have a match with a
fraction of less than 0.7. Experiments with images like these
indicate that the subspace matching techniques can be used to
eliminate nearly all of the possible positions of the model views in
a large unknown image without performing full comparisons of
model views against the image at these positions. In the rest of this
section, we report some experimental results using the Hausdorff
subspace approach to perform such pruning,.

The subspace approximation to the Hausdorff fraction can be
integrated into a multiresclution search strategy to achieve a
substantial speedup over a separate search for each model view (as
was done in [6]}. The basic idea behind multiresolution strategies
for Hausdorff matching is to exploit the fact that if there is not a’
good match at a particular location, then this can be used to
eliminate other nearby locations from consideration. When
searching under translation, one strategy that can be used is to
dilate the image by a disk with a radius greater than the desired
error radius, d. If a model does not match this highly dilated image -
at some position, then this position of the model and other
positions close to it can be ruled out as possible matches in an
image that is dilated only by d.

We can formulate an efficient search strategy using this .
observation by considering a hierarchical cell decomposition of
the search space. The translations are divided into cells of uniform
size (which are recursively divided into similarly uniform cells).
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Fig. 2. The time required by the subspace methods grows far less quickly than
previous Hausderff matching techniques as the number of model images in the
database grows.
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We then create a new image dilated by a disk with a radius equal
to the distance from the center of the cell to the cell boundary plus
the error allowed, 4. This allows an entire cell to be ruled out or
expanded by only examining the translation at the center of the
cell. For each cell that cannot be ruled out at this level, we divide
the cell and apply the process recursively until the final cells
consist of a single translation of the model which are good matches
between a model and the image according to the subspace
approximation. For more details regarding this cell decomposition,
see [6].

As we are using a subspace approximation to the Hausdorff
fraction, we can only determine whether a match exists up to the
error in this approximation. Therefore, we set the threshold for
ruling out a cell lower than the actual threshold that we are
interested in in order to be reasonably certain that we do not rule
out any cells that we should not. We again use an estimate of 0.05
error in the approximation. At the bottom level of the hierarchy,
when we reach cells that contain a single translation which cannot
be ruled out, we compute the true Hausdorff fracdon rather than
using the eigenspace approximation (as there will be few such cells
that remain and each such cell will enly have a small number of
possible matching model views).

Fig. 2 shows a running time comparison between our
implementation of a hierarchical image search using the subspace
Hausdorff matching techniques and a previous implementation of
hierarchical search using the true Hausdorff fraction [1], both
~ running on a SPARC-10. The previous system has been heavily
optimized in order to efficiently rule out regions of the search
space that do not need to be considered, but it does not use the
subspace techniques for approximating the Hausdorff fraction.
While the subspace technique is not as heavily optimized and has
additional overhead associated with mapping subimages of the
unknown image into the subspace, the time required by this
technique grows slowly with the number of ebjects in the database.
As the set of models grows large, the subspace image search
method thus outperforms the previous techniques by a consider-

able margin. From the graph, it can be seen that, for 200 model
" views, the subspace method already has about a 20 percent speed
advantage over the method which considers each model view
independently. When the model set reaches 600 views, the speed
advantage is about 300 percent.

While we have only considered searching over possible
translations of the object models in an image, it is also possible
to consider other transformations, such as scaling, rotation, or
affine. One method by which this could be done is to include
scaled and rotated versions of the model images in the database
[8], but this method yields very large catalogs of model images.
Alternately, one can explore the space of such transformation
together with the space of possible translations. First, the
transformation space is discretized such that no two adjacent
transformations map any model pixel more than one pixel apart in
the image. One can then consider cells of this transformation space
as above in the multiresolution search strategy. Such an approach
to Hausdorff matching is taken in [6], without the use of a
subspace approximation. For such larger search spaces, a similar
speed up would be observed when using the subspace approx-
imation to the Hausdorff fraction.
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