
Consistent Query Answering in Databases∗

Leopoldo Bertossi
Carleton University

School of Computer Science
Ottawa, Canada.

bertossi@scs.carleton.ca

1 Introduction
For several reasons databases may become inconsistent
with respect to a given set of integrity constraints (ICs):
(a) The DBMS have no mechanism to maintain certain
classes of ICs. (b) New constraints are imposed on pre-
existing, legacy data. (c) The ICs are soft, user, or infor-
mational constraints that are considered at query time, but
without being necessarily enforced. (d) Data from differ-
ent and autonomous sources are being integrated, in par-
ticular in mediator-based approaches.

In many cases cleaning the database from inconsisten-
cies may not be an option, e.g. in virtual data integration,
or doing it may be costly, non-deterministic, and may lead
to loss of potentially useful data. Furthermore, it is quite
likely that most of the data in the database is still “con-
sistent”. In consequence, an alternative approach to data
cleaning consists in basically living with the inconsistent
data, but making sure that the consistent data can be iden-
tified if desired, for example when queries are answered
from the database.

Of course, if this approach is followed, the first prob-
lem that has to be confronted is the one characterizing
in precise terms the notion of consistent data in a possi-
bly inconsistent database. Such a definition was proposed
in [1]. The basic intuition is that a piece of data in the
database D is consistent if it is invariant under minimal
forms of restoring the consistency of the database, i.e.
it remains in every database instance D′ that shares the
schema with D, is consistent wrt the given ICs, and “min-
imally differs” from D. This natural intuition still depends
on what we consider to be maximally close to the origi-
nal instance. Several alternatives offer themselves, and we
come back to this point in Section 4, but for the moment,
in order to fix ideas, we stick to the notion of distance
used in [1]: The set of database tuples either inserted or
deleted into/from the database to restore consistency has
to be made minimal under set inclusion. These repairs
will be called S-repairs.

We will concentrate on relational databases. Thus, we
start from a fixed relational schema S = (U ,R,B), where
U is the possibly infinite database domain,R is a set of
� Database Principles Column.

Editor: Leonid Libkin, Department of Computer Science, University of

Toronto, Toronto, Canada M5S 3H5. E-mail: libkin@cs.toronto.edu.

database predicates, and B is a set of built-in predicates,
e.g. comparison predicates. This schema determines a
language L(S) of first-order predicate logic. A database
instance D compatible with S can be seen as a finite col-
lection of ground atoms of the form R(c1, ..., cn) that we
will call database tuples, where R is a predicate inR and
c1, ..., cn are constants in U . Built-in predicates have a
fixed extension in every database instance, not subject to
changes. Integrity constraints are sentences in L(S).

A database instance D is consistent wrt a finite set IC
of integrity constraints if D satisfies IC as a first-order
structure, denoted D |= IC . Otherwise, D is inconsistent
wrt IC . A repair D′ of D is another instance over schema
S that satisfies IC and makes ∆(D,D′) = (D � D′) ∪
(D′

� D) minimal under set inclusion. We denote with
Rep(D, IC) the set of repairs of D wrt IC .

Example 1 Consider a schema with relation P (A, B, C)
and the functional dependency (FD) A → B. The incon-
sistent instance D = {P (a, b, c), P (a, c, d), P (a, c, e),
P (b, f, g)} has two repairs: D1 = {P (a, b, c), P (b, f, g)}
and D2 = {P (a, c, d), P (a, c, e), P (b, f, g)}, because
the symmetric set differences with the original instance,
∆(D,D1),∆(D,D2), are minimal under set inclusion. �

We are not particularly interested in the repairs of the
database, or better, in computing them, but in the consis-
tent data in the database, more specifically in consistent
answers to queries. From this point of view, we use the
repairs as auxiliary objects.1

A query is a first-order formula Q(x1, . . . , xn) inL(S),
with free variables x1, . . . , xn, n ≥ 0, and a tuple t̄ =
(t1, . . . , tn) ∈ Un is a consistent answer to Q in D wrt
IC if for every D′ ∈ Rep(D, IC) : D′ |= Q[t̄], i.e. Q
becomes true in D′ when the variables x1, . . . , xn take
the values t1, . . . , tn, resp. When n = 0, i.e. the query
is boolean, yes is the consistent answer if D′ |= Q for
every D′ ∈ Rep(D, IC). Otherwise, no is the consistent
answer.

