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ABSTRACT

Summary: We cast the problem of identifying protein—protein
interfaces, using only unassigned NMR spectra, into a geomet-
ric clustering problem. Identifying protein—protein interfaces
is critical to understanding inter- and intra-cellular commu-
nication, and NMR allows the study of protein interaction in
solution. However it is often the case that NMR studies of a
protein complex are very time-consuming, mainly due to the
bottleneck in assigning the chemical shifts, even if the apo
structures of the constituent proteins are known. We study
whether it is possible, in a high-throughput manner, to identify
the interface region of a protein complex using only unassigned
chemical shifts and residual dipolar coupling (RDC) data.

We introduce a geometric optimization problem where we
must cluster the cells in an arrangement on the boundary of a
3-manifold. The arrangement is induced by a spherical quad-
ratic form, which in turn is parameterized by a SO(3)xR?2. We
show that this formalism derives directly from the physics of
RDCs. We present an optimal algorithm for this problem that
runs in O(n®logn) time for an n-residue protein. We then
use this clustering algorithm as a subroutine in a practical
algorithm for identifying the interface region of a protein com-
plex from unassigned NMR data. We present the results of our
algorithm on NMR data for seven proteins from five protein
complexes, and show that our approach is useful for high-
throughput applications in which we seek to rapidly identify
the interface region of a protein complex.

Availability: Contact authors for source code.
Contact: brd@cs.dartmouth.edu

1 INTRODUCTION?

in elucidating the biological role of the consituent proteins.
As the Protein Structure Initiative (National Institute of Gen-
eral Medical Sciences, National Institutes of Health) rapidly
populates the ‘space of protein structures’, an emerging
goal of structural proteomics is to study not just individual
proteins, but protein complexes and networks of protein inter-
actions, as well as the molecular and structural basis for these
interactions. High-throughput computational approaches for
identifying the interface region between proteins in a com-
plex can play a useful role in studying these protein—protein
interactions. Recent advances in solution NMR spectroscopy
allow us to directly study the interaction between two proteins
in solution; NMR is ideally suited to studying protein—ligand
and protein—protein interactions (Zuiderweg, 2002). In con-
trastto existing approaches that rely on assigned NMR data, in
this paper we develop an efficient algorithm for identifying the
interface between two proteins in a complex using unassigned
NMR data.

Even given apo (or, unbound) structural models of the
constituent proteins in a protein—protein complex (whose
structure is unknown) obtained by either NMR or X-ray
crystallography, a key bottleneck known as the assignment
problem (Guntert, 2003; Bailey-Kellogg al., 2000, 2004;
Langmeadtt al., 2004; Montelionet al., 2000; Moseley and
Montelione, 1999) remains before we can make use of the
recorded NMR spectra. That is, before we can make use of
the NMR spectra, we must assign the NMR measurements
to the nuclei that the measurements give information about.
For example, nuclear Overhauser effect (NOE) NMR data
provides interatomic distance restraints; in order to use these
distance restraints in structure determination, we must first

Protein—protein interactions are well-studied in structural bio-assign each restraint to a pair of nuclei in the protein. Current
logy, and the structural basis for these interactions are usefglutomated computational approaches to studying protein—
protein interactions assume that the given NMR data have
*To whom correspondence should be addressed. been assigned. These approaches typically use this NMR data,
1Abbreviations used: NMR, nuclear magnetic resonance; RDC, residuahlong with structural models of the constituent proteins, to
dipolar coupling; HSQC, heteronuclear single-quantum coherené; H generate the structure of the protein complex (Dominguez

amide proton; NOE, nuclear Overhauser effect; SAR, structure activity rela- . .
tion; apo, free or unbound form of a protein in a protein complex; holo,et al., 2003; Dobrodumov and Gronenborn, 2003; Clore and

bound or complex form of a protein in protein complex; SVD, singular value SChWiete_rS’ 2903; McCoy and Wyss, 2092)-_The aSSignr_nent
decompositionSO(3), special orthogonal group in 332, a 2-sphere in R process is typically done manually and is time consuming.
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Protein—protein interfaces from unassigned NMR Data

