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ABSTRACT
Summary: We cast the problem of identifying protein–protein
interfaces, using only unassigned NMR spectra, into a geomet-
ric clustering problem. Identifying protein–protein interfaces
is critical to understanding inter- and intra-cellular commu-
nication, and NMR allows the study of protein interaction in
solution. However it is often the case that NMR studies of a
protein complex are very time-consuming, mainly due to the
bottleneck in assigning the chemical shifts, even if the apo
structures of the constituent proteins are known. We study
whether it is possible, in a high-throughput manner, to identify
the interface region of a protein complex using only unassigned
chemical shifts and residual dipolar coupling (RDC) data.

We introduce a geometric optimization problem where we
must cluster the cells in an arrangement on the boundary of a
3-manifold. The arrangement is induced by a spherical quad-
ratic form, which in turn is parameterized by a SO(3)xR2. We
show that this formalism derives directly from the physics of
RDCs. We present an optimal algorithm for this problem that
runs in O(n3 log n) time for an n-residue protein. We then
use this clustering algorithm as a subroutine in a practical
algorithm for identifying the interface region of a protein com-
plex from unassigned NMR data. We present the results of our
algorithm on NMR data for seven proteins from five protein
complexes, and show that our approach is useful for high-
throughput applications in which we seek to rapidly identify
the interface region of a protein complex.
Availability: Contact authors for source code.
Contact: brd@cs.dartmouth.edu

1 INTRODUCTION1

Protein–protein interactions are well-studied in structural bio-
logy, and the structural basis for these interactions are useful

∗To whom correspondence should be addressed.
1Abbreviations used: NMR, nuclear magnetic resonance; RDC, residual
dipolar coupling; HSQC, heteronuclear single-quantum coherence; HN,
amide proton; NOE, nuclear Overhauser effect; SAR, structure activity rela-
tion; apo, free or unbound form of a protein in a protein complex; holo,
bound or complex form of a protein in protein complex; SVD, singular value
decomposition;SO(3), special orthogonal group in 3D;S2, a 2-sphere in IR3.

in elucidating the biological role of the consituent proteins.
As the Protein Structure Initiative (National Institute of Gen-
eral Medical Sciences, National Institutes of Health) rapidly
populates the ‘space of protein structures’, an emerging
goal of structural proteomics is to study not just individual
proteins, but protein complexes and networks of protein inter-
actions, as well as the molecular and structural basis for these
interactions. High-throughput computational approaches for
identifying the interface region between proteins in a com-
plex can play a useful role in studying these protein–protein
interactions. Recent advances in solution NMR spectroscopy
allow us to directly study the interaction between two proteins
in solution; NMR is ideally suited to studying protein–ligand
and protein–protein interactions (Zuiderweg, 2002). In con-
trast to existing approaches that rely on assigned NMR data, in
this paper we develop an efficient algorithm for identifying the
interface between two proteins in a complex using unassigned
NMR data.

Even given apo (or, unbound) structural models of the
constituent proteins in a protein–protein complex (whose
structure is unknown) obtained by either NMR or X-ray
crystallography, a key bottleneck known as the assignment
problem (Güntert, 2003; Bailey-Kellogget al., 2000, 2004;
Langmeadet al., 2004; Montelioneet al., 2000; Moseley and
Montelione, 1999) remains before we can make use of the
recorded NMR spectra. That is, before we can make use of
the NMR spectra, we must assign the NMR measurements
to the nuclei that the measurements give information about.
For example, nuclear Overhauser effect (NOE) NMR data
provides interatomic distance restraints; in order to use these
distance restraints in structure determination, we must first
assign each restraint to a pair of nuclei in the protein. Current
automated computational approaches to studying protein–
protein interactions assume that the given NMR data have
been assigned. These approaches typically use this NMR data,
along with structural models of the constituent proteins, to
generate the structure of the protein complex (Dominguez
et al., 2003; Dobrodumov and Gronenborn, 2003; Clore and
Schwieters, 2003; McCoy and Wyss, 2002). The assignment
process is typically done manually and is time consuming.
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For example, the E1N–HPr complex required∼2 years of
data analysis (Clore, 2000; Garrettet al., 1999) to obtain
an accurate structural model. Automating the assignment
process is an active area of research (Langmeadet al., 2004;
Langmead and Donald, 2004; Zweckstetter and Bax, 2001;
Bailey-Kellogget al., 2004, 2000) (see Güntert (2003) for a
review of recent work). By avoiding the assignment problem,
high-throughput determination of protein–protein interfaces
given only unassigned NMR data would speed up all cur-
rent approaches to generating the complex structure (via
docking, see Section 1.1 below for further discussion). We
show that without assignments, some accuracy is sacrificed
in the determination of the protein interface, but there are
enormous savings in time and cost, making it suitable for high-
throughput applications. Furthermore, our approach of using
only a sparse set of NMR data can be useful in the context
of drug design, where a large number of protein–ligand pairs
must be screened. Our algorithm uses experiments that require
only 15N-labeled samples that can be recorded in about a day
of spectrometer time;15N-labeled samples require an order of
magnitude of less expense to prepare than13C samples. While
manual approaches to determining the interface region may be
more accurate (using a large suite of NMR spectra recorded for
the apo and holo, or complex form of the protein of interest) in
applications such as drug design, a high-throughput algorithm
(making use of sparse, unassigned NMR data) that trades
some accuracy for time is often more preferable to slower,
data-intensive methods.