For example, the EIN-HPr complex require@ years of the interface region in terms of both amteraction zone Z 4
data analysis (Clore, 2000; Garrettal., 1999) to obtain and aninteraction core C4. We judge the performance of
an accurate structural model. Automating the assignmerthis pair(Z4, C4) by examining the accuracy &4 and the
process is an active area of research (Langneead, 2004;  sensitivity (i.e. percentage of true positives) ©f. Previ-
Langmead and Donald, 2004; Zweckstetter and Bax, 2001gus NMR techniques that have utilized prior apo structural
Bailey-Kellogget al., 2004, 2000) (see Guntert (2003) for a information have either required that the experimental data
review of recent work). By avoiding the assignment problem be assigned (Clore and Schwieters, 2003; McCoy and Wyss,
high-throughput determination of protein—protein interfaces2002) or that multiple experiments utilizing selective isotopic
given only unassigned NMR data would speed up all cur- labeling be performed (Reese and Détsch, 2003). We first con-
rent approaches to generating the complex structure (viaider a geometric version of the problem of identifying protein
docking, see Section 1.1 below for further discussion). Weinterfaces that require us to cluster the cells ofaarange-
show that without assignments, some accuracy is sacrificeglent on a 2-manifold. In Section 2.3, we give an algorithm
in the determination of the protein interface, but there arghat computes the optimal solution to this problem and runs in
enormous savings in time and cost, making it suitable for high-O (n® logn) time. Then, in Section 3, we give a more practical
throughput applications. Furthermore, our approach of usinglgorithm for solving this problem that runs @(nk® + n®)
only asparse set of NMR data can be useful in the context time, wherek is a parameter used to grid the rotation space
of drug design, where a large number of protein—ligand pairSO(3) in order to estimate the alignmenttensor (see Section 2).
must be screened. Our algorithm uses experiments that requite the first phase of our algorithm, we use a probabilistic
only 1°N-labeled samples that can be recorded in about a dagpproach to matching residues from the given structural model
of spectrometer timé?N-labeled samples require an order of to the unassigned experimental RDCs; this phase identifies the
magnitude of less expense to prepare ti@hsamples. While  interaction zone 4. Then, in the second phase, we use a prac-
manual approaches to determining the interface region may ki&cal version of our geometric clustering algorithm that, given
more accurate (using alarge suite of NMR spectrarecorded fa size threshold, identifies the interaction cOre Instead of
the apo and holo, or complex form of the protein of interest) inexplicitly considering the arrangement induced by the protein
applications such as drug design, a high-throughput algorithraurface and the given RDCs, this version of the clustering
(making use of sparse, unassigned NMR data) that tradesigorithm uses a discretized representation of the arrange-
some accuracy for time is often more preferable to slowerment. In Section 4, we apply our algorithm to NMR data for
data-intensive methods. seven proteins, and show that the interaction zones computed
In this paper we present an algorithm that uses the apoby our algorithm are accurate (i.e. identify a large percent-
structure of a protein in a protein complex and a small num-age of the interface region) and that our computed interaction
ber of unassigned NMR spectra to determine the residues thabres have high sensitivity (i.e. a very low percentage of false
are a part of the interface region in the complex. By usingpositives).
unassigned NMR spectra we are able to eliminate the require- In this paper, our main contributions are:
ment that chemical shifts and NOEs be laboriously assigned ) o o
to their corresponding atom in each protein. Our algorithm (1) To formalize the problem of finding a protein interface
is designed to use an existing structural model of the protein, from unassigned NMR data as a geometric cluster-
unassignedhemical shiftsi.e. heteronuclear single-quantum ing problem by exploiting the computational-geometric
coherence (HSQC) peaks], amide exchange data, and unas-  Properties of RDC physics.
signed NH-esidual dipolar couplings(NH RDCs), which give (2) An optimal algorithm that runs ir0(n3logn) for

restraints on the orientation of the backbone NH bond vec- solving this geometric clustering problem.

tors of a protein in solution (Tjandra and Bax, 1997). Unlike (3) A practical algorithm running ir0 (nk® + n3) time
previous work (Baret al., 2004) that characterized the geo- to identify the interface region of a protein given
metry of protein interfaces, there is no assumption that the unassigned chemical shifts, unassigned RDCs and a
crystal or solution structure of the complex has been solved. structural model of the protein.

In fact, significantly more structures have been solved for
proteins in their apo, or free form, rather than in their holo,
or complexed form, due to limitations in the size of protein
structures that can be solved by NMR or even X-ray crystal-
lography. In practice, it is often more desirable to have a low
false-positive rate though at the expense of accuracy. Thus, i
for a proteinA, the goal of our algorithm will be to describe 1.1 Previouswork

Protein—protein interactions are important for understanding

2Ryl details of the results in the paper, including additional figures, can bdNany importapt bi'0|09ica! phenomgng. NMR a.HOWS for the
found in Mettuet al. (2005). study of proteins in solution, and is ideally suited, as well