In this paper,2 we present an algorithm that uses the apo
structure of a protein in a protein complex and a small num-
ber of unassigned NMR spectra to determine the residues that
are a part of the interface region in the complex. By using
unassigned NMR spectra we are able to eliminate the require-
ment that chemical shifts and NOEs be laboriously assigned
to their corresponding atom in each protein. Our algorithm
is designed to use an existing structural model of the protein,
unassignedchemical shifts [i.e. heteronuclear single-quantum
coherence (HSQC) peaks], amide exchange data, and unas-
signed NHresidual dipolar couplings (NH RDCs), which give
restraints on the orientation of the backbone NH bond vec-
tors of a protein in solution (Tjandra and Bax, 1997). Unlike
previous work (Banet al., 2004) that characterized the geo-
metry of protein interfaces, there is no assumption that the
crystal or solution structure of the complex has been solved.
In fact, significantly more structures have been solved for
proteins in their apo, or free form, rather than in their holo,
or complexed form, due to limitations in the size of protein
structures that can be solved by NMR or even X-ray crystal-
lography. In practice, it is often more desirable to have a low
false-positive rate though at the expense of accuracy. Thus,
for a proteinA, the goal of our algorithm will be to describe

2Full details of the results in the paper, including additional figures, can be
found in Mettuet al. (2005).

the interface region in terms of both aninteraction zone ZA

and aninteraction core CA. We judge the performance of
this pair(ZA,CA) by examining the accuracy ofZA and the
sensitivity (i.e. percentage of true positives) ofCA. Previ-
ous NMR techniques that have utilized prior apo structural
information have either required that the experimental data
be assigned (Clore and Schwieters, 2003; McCoy and Wyss,
2002) or that multiple experiments utilizing selective isotopic
labeling be performed (Reese and Dötsch, 2003). We first con-
sider a geometric version of the problem of identifying protein
interfaces that require us to cluster the cells of anarrange-
ment on a 2-manifold. In Section 2.3, we give an algorithm
that computes the optimal solution to this problem and runs in
O(n3 logn) time. Then, in Section 3, we give a more practical
algorithm for solving this problem that runs inO(nk3 + n3)

time, wherek is a parameter used to grid the rotation space
SO(3) in order to estimate the alignment tensor (see Section 2).
In the first phase of our algorithm, we use a probabilistic
approach to matching residues from the given structural model
to the unassigned experimental RDCs; this phase identifies the
interaction zoneZA. Then, in the second phase, we use a prac-
tical version of our geometric clustering algorithm that, given
a size threshold, identifies the interaction coreCA. Instead of
explicitly considering the arrangement induced by the protein
surface and the given RDCs, this version of the clustering
algorithm uses a discretized representation of the arrange-
ment. In Section 4, we apply our algorithm to NMR data for
seven proteins, and show that the interaction zones computed
by our algorithm are accurate (i.e. identify a large percent-
age of the interface region) and that our computed interaction
cores have high sensitivity (i.e. a very low percentage of false
positives).

In this paper, our main contributions are:

(1) To formalize the problem of finding a protein interface
from unassigned NMR data as a geometric cluster-
ing problem by exploiting the computational-geometric
properties of RDC physics.

(2) An optimal algorithm that runs inO(n3 logn) for
solving this geometric clustering problem.

(3) A practical algorithm running inO(nk3 + n3) time
to identify the interface region of a protein given
unassigned chemical shifts, unassigned RDCs and a
structural model of the protein.

(4) Testing of our algorithm on different combinations
of real and simulated NMR data from seven pro-
teins that shows it could be useful in high-throughput
applications.

1.1 Previous work
Protein–protein interactions are important for understanding
many important biological phenomena. NMR allows for the
study of proteins in solution, and is ideally suited, as well
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as widely used, to study protein–protein interactions [see,
e.g. Zuiderweg (2002) for a survey]. The majority of tech-
niques to probe protein–protein interactions make use of
assigned NMR data. Previous NMR techniques that use apo
structural information require that the experimental data be
assigned (Clore and Schwieters, 2003; McCoy and Wyss,
2002) or that multiple experiments utilizing selective labeling
be performed (Reese and Dötsch, 2003). The key difference
between our work and much of the previous work is that we
require only unassigned NMR data, and seek only to identify
the residues involved in the interface region without predict-
ing (Dominguezet al., 2003; Dobrodumov and Gronenborn,
2003; McCoy and Wyss, 2002) the structure of the complex.
The identified interface residues can be used in a number of
ways. First, by running our algorithm on both proteins in the
complex, it is possible to constrain the exhaustive searches
over rotations and translations typically used in protein–
protein docking algorithms. Furthermore, knowledge of the
interface residues can be used to model ‘hot-spots’ for muta-
tion studies, or in drug design, where small molecules are
identified (or built) to target interface residues in order to
disrupt protein–protein interactions (Lilienet al., 2004). The
goal of working with unassigned data is to minimize manual,
wetlab, and computational time, as well as resources needed
and to thus facilitate high-throughput examination of various
structural properties of proteins (Langmead and Donald, 2003;
Langmeadet al., 2004; Montelioneet al., 2000; Valafar and
Prestegard, 2003; Erdmann and Rule, 2002; Zweckstetter and
Bax, 2001).