(4) Testing of our algorithm on different combinations
of real and simulated NMR data from seven pro-
teins that shows it could be useful in high-throughput
applications.
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as widely used, to study protein—protein interactions [seethrough titration experiments, to identify the (unassigned)
e.g. Zuiderweg (2002) for a survey]. The majority of tech-HSQC peaks that have shifted (Pex@l., 2004).
niques to probe protein—protein interactions make use of In contrast to many docking approaches, our algorithm
assigned NMR data. Previous NMR techniques that use apoonly finds the interface region of the given protein and
structural information require that the experimental data bawot the complex structure. Furthermore, we usassigned
assigned (Clore and Schwieters, 2003; McCoy and Wyss;hemical shifts and RDCs. Kolhbachetal. (2001) use unas-
2002) or that multiple experiments utilizing selective labelingsigned experimentdH spectra to score candidate dockings;
be performed (Reese and Ddtsch, 2003). The key differenceowever, they do not use experimental data to directly identify
between our work and much of the previous work is that wethe interface region. Compared to the work of Reese and
require only unassigned NMR data, and seek only to identifyD6tsch (2003) which uses selective labeling and unassigned
the residues involved in the interface region without predict-NMR data, our approach is faster and cheaper since the
ing (Dominguezt al., 2003; Dobrodumov and Gronenborn, amount of wetlab time is fixed for our technique and does
2003; McCoy and Wyss, 2002) the structure of the complexnot depend on the protein under study. We do show, how-
The identified interface residues can be used in a number a@ver, that selective labeling can optionally be used with our
ways. First, by running our algorithm on both proteins in thealgorithm to improve the accuracy and sensitivity of the results
complex, it is possible to constrain the exhaustive searchesee Section 4).
over rotations and translations typically used in protein—
protein docking algorithms. Furthermore, knowledge of thel-2 Background
interface residues can be used to model ‘hot-spots’ for mutaSolution NMR spectroscopy experiments give useful
tion studies, or in drug design, where small molecules arénformation about various biological and physical geomet-
identified (or built) to target interface residues in order toric properties of the protein under study. Our algorithm uses
disrupt protein—protein interactions (Lilieshal., 2004). The experimental data from several high-throughput NMR tech-
goal of working with unassigned data is to minimize manual,niques for the protein complex of interest; in this section, we
wetlab, and computational time, as well as resources needetiscuss the information content of this data with respect to our
and to thus facilitate high-throughput examination of variousalgorithm.
structural properties of proteins (Langmead and Donald, 2003; Our algorithm use$H-°N heteronuclear single-quantum
Langmeackt al., 2004; Montelioneet al., 2000; Valafar and coherence spectroscopy (2D HSQC) data (Cavamragh,
Prestegard, 2003; Erdmann and Rule, 2002; Zweckstetter ari®95 pp. 411-447). The HSQC data for a protein consists of
Bax, 2001). a set of peaks which encodes the resonant frequency of the
A common approach to studying protein—protein interac-amide atoms in each residue. These characteristic frequen-
tions is todock the proteins in the complex. That is, given cies are also commonly referred to @emical shifts; thus,
structural information about the apo forms of the proteins, aamide HSQC data for a protein (ideally) are a set of pairs,
well as assigned NMR experimental information such as orione pair per residue (except for prolines and the N-terminus)
entational and distance restraints, docking algorithms (McCoyhat contain the chemical shifts of the amide proton and nitro-
and Wyss, 2002; Kolhbachet al., 2001; Dominguezt al., gen. The chemical shift of a nucleus changes when its local
2003; Clore, 2000; Clore and Schwieters, 2003) computelectronic environment changes. Hence, the holo vs. apo spec-
the translation and rotation that bring the apo structuresrum indicates binding or conformational change, allowing
together to produce the complex structure. In general, thas to identify residues in the interface region. Conversely,
experimental NMR data must first be assigned; NOE dataero chemical shift change can indicate that binding has not
is particularly hard to assign due to chemical shift degenoccurred. We further assume that the holo structure does
eracy (Clore, 2000; Clore and Schwieters, 2003). Howevemot undergo significant conformational change outside of the
without experimental data, the accuracy of the predicted cominterface region; similar assumptions are made by most dock-
plex structure is determined solely by the energy function andhg protocols (Dobrodumov and Gronenborn, 2003; Clore and
not by experimental observations of the complex in solution.Schwieters, 2003; McCoy and Wyss, 2002). Once the iden-
Another ubiquitous technique in the study of protein—tity of each peak’s atoms (in the primary sequence) is known,
proteininterfaces is callaghemical shift mapping (Zuiderweg, chemical shift information can be useful in studying protein—
2002; Shukeret al., 1996), which compares the change inligand (Shukekt al., 1996) and protein—protein (Zuiderweg,
HSQC spectra (see Section 1.2 below) for the free and con2002) interactions (see Section 1.1). In this paper, we assume
plex spectra of the protein. To directly identify the interfacethese identities are unknown (i.enassigned), and treat the
region from chemical shift perturbations, the HSQC mustchemical shift peak for a given residue as a unique identi-
be assigned. McCoy and Wyss (2002) use assigned HSQfer that indexes into the experimental RDC data (described
spectra to identify the interface region, and they use assigndaklow). Our algorithm also uses NMR data from eitherde
RDCs to compute the relative rotation of the two proteins inexchange (Englanderet al., 1996) orwater HSQC (Grzesiek
the complex. With unassigned HSQC spectra, it is possibleand Bax, 1993) experiments to identify the chemical shifts
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from the given HSQC spectrum associated with surface, or veTr
solvent accessible residues in the protein. The HSQC exper-
iment, together with the experiments to identify solvent 7 j d,

accessible residues, can be performed in less than a day of

spectrometer time. oPc P 52
Our algorithm also uses RDC data (Losonezal., 1999; d