A common approach to studying protein–protein interac-
tions is todock the proteins in the complex. That is, given
structural information about the apo forms of the proteins, as
well as assigned NMR experimental information such as ori-
entational and distance restraints, docking algorithms (McCoy
and Wyss, 2002; Kolhbacheret al., 2001; Dominguezet al.,
2003; Clore, 2000; Clore and Schwieters, 2003) compute
the translation and rotation that bring the apo structures
together to produce the complex structure. In general, the
experimental NMR data must first be assigned; NOE data
is particularly hard to assign due to chemical shift degen-
eracy (Clore, 2000; Clore and Schwieters, 2003). However,
without experimental data, the accuracy of the predicted com-
plex structure is determined solely by the energy function and
not by experimental observations of the complex in solution.

Another ubiquitous technique in the study of protein–
protein interfaces is calledchemical shift mapping (Zuiderweg,
2002; Shukeret al., 1996), which compares the change in
HSQC spectra (see Section 1.2 below) for the free and com-
plex spectra of the protein. To directly identify the interface
region from chemical shift perturbations, the HSQC must
be assigned. McCoy and Wyss (2002) use assigned HSQC
spectra to identify the interface region, and they use assigned
RDCs to compute the relative rotation of the two proteins in
the complex. With unassigned HSQC spectra, it is possible,

through titration experiments, to identify the (unassigned)
HSQC peaks that have shifted (Penget al., 2004).

In contrast to many docking approaches, our algorithm
only finds the interface region of the given protein and
not the complex structure. Furthermore, we useunassigned
chemical shifts and RDCs. Kolhbacheret al. (2001) use unas-
signed experimental1H spectra to score candidate dockings;
however, they do not use experimental data to directly identify
the interface region. Compared to the work of Reese and
Dötsch (2003) which uses selective labeling and unassigned
NMR data, our approach is faster and cheaper since the
amount of wetlab time is fixed for our technique and does
not depend on the protein under study. We do show, how-
ever, that selective labeling can optionally be used with our
algorithm to improve the accuracy and sensitivity of the results
(see Section 4).

1.2 Background
Solution NMR spectroscopy experiments give useful
information about various biological and physical geomet-
ric properties of the protein under study. Our algorithm uses
experimental data from several high-throughput NMR tech-
niques for the protein complex of interest; in this section, we
discuss the information content of this data with respect to our
algorithm.

Our algorithm uses1H-15N heteronuclear single-quantum
coherence spectroscopy (2D HSQC) data (Cavanaghet al.,
1995 pp. 411–447). The HSQC data for a protein consists of
a set of peaks which encodes the resonant frequency of the
amide atoms in each residue. These characteristic frequen-
cies are also commonly referred to aschemical shifts; thus,
amide HSQC data for a protein (ideally) are a set of pairs,
one pair per residue (except for prolines and the N-terminus)
that contain the chemical shifts of the amide proton and nitro-
gen. The chemical shift of a nucleus changes when its local
electronic environment changes. Hence, the holo vs. apo spec-
trum indicates binding or conformational change, allowing
us to identify residues in the interface region. Conversely,
zero chemical shift change can indicate that binding has not
occurred. We further assume that the holo structure does
not undergo significant conformational change outside of the
interface region; similar assumptions are made by most dock-
ing protocols (Dobrodumov and Gronenborn, 2003; Clore and
Schwieters, 2003; McCoy and Wyss, 2002). Once the iden-
tity of each peak’s atoms (in the primary sequence) is known,
chemical shift information can be useful in studying protein–
ligand (Shukeret al., 1996) and protein–protein (Zuiderweg,
2002) interactions (see Section 1.1). In this paper, we assume
these identities are unknown (i.e.unassigned), and treat the
chemical shift peak for a given residue as a unique identi-
fier that indexes into the experimental RDC data (described
below). Our algorithm also uses NMR data from eitheramide
exchange (Englanderet al., 1996) orwater HSQC (Grzesiek
and Bax, 1993) experiments to identify the chemical shifts
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from the given HSQC spectrum associated with surface, or
solvent accessible residues in the protein. The HSQC exper-
iment, together with the experiments to identify solvent
accessible residues, can be performed in less than a day of
spectrometer time.

Our algorithm also uses RDC data (Losoncziet al., 1999;
Saupe, 1968; Tjandra and Bax, 1997). RDCs giveglobal ori-
entational restraints on internuclear vectors. In this paper we
use NH RDCs, which give orientational information about
backbone amide bond vectors. Each RDCD is a real number,
where:

D = DmaxvT Sv. (1)

Dmax is the dipolar interaction constant,v is the internuclear
vector of interest with respect to an arbitrary substructure
frame, andS is the 3× 3 Saupe order matrix, oralignment
tensor, which specifies the orientation of the protein in the
laboratory frame (i.e. magnetic field in the NMR spectro-
meter).S is a symmetric, traceless, rank 2 tensor that describes
the average substructure alignment between the protein and
the (alignment) medium (Losoncziet al., 1999). Given a struc-
tural model, and the assignment of five or more of the recorded
RDC values to their corresponding internuclear vectors in
the model, it is possible to use singular value decomposi-
tion to reconstruct the alignment tensorS (Losoncziet al.,
1999). There are a number of techniques to estimate the align-
ment tensor givenunassigned RDCs (Langmead and Donald,
2003, 2004; Langmeadet al., 2004; Erdmann and Rule, 2002;
Zweckstetter and Bax, 2001). There may be many solutions
to Equation (1) for the internuclear vectorv given an RDC
valueD andS; however, givenv andS, we canback-compute
or simulate D (modulo noise, dynamics, crystal contacts in
the structural model etc.) in constant time. We note that
the number of solutions to Equation (1) can be reduced by
recording RDCs for multiple aligning media (Tolmanet al.,
1995; Wang and Donald, 2004). Each medium (ideally) gives
a unique alignment tensor, and thus for� aligning media,
we have� equations for a given NH vectorv. The solutions
to v must lie in the intersection of the solutions of these�

equations (Wang and Donald, 2004). The functional relation-
ship given by Equation (1) between the recorded RDCs and
the corresponding internuclear vectors is aquadratic form; we
note that the constantDmax can be folded into the matrixS to
be consistent with the standard representation of a quadratic
form. Like the HSQC experiment, RDCs can be recorded in
∼1 h of spectrometer time.

2 PROBLEM DEFINITION AND
APPLICATION

In this section, we formally define a clustering problem in
an arrangement on a 2-manifold, where the arrangement is
induced by a spherical quadratic form. We first state the prob-
lem formally and then discuss its relevance and application to

Fig. 1. Commutative diagram of the mappings used in our problem
definition.

the problem of determining protein–protein interfaces, given
unassigned NMR data.

2.1 An arrangement problem on 2-manifolds
Let P be a semi-algebraic 3-manifold with boundary in IR3

with constant degree, and let∂P denote the boundary ofP ,
which is a 2-manifold in IR3. LetTP denote the tangent bundle
of P ; that is,TP = {(p, v) | p ∈ P , v ∈ TpP } whereTpP is
the tangent space ofp ∈ P . LetV ⊂ TP be a finite set. LetB
be the mappingB((p, v)) = ((p⊕Bδ)∩P)×(v⊕Bδ′), where
Bδ andBδ′ are 3-dimensional (3D) balls of radiusδ > 0 and
δ′ > 0, respectively, centered at the origin. Here,⊕ denotes
the Minkowski sum, i.e. for setsA andB, A ⊕ B = {a + b |
a ∈ A, b ∈ B}. Note thatB(V ) is an arrangement on∂P .

Letπ : TP → P be the mapπ(p, v) = p. Letd : S2 → IR
be a quadratic form onS2 with d(v) = vT Sv, whereS is a
symmetric, traceless tensor of rank 2. Letj : TP \ 0 → S2

be the mapj(p, v) = v
‖v‖ , where 0 is the zero section ofTP .

(Remark: Thezero section of a tangent bundle is simply the set
of all elements(p, v) with ‖v‖ = 0). Letd∗ : TP \0 → IR be
a quadratic form onTP \ 0 with d∗(v) = d(j(p, v)); we note
thatd∗ is the lifting of d by j . Figure 1 gives a commutative
diagram of the mappingsπ , j , d and d∗. Let the cost of
X ⊆ TP \ 0 be defined as

c(X) = max
x,y∈X

ρ(π(x),π(y)),

whereρ(p,q) is the Euclidean distance betweenp and q

on P . We will also adopt that convention thatρ(X,Y ) =
maxp∈X,q∈Y ρ(p,q). Let R be an arbitrary, finite set of reals.
Define theneighborhood of r ∈ R asN(r) = (r − ε, r + ε).