Saupe, 1968; Tjandra and Bax, 1997). RDCs givbal ori-

entational restraints on internuclear vectors. In this paper w&ig. 1. Commutative diagram of the mappings used in our problem

use NH RDCs, which give orientational information about definition.

backbone amide bond vectors. Each RD@ a real number,

where: the problem of determining protein—protein interfaces, given
D = Dpaxv! Sv. (1) unassigned NMR data.

RORDR DR’

2.1 Anarrangement problem on 2-manifolds

Dmax is the dipolar interaction constamtjs the internuclear Let P be a semi-algebraic 3-manifold with boundary iR R
vector of interest with respect to an arbitrary substructuquith constant degree, and laP denote the boundary af

frame, ar;]qshis the ,?’,X 3r‘T‘aUDe, orde_r matfri>;], oralign_me_nt h whichis a 2-manifold in R. Let TP denote the tangent bundle
tensor, which specifies the orientation of the protein in the ¢ P;thatis, TP = {(p,V) | p € P,v € T, P} whereT, P is

laboratory frame (i.e. magnetic field in the NMR SPectro- o tangent space pf P. LetV C TP be a finite set. LeB

meter).Sis a symmetric, traceless, rank2tensorthatdescribe§ the mapping((p,v)) = ((p& Bs) N P) x (V& By ), where

the average substru_cture alignm(_ant between.the protein ar}g and By are 3-dimensional (3D) balls of radids> 0 and
the (alignment) medium (Losoncgtial., 1999). Given a struc- 5’ > 0, respectively, centered at the origin. Hegedenotes
tural model, and the assignment of five or more ofthe recordefhe Minkowski sum, i.e. for sets andB, A @ B = {a + b |

RDC values to their corresponding internuclear vectors N cA be B}. Note thatB(V) is an arrangement ciP.

the model, it is possible to use singular value decomposi- Letr : TP — P bethe map(p,v) = p. Letd : 52 — R
tion to reconstruct the alignment tens®r(Losoncziet al., be a quadratic form o2 with d(v) = v’ Sv, whereSis a
1999). There are a number of techniques to estimate the a”g'g'ymmetric, traceless tensor of rank 2. Liet TP \ 0 — 52
ment tensor givennassigned RDCs (Langmead and Donald, - 4 o mapi (p,v) = L where 0 is the zero section BP.
2003, 2004; Langmeaa al., 2004; Erdmann and Rule, 200_2; Remark: Thezero sectu\cl)lh of atangent bundle is simply the set
Zweckstetter and Bax, 2001). There may be many solutlon%

E ) 1) for the | | . RDC f all elementg p, v) with ||v|] = 0). Letd, : TP\ 0 — R be
to Equation (1) for the internuclear vectergiven an a quadratic form off P \ 0 with d, (v) = d(j(p,V)); we note

valueD andS; however, giverv ands, we carback-compuite thatd, is the lifting of d by j. Figure 1 gives a commutative

or simulate D (modulo noise, dynamics, crystal contacts in diagram of the mappings, j, d andd,. Let the cost of
the structural model etc.) in constant time. We note that, > TP\ 0 be defined as n *

the number of solutions to Equation (1) can be reduced by
recording RDCs for multiple aligning media (Tolmahal., c(X) = max p(r(x), 7(y)),
1995; Wang and Donald, 2004). Each medium (ideally) gives x,yeX

. 9 . on P. We will also adopt that convention that X,Y) =

to v must lie in the intersection of the solutions of thelse ma Let R be an arbitrary. finite set of reals
equations (Wang and Donald, 2004). The functional relation- Xpexger £(Pq). Y '

ship given by Equation (1) between the recorded RDCs an(?ecfll]?% thmadggborhooq ofr € R aSNg) N (VR_ &r + £).
the corresponding internuclear vectorsdgiadratic form; we i da(t)a :apl (L)at_?hissgigﬂ?;g Enme(n‘g f>; ] rcznsl'fg?;
note that the constamax can be folded into the matri@to d—l*N B V N POSS! 'Y 9 RV and R

be consistent with the standard representation of a quadratic: ( (r?) M (V). Now, glven/ C, v ande, € Ik we
form. Like the HSQC experiment, RDCs can be recorded inWISh to find the largest subsgt’ of R’ such that