Call a candidate assignment(t , r) ∈ B(V ) × R consistent
if d∗(t) ∈ N(r). The possible assignments for r ∈ R are
d−1∗ (N(r)) ∩ B(V ). Now, givenR′ ⊂ R, V andc0 ∈ IR we
wish to find the largest subsetR′′ of R′ such that

c(d−1∗ (N(R′′)) ∩ B(V ) ∩ π−1(∂P )) ≤ c0. (2)

Note thatd−1∗ (N(R′′)) ∩ B(V ) ∩ π−1(∂P ) represents pos-
sible assignments forR′′. Computing this set requires us to
take the intersection between the setd−1∗ (N(R′′)) and the
arrangementB(V ). By the definition ofB(V ), each element
v ∈ V , for the intersection betweend−1∗ (N(R′′)) andB(v)

contains either all of the setB(v)or none of it. The setπ−1(∂P )
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serves to constrain the subset ofTP being considered so that
its base points are in∂P . We note that this restriction can be
relaxed to include any ‘shell’ with depthγ of P ; that is, the set
π−1(∂P ) can be replaced with the setπ−1(∂P ⊕(Bγ ∩P)). In
Section 2.3, we give an algorithm for computing the optimal
subsetR′′ of R′.

2.2 Application to protein–protein interfaces
We now apply the optimization problem presented above in
the context of determining protein–protein interfaces using
NMR spectroscopy. As mentioned above, the input to our
optimization problem is the manifoldP , a quadratic formd,
setsR′ andV , and a scalarc0. For a proteinA, we view the
problem of inferring the interface region ofA in a complex
with another proteinB as an instantiation of the above prob-
lem on arrangements as follows. We take the 3-manifoldP to
be the space-filled structural model ofA, and the 2-manifold
∂P to be the solvent-accessible surface of the structural model
of A. The setV ⊂ TP is simply the protein NH bond vectors
from the given structural model ofA. We define the arrange-
ment B(V ) slightly differently from the above; for an NH
vectorv associated with thekth residue along the backbone,
we defineB(v) to be the subset ofP that contains the van der
Waals balls of the atoms in thekth residue. We note that in this
definition, the elements ofB(V ) can intersect only at bound-
aries. In general, one RDC value is measured for each bond of
a particular type—e.g., one RDC for every backbone amide
bond. For each amide bond, a pair of (HN, N) chemical shifts
(frequencies) is also measured. We letR be the set of RDC
values for the backbone amide bond vectors of our protein.
We assume that the alignment tensorS has been estimated;
there are numerous techniques for estimating the alignment
tensor from unassigned NMR data (Langmead and Donald,
2003, 2004; Langmeadet al., 2004; Valafar and Prestegard,
2003; Erdmann and Rule, 2002; Zweckstetter and Bax, 2001)
(see Sections 1.2 and 3 for discussion on the technique we
use in our algorithm). The quadratic formd is defined usingS
[see Equation (1)]. We take the setR′ to be the RDCs associ-
ated with amide chemical shifts that are perturbed between the
apo and holo form ofA. Recall that the unassigned chemical
shifts that are perturbed between the apo and holo forms of
a protein are associated with residues that are candidates for
the interface region. Furthermore, these chemical shifts index
into the experimental RDCs, thus we can determine the set
R′ from the experimental data. In the remainder of the paper,
we letε = 1, thusN(r) = (r − 1,r + 1) (i.e. there is 1 Hz
of error in the experimental RDCs). We take thec0 to be a
user-defined parameter that is given as input (see Section 4
for further discussion).

To solve our optimization problem, we wish to find the
subset of the arrangementd−1∗ (N(R′)) ∩ B(V ) ∩ π−1(∂P )

that minimizes the objective functionc (Fig. 2). Intuitively,
this geometric optimization problem corresponds to identi-
fying a set of candidate NH bond vectors and their residues

Fig. 2. Our clustering problem in an arrangement with the setR′ =
{r, s}. Starting with the neighborhood ofR′, i.e. the intervalsN(r)

and N(s) in IR, we consider the set of orientations (contained in
S2) that are associated with these intervals. These orientations are
d−1(N(r)) andd−1(N(r)), shown as colored green and blue bands,
respectively, on the unit 2-sphere. By our definition ofd−1∗ andB(V ),
these sets of orientations are mapped to patches on∂P , denoted by
the colored patches in the figure. Our optimization problem requires
us to find the largest set of patches that does not exceed the diameter
thresholdc0.

that (a) map to, within experimental error, a set of RDCs
R′′ that is a subset ofR′ and (b) are clustered on the protein
surface. Our problem definition not only accounts explicitly
for experimental error in the RDC data, but also captures the
ambiguity in the structural model by representing each NH
vector as a cone to model orientational uncertainty and con-
volving the NH vector’s base point with a surface patch on
∂P to model positional uncertainty. (Remark: It is worth not-
ing that our framework allows these surface patches to be
defined arbitrarily as long as they are of constant degree.) In
Section 2.3, we give an optimal and combinatorially precise
algorithm for solving this problem, and in Section 3, we give a
practical algorithm along with results on experimental protein
NMR data.

2.3 A clustering algorithm on arrangements
In this section, we describe a combinatorially precise
algorithm for solving the clustering problem presented in
Section 2.1 above. For ease of exposition, let the arrange-
mentA = d−1∗ (N(R′))∩B(V )∩π−1(∂P ) and the parameter
c0 be fixed. We note that, then, the setsR′, V , and the quad-
ratic form d are fixed as well. Let|V | = n. By definition,
A hasn generating cells; the complexity of our algorithm is
determined by the number of generating cells inA. In fact,
for our application (see Section 2.2)A always has generat-
ing cells that intersect only at boundaries, and thus the total
number of 3-cells inA in this case isn. Since we assume that
P , and thus∂P , has maximum constant degree, the bound-
aries of the cells ofA are algebraic surfaces that also have
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constant maximum degree. Our goal is to compute a subset
of A that minimizes Equation (2). Informally, our algorithm
exploits the fact that the arrangementA can be represented
using avertical decomposition (Halperin, 1997) and that we
can quickly find the extrema of each cell ofA.

Our algorithm works as follows. First, we note that given
B(V ), we can take the intersectiond−1∗ (N(R′)) ∩ B(V ) in
O(n) time since we are givenV and d, and each cell of
A ∩ B(v) is either equal toB(v) (for somev ∈ V ) or ∅.
Then, we obtain thevertical decomposition of A. The vertical
decomposition of an arrangement is essentially a recursively-
defined sweep (along each dimension) of the cells of the
arrangement. We omit a full description of the decomposition
here, see Halperin (1997) for examples and further references.
For an arbitrary arrangement in IR3 of sizen, the worst-case
complexity of the vertical decomposition is�(n3) (Halperin,
1997); there is an algorithm to construct the decomposition
that requires, in the worst case,O(n3 logn) time (Chazelle
et al., 1991). We note that with the given decomposition, find-
ing the extrema of the cells ofA requires the worst-case�(n3)

time, since that is the worst-case complexity of the decompos-
ition. Now we can have at mostO(n) extrema over all cells
of the arrangement, since each cell has constant degree; thus,
we haveO(n2) pairs of extrema. For each pair of extrema
p,q ∈ IR3, we check ifρ(p,q) is at mostc0. For each such
pairp,q, we construct a ball with diameterρ(p,q) with p and
q on the boundary. Let there bek such balls. Ifk = 0, then
we return theR′′ = ∅. Otherwise, we calculate the following
score on each ball. For each balls, we compute how many
cells of the arrangement lie completely ins; let this number
be denotedσ(s). This is equivalent to asking how many cells
of the arrangement have all of their extrema ins; this can
be done inO(n) time. LetC be the set of all such balls. Let
s∗ = arg maxs∈C σ(s), and letA∗ be the subset ofA contained
in s∗. The setA∗ can be computed inO(n3) time, sinceσ(s)

can be computed inO(n) time for eachs ∈ C, and|C| isO(n2).
By definition, each cell ofA∗ is also inA. Our algorithm finds
the optimal setR′′ ⊆ R′ such thatR′′ is the largest set that sat-
isfies Equation (2). We return all triples(r, v,B(v)∩π−1(∂P ))

wherer ∈ R′′, v ∈ V ′ = V ∩ A∗, (r, v) is a consistent
assignment, and the patches{B(v) ∩ π−1(∂P )}v∈V ′ that are
contained in the ball (of maximum score) associated withR′′.
The correctness of our algorithm follows if we can show that
every subset with diameter at mostc0 is considered by the
scoring phase. It is straightforward to see that the subset ofA
that yields the maximum score and has diameter at mostc0 is
associated with the subsetR′′ that minimizes Equation (2).
Thus, the following lemma proves the correctness of our
algorithm:

Lemma 2.1. Every subset X ⊆ A with diameter at most c0

is contained in one of the balls in C.

Proof. Fix a subsetX and letp andq be the pair of extrema
that have maximal distance and lets denote the ball withp

andq on its perimeter with diameterα = ρ(p,q). Note that
s must contain every cell inX completely; that is, no cell of
X lies outside ofs, otherwise we could create a ball with a
diameter greater thanρ(p,q). Furthermore,s is the smallest
ball that can contain all ofX, since any balls′ with diameter
α′ < α cannot containX. Now, s by definition is explicity
considered by our algorithm in the scoring phase, and thus is
contained inC. �

By Lemma 2.1 and the time required to maintain the vertical
decomposition data structure forA, we have the following
theorem:

Theorem 1. The set R′′ ⊆ R′ that minimizes Equation (2)
can be computed in O(n3 logn) time.

3 A CLUSTERING-BASED ALGORITHM TO
IDENTIFY PROTEIN INTERFACES

The algorithm in Section 2.3 is exact and combinatorially pre-
cise, but requires computation of algebraic surfaces. In this
section we give a practical version of the the algorithm of
Section 2.3. Due to experimental error in the RDCs, we make
use of a probabilistic method to computeA rather than com-
pute the intersection directly. We also model the elements of
A using a discrete point set that represents the protein surface,
rather than using an algebraic representation of∂P . As before,
the input to our algorithm is the set of backbone NH vectors
from a 3D structural model of the apo form of a proteinA in
the complex, RDCs for the protein, a set of chemical shifts
(for surface residues) that are perturbed in the holo form of the
protein, and an upper bound on the diameter of the interface
region. As a preprocessing step to our algorithm, we note that
there is existing software to identify the perturbed chemical
shifts [e.g. Penget al. (2004)].