~1 h of spectrometer time. C(d*—l(N(R//)) NBV)Nx~10P)) < ¢, )

2 PROBLEM DEFINITION AND Note thatd*—l(N(R”)) N B(V) N w~1(3P) represents pos-
APPLICATION sible assignments faR”. Computing this set requires us to
In this section, we formally define a clustering problem intake the intersection between the slgtl(N(R”)) and the
an arrangement on a 2-manifold, where the arrangement errangemenis(V). By the definition of'3(V), each element
induced by a spherical quadratic form. We first state the probv € V, for the intersection betweef;:l(N(R”)) and B(v)
lem formally and then discuss its relevance and application taontains either all of the sgi(v) or none of it. The set ~1(3P)
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serves to constrain the subsetfdt being considered so that
its base points are iBP. We note that this restriction can be R V" 4 (V(s))
relaxed to include any ‘shell’ with depthof P; thatis, the set d

7~1(8P) can be replaced with the set 1 (3P @ (B,NP)).In

Section 2.3, we give an algorithm for computing the optimal
subsetR” of R'.

J 2
2.2 Application to protein—protein interfaces / S° )

We now apply the optimization problem presented above in .
the context of determining protein—protein interfaces using B (N (s)
NMR spectroscopy. As mentioned above, the input to our j

optimization problem is the manifol#, a quadratic forna, orP
setsR’ andV, and a scalat,. For a proteinA, we view the
problem of inferring the interface region df in a complex
with another proteirB as an instantiation of the above prob-
It?enlr?:sa[::::ne?ﬁlrlgznsttsrjstrjorg?xso.(;lgﬁq?gﬁ(;r:ﬁsZTrigﬁﬁg d {r,s}. Starting with the n_eighborhood a@t, i_.e. thg intervaIS\l_(r) _

. andN(s) in R, we consider the set of orientations (contained in
dP to be the SOIVem'aCCE_‘SS'ble surface F’f the structural mOd%IZ) that are associated with these intervals. These orientations are
of A. The setV C TP is simply the protein NH bond vectors  ;-1(N(,)) andd~1(N(r)), shown as colored green and blue bands,
from the given structural model of. We define the arrange-  respectively, on the unit 2-sphere. By our definitioa’pt andB(V),
ment 5(V) slightly differently from the above; for an NH these sets of orientations are mapped to patche®odenoted by
vectorv associated with the" residue along the backbone, the colored patches in the figure. Our optimization problem requires
we define3(v) to be the subset @ that contains the van der us to find the largest set of patches that does not exceed the diameter
Waals balls of the atoms in &' residue. We note that in this  thresholdc,.
definition, the elements d# (V) can intersect only at bound-
aries. In general, one RDC value is measured for each bond ##at (a) map to, within experimental error, a set of RDCs
a particular type—e.g., one RDC for every backbone amideR” that is a subset ok’ and (b) are clustered on the protein
bond. For each amide bond, a pair of{HN) chemical shifts ~ surface. Our problem definition not only accounts explicitly
(frequencies) is also measured. We kebe the set of RDC  for experimental error in the RDC data, but also captures the
values for the backbone amide bond vectors of our protein@mbiguity in the structural model by representing each NH
We assume that the alignment tenSonas been estimated; Vvector as a cone to model orientational uncertainty and con-
there are numerous techniques for estimating the alignmevolving the NH vector's base point with a surface patch on
tensor from unassigned NMR data (Langmead and DonaldP to model positional uncertainty. (Remark: It is worth not-
2003, 2004; Langmeagt al., 2004; Valafar and Prestegard, ing that our framework allows these surface patches to be
2003; Erdmann and Rule, 2002; Zweckstetter and Bax, 2001Jefined arbitrarily as long as they are of constant degree.) In
(see Sections 1.2 and 3 for discussion on the technique wgection 2.3, we give an optimal and combinatorially precise
use in our algorithm). The quadratic foefis defined using  algorithm for solving this problem, and in Section 3, we give a
[see Equation (1)]. We take the sRtto be the RDCs associ- practical algorithm along with results on experimental protein
ated with amide chemical shifts that are perturbed between ti¥MR data.
apo and holo form ofi. Recall that the unassigned chemical ] )
shifts that are perturbed between the apo and holo forms &3 A clustering algorithm on arrangements
a protein are associated with residues that are candidates for this section, we describe a combinatorially precise
the interface region. Furthermore, these chemical shifts indealgorithm for solving the clustering problem presented in
into the experimental RDCs, thus we can determine the se$ection 2.1 above. For ease of exposition, let the arrange-
R’ from the experimental data. In the remainder of the papenmnentA = d;l(N(R’)) NB(V)Nx~1(9P) and the parameter
we lete = 1, thusN(r) = (r — 1,r +1) (i.e. thereis 1 Hz ¢, be fixed. We note that, then, the s&$ V, and the quad-
of error in the experimental RDCs). We take #)eto be a  ratic formd are fixed as well. LetV| = n. By definition,
user-defined parameter that is given as input (see Section.4 hasn generating cells; the complexity of our algorithm is
for further discussion). determined by the number of generating cells4inin fact,