LetAbe the apo form of ann-residue protein in the complex,
and letH denote the holo form of the protein in the complex.
We useVA to denote the surface backbone NH vectors from
the structure ofA. LetR denote the RDC values observed for
the NH vectors of the surface residues ofA. In the first phase,
we identify the set of NH vectors (i.e. residues) associated
with the given perturbed chemical shifts by using unassigned
experimental RDCs. We first compute an estimated alignment
tensor using the algorithm of Langmeadet al. (2004), and fix
the RDC mapd. Our algorithm then partitions the setR into
two sets,M, RDCs that are associated with perturbed chem-
ical shifts, andM ′ = R\M. We then probabilistically match
RDCs inM ′ with NH vectorsVA by eliminating the highest
joint-probability match, and successively conditioning match
probabilities on previous eliminations [cf. Langmead and
Donald (2004)]. After all the RDCs inM ′ have been matched,
we output the remaining NH vectors as the interaction zone
ZA. In the second phase, we filterZA further by using the
algorithm of Section 2.3 as follows. First, we compute an
approximation to∂P by taking a uniform sample (at a fixed
resolution) of∂P . We make use of the MSMS (Sanneret al.,
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Fig. 3. Results. (a) Accuracy of interaction zone and sensitivity of interaction core; (b) Tradeoff between sensitivity andc0; (c) Accuracy of
interaction zone and sensitivity with selective labeling; (d) Tradeoff between sensitivity andc0 with selective labeling. For (a) and (c), the
diameter of the interaction core,c0, was set to 20 Å.

1995) algorithm for constructing this point set; MSMS runs
in O(m logm) time, wherem is the number of atoms in
A. Let SA be the point set computed by MSMS; note that
|SA| = O(m) = O(n). We partition the point set as follows:
for each NH vectorv ∈ V ′′, we letSv ⊂ SA be all points inSA

that are associated with the same residue asv. This set can be
computed inO(|SA|) time. We then proceed as in Section 2.3
and output the residues associated with the highest-scoring
cluster as the interaction coreCA. During the first phase of the
algorithm, tensor estimation requiresO(nk3) time, and the set
VA−V ′ requiresO(n2) time to construct. In the second phase
of the algorithm, the setSA requiresO(m logm) time, where
m is the number of atoms inA, and the clustering step requires
O(n3) time. The overall running time of our algorithm is then
O(nk3 + m logm + n3) = O(nk3 + n3).

4 RESULTS AND DISCUSSION
We implemented and tested our algorithm on seven proteins
from five different protein complexes: the apo forms of
Pex13P (PDB ID: 1NM7), CAD (PDB ID: 1C9F), ubiquitin
(PDB ID: 1D3Z), barnase (PDB ID: 1BNR), barstar (PDB ID:
1BTA), E1N (PDB ID: 1EZA) and HPr (PDB ID: 1HDN) from
the CAD-ICAD (Otomoet al., 2000), ubiquitin-CUE (Kang
et al., 2003), barnase-barstar (Buckleet al., 1994), E1N-
HPr (Garrettet al., 1999) protein–protein complexes and the
Pex13P-Pex14P (Douangamathet al., 2002) protein–peptide
complex. We assume that the manual (and generally time-
consuming) experimental studies for these complexes have
produced the true interface regions, and compare the results
of our algorithm against them. We report theaccuracy (the
fraction of the interface region identified by our algorithm)
of the interaction zone, and thesensitivity (the fraction of the
output of our algorithm that was part of the interface region)
of the interaction core (Fig. 3).

For our experiments, we used experimental RDC data for
a single aligning medium for E1N, HPr and ubiquitin avail-
able from the BioMagResBank (BMRB) (Seaveyet al., 1991).