To solve our optimization problem, we wish to find the for our application (see Section 2.2) always has generat-
subset of the arrangemedg;l(N(R’)) N B(V) N x~1P) ing cells that intersect only at boundaries, and thus the total
that minimizes the objective functian(Fig. 2). Intuitively, = number of 3-cells in4 in this case is. Since we assume that
this geometric optimization problem corresponds to identi-P, and thusdP, has maximum constant degree, the bound-
fying a set of candidate NH bond vectors and their residuearies of the cells ofA are algebraic surfaces that also have

Fig. 2. Our clustering problem in an arrangement with theet
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constant maximum degree. Our goal is to compute a subsendg on its perimeter with diameter = p(p, ¢). Note that
of A that minimizes Equation (2). Informally, our algorithm s must contain every cell iX completely; that is, no cell of
exploits the fact that the arrangeme#tcan be represented X lies outside ofs, otherwise we could create a ball with a
using avertical decomposition (Halperin, 1997) and that we diameter greater than(p, g). Furthermores is the smallest
can quickly find the extrema of each cell df ball that can contain all ok, since any ball’ with diameter

Our algorithm works as follows. First, we note that giveno’ < « cannot contairX. Now, s by definition is explicity
B(V), we can take the intersectioil‘l(N(R’)) N B(V)in considered by our algorithm in the scoring phase, and thus is
O(n) time since we are gively¥ andd, and each cell of contained irC. O
A N B(v) is either equal ta3(v) (for somev € V) or @. By Lemma 2.1 and the time required to maintain the vertical
Then, we obtain theertical decomposition of A. The vertical decomposition data structure fot, we have the following
decomposition of an arrangement is essentially a recursivelytheorem:
defined sweep (along each dimension) of the cells of the
arrangement. We omit a full description of the decomposition
here, see Halperin (1997) for examples and further reference§" be
For an arbitrary arrangement in3Rf sizen, the worst-case
complexity of the vertical decomposition@(»°®) (Halperin, 3 A CLUSTERING-BASED ALGORITHM TO
1997); there is an algorithm to construct the decomposition IDENTIFY PROTEIN INTERFACES
that requires, in the worst casé,(n®logn) time (Chazelle  The algorithm in Section 2.3 is exact and combinatorially pre-
etal., 1991). We note that with the given decomposition, find-cise, but requires computation of algebraic surfaces. In this
ing the extrema of the cells of requires the worst-case(n®) section we give a practical version of the the algorithm of
time, since that is the worst-case complexity of the decomposSection 2.3. Due to experimental error in the RDCs, we make
ition. Now we can have at mo€2(n) extrema over all cells use of a probabilistic method to compuderather than com-
of the arrangement, since each cell has constant degree; thymite the intersection directly. We also model the elements of
we haveO (n?) pairs of extrema. For each pair of extrema A using a discrete point set that represents the protein surface,
».q € R®, we check ifo(p,q) is at mostc,. For each such rather than using an algebraic representatidiPofAs before,
pair p, ¢, we construct a ball with diametgx p, g) with pand  the input to our algorithm is the set of backbone NH vectors
g on the boundary. Let there liesuch balls. Ifc = 0, then  from a 3D structural model of the apo form of a protdirin
we return theR” = . Otherwise, we calculate the following the complex, RDCs for the protein, a set of chemical shifts
score on each ball. For each ball we compute how many (for surface residues) that are perturbed in the holo form of the
cells of the arrangement lie completelysinlet this number  protein, and an upper bound on the diameter of the interface
be denoted (s). This is equivalent to asking how many cells region. As a preprocessing step to our algorithm, we note that
of the arrangement have all of their extremasinthis can  there is existing software to identify the perturbed chemical
be done inO(n) time. LetC be the set of all such balls. Let shifts [e.g. Pengt al. (2004)].
s* = arg maxec o (s), and let4* be the subset o4 contained Let A be the apo form of am-residue protein in the complex,
in s*. The set4* can be computed i (n3) time, sinceo (s) and letH denote the holo form of the protein in the complex.
can be computed i@ (n) time foreach € C, and|C|is O (n?). We useV, to denote the surface backbone NH vectors from
By definition, each cell of* is also inA. Our algorithm finds  the structure ofi. Let R denote the RDC values observed for
the optimal seR” C R’ such thatR” is the largest set that sat- the NH vectors of the surface residuestofin the first phase,
isfies Equation (2). We return all triplés, v, B(v)Nz ~1(3P))  we identify the set of NH vectors (i.e. residues) associated
wherer € R”, v € V' = V N A* (r,v) is a consistent with the given perturbed chemical shifts by using unassigned
assignment, and the patch@g®(v) N 7 ~1(3P)}vey that are  experimental RDCs. We first compute an estimated alignment
contained in the ball (of maximum score) associated With  tensor using the algorithm of Langmeetdl. (2004), and fix
The correctness of our algorithm follows if we can show thatthe RDC magpi. Our algorithm then partitions the sRtinto
every subset with diameter at mastis considered by the two sets, M, RDCs that are associated with perturbed chem-
scoring phase. Itis straightforward to see that the subsét of ical shifts, and’ = R\ M. We then probabilistically match
that yields the maximum score and has diameter at mjast RDCs inM’ with NH vectorsV, by eliminating the highest
associated with the subsgt’ that minimizes Equation (2). joint-probability match, and successively conditioning match
Thus, the following lemma proves the correctness of ouiprobabilities on previous eliminations [cf. Langmead and