For these proteins, a second set of RDC data for a second
aligning medium was simulated. As mentioned in Section 1.2,
additional aligning media serve to constrain the solutions for
the NH vector orientations that can be incorporated as follows.
For two aligning media, each RDCr is given one probabil-
ity distribution per medium; we match experimental RDCs to
NH vectors by taking the maximum joint probability that the
RDCs in both media match to a vectorv. For the remaining
proteins, experimental RDC data is not publicly available; two
sets of RDC data for two independent aligning media were
simulated for Pex13P, CAD, barnase and barstar. For simu-
lated RDC data, we used a Gaussian error window of 1 Hz.
Although we have experimental NMR chemical shifts and NH
vectors for all residues in the proteins being tested, we only
make use of surface NH vectors and chemical shifts. Surface
NH vectors can be easily identified from the given structural
model and surface chemical shifts can be identified experi-
mentally using amide exchange data; we used the program
MolMol to compute these NH vectors. Solvent accessibility
(i.e. percentage of atomic surface area exposed to solvent)
and the chemical shift assignment was used to identify chem-
ical shifts associated with residues whose solvent accessibility
was at least 40%. The set of surface residues that we used as
input in all of our experiments were the residues identified by
MolMol as being at least 40% solvent-accessible, as well as
residues in the interface region for that protein. We implemen-
ted our algorithm in Matlab (Mathworks Inc, Natick, MA),
and ran all of our experiments on a Pentium-4 class processor.
Since some of our input data (specifically, simulated RDC
data) were generated with a Gaussian error window, the test
results in Figure 3 give the average accuracy and sensitivity
over 10 trials for each protein. For our test cases, each exe-
cution of our algorithm required∼2 or 3 min of CPU time
on average. Theaccuracy of the interaction zoneZA is the
percentage of true interface residues contained inZA. For
our test cases, we achieved accuracies between 73 and 90%.
Thesensitivity of the interaction coreCA is the percentage of
CA comprising interface residues; we achieved sensitivities
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of between 73 and 100%. Accuracy and sensitivity results
are reported for each protein [for a visualization of the out-
put of our algorithm on the proteins in the E1N–HPr complex
see Mettuet al. (2005)]. A key feature of our algorithm is
the ability to choose the diameter thresholdc0 for the interac-
tion core. With a conservative value (i.e. significantly smaller
than the interface region itself), we are able to achieve very
high sensitivity at the expense of decreased accuracy. That is,
whenc0 is small, the second phase of our algorithm returns
a small number of residues, but they are all guaranteed to
be in the interface region. As we increasec0, the size of
the interaction core increases, but these residues are not all
necessarily guaranteed to be in the interface region. Figure 3b
shows the tradeoff between the sensitivity of the interaction
core andc0 for two representative proteins. However, the
accuracy of the interaction core (i.e. percentage of the true
interface region contained in the core) decreases as the core
diameter decreases. For example, for barstar, the core accur-
acy decreases from 86 to 77% whenc0 is decreased from 30 to
25 Å. We note that this feature of our algorithm is important in
applications such as drug design and protein–protein docking,
since users can treatc0 essentially as a confidence parameter,
setting it conservatively for obtaining high sensitivity. For
example, the docking study of Dobrodumov and Gronenborn
(2003) found that in some cases, distance restraints between
just a single pair of residues are sufficient to significantly con-
strain the relative rotations and translations of the two proteins
in the complex. It is thus possible to run our algorithm on both
of the proteins of a complex and use the computed interac-
tion cores to constrain the docking processa priori, reducing
the time spent searching rotations and translations by exist-
ing approaches (Dominguezet al., 2003; Dobrodumov and
Gronenborn, 2003; Clore and Schwieters, 2003; McCoy and
Wyss, 2002). Furthermore, ifc0 is set conservatively, it is
likely that the remaining interface residues are nearby; in our
test cases, all interface residues that were not in the interface
core were all within∼10 Å from the core.

Selective labeling allows the stable isotopic labeling of a
given set of residue types, and thus permits us to constrain
the amino acid type of an experimentally-recorded RDC if
that type has been labeled. In our algorithm, this additional
constraint can be used in the first phase to improve the
accuracy of matching experimental RDCs to NH vectors. This
can, in turn, improve both accuracy and sensitivity of the
interaction zone. In practice, the most useful residue types
for selective labeling can be determined from the primary
sequence and apo structure, as well as from biophysical char-
acterizations of the amino acid types likely to be on the
protein surface (Dahiyat and Mayo, 1997). Figure 3c shows
that our experimental results can be improved by using select-
ive labeling; for each protein, we give a labeling that improves
both the accuracy of the interaction zone and the sensitiv-
ity of the interaction core. By using selective labeling, we
are able to improve the average accuracy of the interaction

zone to 88% and the average sensitivity of the interaction
core to 97%. Furthermore, we observe the same tradeoff
between accuracy and sensitivity of the interaction core
(Fig. 3d); however, the sensitivity ofCA is improved due to the
constraint added by selective labeling in the first phase of our
algorithm.

5 CONCLUSION
In this paper, we have formalized the problem of finding a
protein interface fromunassigned NMR data as a geometric
clustering problem. We gave an optimal algorithm for the
geometric clustering problem that runs inO(n3 logn). Using
this algorithm, we developed a practical algorithm for finding
protein interfaces given unassigned chemical shifts, unas-
signed RDCs and a structural model of the apo protein that
runs inO(nk3 + n3) time. On NMR data for seven proteins,
we showed that our algorithm yielded results that were both
accurate and had high sensitivity (i.e. a low false-positive
rate), demonstrating that our algorithm is useful in practice. It
would be interesting to see if our algorithm could be applied
to proteins with multiple interface regions. In principle, our
algorithm could be generalized: in the second phase, we would
return a set of clusters with high score, rather than a single
cluster, as the interaction cores.
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