THEOREM 1. Theset R” C R’ that minimizes Equation (2)
computed in O (n3logn) time.

algorithm: Donald (2004)]. After all the RDCs i’ have been matched,
LeEmMMA 2.1 Everysubset X < A with diameter at most ¢ we output the remaining NH vectors as the interaction zone
is contained in one of the ballsin C. ° Z 4. In the second phase, we filtér, further by using the

algorithm of Section 2.3 as follows. First, we compute an
PrROOF. Fixasubsek and letp andg be the pair of extrema approximation t@P by taking a uniform sample (at a fixed
that have maximal distance and letlenote the ball wittp resolution) ofdP. We make use of the MSMS (Sanretial .,
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() (b) (©) (d)

Protein | Accuracy | Sensitivity E;?:Z? ;% Serllggl(;;lty Protein | Accuracy | Sensitivity | Labeling tl::st::;l g((’) Serllgl(;;\glty
PEX13P 73% 80% PEX13P 87% 94% RDQKF

25 100% 25 100%
barnase 2% 90% 30 99% barnase 78% 85% NGKT 30 T00%
barstar T7% 100% 33 1% bar.sta.r. 91% 100% RQKS 35 96%
ubiquitin 73% 73% P 20 T00% ubiquitin 74% 100% RNDKT P 20 100%
CAD 75% 90% 25 1% CAD 85% 100% QEHMS 75 1%
HPr 88% 100% 20 237 HPr 88% 100% EF 30 3%
EIN 90% 100% 35 3% EIN 93% 100% NV 35 A%

Fig. 3. Results. &) Accuracy of interaction zone and sensitivity of interaction cdog;Tfadeoff between sensitivity arg; (c) Accuracy of
interaction zone and sensitivity with selective labelind); Tradeoff between sensitivity arg with selective labeling. For (a) and (c), the
diameter of the interaction core,, was set to 20 A.

1995) algorithm for constructing this point set; MSMS runs For these proteins, a second set of RDC data for a second
in O(mlogm) time, wherem is the number of atoms in aligning medium was simulated. As mentioned in Section 1.2,
A. Let §4 be the point set computed by MSMS; note thatadditional aligning media serve to constrain the solutions for
|Sal = O@m) = O(n). We partition the point set as follows: the NH vector orientations that can be incorporated as follows.
foreach NHvectov € V", weletS, C S4 beall pointsinS For two aligning media, each RDEis given one probabil-
that are associated with the same residue asis set can be ity distribution per medium; we match experimental RDCs to
computed in0 (|S4]) time. We then proceed as in Section 2.3 NH vectors by taking the maximum joint probability that the
and output the residues associated with the highest-scorir@DCs in both media match to a vectarFor the remaining
cluster as the interaction co€g . During the first phase of the proteins, experimental RDC data is not publicly available; two
algorithm, tensor estimation requir@$nk°) time, and the set  sets of RDC data for two independent aligning media were
Va4 — V' requiresO (n?) time to construct. In the second phase simulated for Pex13P, CAD, barnase and barstar. For simu-
of the algorithm, the sef4 requiresO (m logm) time, where lated RDC data, we used a Gaussian error window of 1 Hz.
m is the number of atoms iA, and the clustering step requires Although we have experimental NMR chemical shifts and NH
0 (n®) time. The overall running time of our algorithm is then vectors for all residues in the proteins being tested, we only
O (nk® + mlogm + n®) = O(nk3 + nd). make use of surface NH vectors and chemical shifts. Surface
NH vectors can be easily identified from the given structural
model and surface chemical shifts can be identified experi-
4 RESULTS AND DISCUSSION mentally using amide exchange data; we used the program
We implemented and tested our algorithm on seven proteinslolMol to compute these NH vectors. Solvent accessibility
from five different protein complexes: the apo forms of (i.e. percentage of atomic surface area exposed to solvent)
Pex13P (PDB ID: 1NM7), CAD (PDB ID: 1C9F), ubiquitin and the chemical shift assignment was used to identify chem-
(PDB ID: 1D3Z), barnase (PDB ID: 1BNR), barstar (PDB ID: ical shifts associated with residues whose solvent accessibility
1BTA),E1IN (PDBID: 1EZA) and HPr (PDB ID: 1HDN)from was at least 40%. The set of surface residues that we used as
the CAD-ICAD (Otomoet al., 2000), ubiquitin-CUE (Kang inputin all of our experiments were the residues identified by
et al., 2003), barnase-barstar (Buclde al., 1994), EIN- MolMol as being at least 40% solvent-accessible, as well as
HPr (Garrettet al., 1999) protein—protein complexes and theresidues in the interface region for that protein. We implemen-
Pex13P-Pex14P (Douangamatlal., 2002) protein—peptide ted our algorithm in Matlab (Mathworks Inc, Natick, MA),
complex. We assume that the manual (and generally timeand ran all of our experiments on a Pentium-4 class processor.
consuming) experimental studies for these complexes havgince some of our input data (specifically, simulated RDC
produced the true interface regions, and compare the resultiata) were generated with a Gaussian error window, the test
of our algorithm against them. We report thecuracy (the  results in Figure 3 give the average accuracy and sensitivity
fraction of the interface region identified by our algorithm) over 10 trials for each protein. For our test cases, each exe-
of the interaction zone, and tisensitivity (the fraction of the  cution of our algorithm required-2 or 3 min of CPU time
output of our algorithm that was part of the interface region)on average. Thaccuracy of the interaction zon& 4 is the
of the interaction core (Fig. 3). percentage of true interface residues contained jn For
For our experiments, we used experimental RDC data foour test cases, we achieved accuracies between 73 and 90%.
a single aligning medium for ELIN, HPr and ubiquitin avail- Thesensitivity of the interaction cor€ 4 is the percentage of
able from the BioMagResBank (BMRB) (Seawwl., 1991).  C4 comprising interface residues; we achieved sensitivities
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of between 73 and 100%. Accuracy and sensitivity resultzone to 88% and the average sensitivity of the interaction
are reported for each protein [for a visualization of the out-core to 97%. Furthermore, we observe the same tradeoff
put of our algorithm on the proteins in the ELN-HPr complexbetween accuracy and sensitivity of the interaction core
see Mettuet al. (2005)]. A key feature of our algorithm is (Fig. 3d); however, the sensitivity 6f4 is improved due to the
the ability to choose the diameter threshg)dor the interac-  constraint added by selective labeling in the first phase of our
tion core. With a conservative value (i.e. significantly smalleralgorithm.
than the interface region itself), we are able to achieve very
high sensitivity at the expense of decreased accuracy. Thatis, CONCLUSION
whenc, is small, the second phase of our algorithm returnsi . . .
i n this paper, we have formalized the problem of finding a
a small number of residues, but they are all guaranteed to . = " . .
. : . : . protein interface fronunassigned NMR data as a geometric
be in the interface region. As we increasg the size of i . ;
. . : . c“;sterlng problem. We gave an optimal algorithm for the
the interaction core increases, but these residues are not a ] . 3 .
eometric clustering problem that runs@{»n=logn). Using

necessarily guaranteed to be in the interface region. Figure %is aloorithm. we develoned a practical algorithm for findin
shows the tradeoff between the sensitivity of the interaction 9 ' P P 9 9

core ande, for two representative proteins. However, the protein interfaces given unassigned chemical shifts, unas-
0 . . . ’ ' signed RDCs and a structural model of the apo protein that

accuracy of the interaction core (i.e. percentage of the tru?uns in0 (k3 + n3) time. On NMR data for seven proteins
interface region contained in the core) decreases as the core - . P '
. we showed that our algorithm yielded results that were both
diameter decreases. For example, for barstar, the core accur . L2 o
acy decreases from 86 to 77% whgiis decreased from 30 to accurate and ha(.j high sensmvnY (|.e.. a low f.alse—po.snwe
25 A. We note that this feature of our algorithm is important inrate), demonstrating that our algorithm is useful in practice. It

aoplications such as drua desian and protein—protein dockinWOUld be interesting to see if our algorithm could be applied
pp g g P P % proteins with multiple interface regions. In principle, our

since users can tregt essentially as a confidence parameter, . o
o ! . . L algorithm could be generalized: inthe second phase, we would
setting it conservatively for obtaining high sensitivity. For L .
return a set of clusters with high score, rather than a single

example, the docking study of Dobrodumov and GronenbornCIuster as the interaction cores
(2003) found that in some cases, distance restraints between ' '
just a single pair of residues are sufficient to significantly con-
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