Example 2 (example 1 continued) The query Q1(x) :
∃y∃zP (x, y, x) has (a), (b) as the only consistent an-
swers, because they are the only usual answers obtained
from the two repairs. The query Q2(y, z) : ∃xP (x, y, z)

1However, in some applications computing repairs may be more rel-
evant that computing consistent answers to queries, cf. Section 4.1.

has (f, g) as consistent answer. Finally, Q3 : P (x, y, x)
has (b, f, g) as its consistent answer. �

Since these definitions were introduced in [1], several pa-
pers have been written on the subject of consistent query
answering (CQA). For an earlier survey, more references,
and related work, see [12].

2 Computing Consistent Answers
As emphasized above, in most applications, computing
consistent answers to queries is the natural problem to
solve. In an ideal situation, those answers should be
obtained by querying the given, inconsistent databases,
hopefully avoiding as much as possible the explicit com-
putation of the repairs and checking candidate answers in
them. It is easy to see that there may be exponentially
many repairs in the size of the database.

The first algorithm for computing consistent answers to
queries in this spirit was proposed in [1]. It is a query
rewriting algorithm, i.e. the original query Q, expecting
for consistent answers from D, is rewritten into a new
query Q′ in such a way that the usual answers to Q′ in
D are the consistent answers to Q from D. Query Q′

can be computed iteratively by appending to Q additional
conditions, the residues, that are obtained from the inter-
action between Q and the ICs, in order to locally enforce
the satisfaction of the ICs.
Example 3 (example 2 continued) Query Q3 can be
rewritten into the query
Q′(x, y, z): P (x, y, z) ∧ ∀v∀w(¬P (x, v, w) ∨ y = v),
asking for those tuples (x, y, z) in P for which x does not
have and associated u different from y. The residue can
be obtained by resolution between the original query and
the clausal form ∀uvv′ww′(¬P (u, v, w)∨¬P (u, v′, w′)∨
v = v′) of the FD. �

In this example the original query was rewritten into a
new first-order query, that could be expressed in SQL, as
the original query, and posed to instance D. The usual
answers to the rewritten query are exactly the consistent
answers to the original query.

Notice that there may be several ICs and also several
literals in the query that “logically interact” with the ICs,
so that this residue appending process has to be iterated.
In [1] conditions for soundness, completeness, and fi-
nite termination are identified. This algorithm is guaran-
teed to produce a first-order rewriting for projection-free
conjunctive queries and universal ICs, i.e. that are logi-
cally equivalent to a quantifier-free formula preceded by a
block of universal quantifiers.

A system implementation for computing consistent an-
swers for this class of queries and ICs that is based on
this methodology is reported in [21]. Another system for
the same class of queries, but for denial ICs, i.e. ICs that
logically equivalent to one of the form

∀x̄¬(A1 ∧ . . . ∧Am ∧ γ), (1)

where each Ai is a database atom and γ is a conjunction of
comparison atoms, is described in [22], however the latter
is based on a graph-theoretic representation of repairs and
not on syntactic query rewriting (cf. Section 3).

Given the -as we will see- intrinsic limitations of
methodology to obtain consistent answers based on first-
order query rewriting, a more general approach based on
specifying database repairs as the the models of a logic
program was proposed [4, 35]. More specifically, it is pos-
sible to use a disjunctive logic program with stable model
semantics [34] and annotation constants, whose rules cap-
ture the violations of the ICs in the bodies and propose al-
ternative ways of locally restoring consistency by means
of their disjunctive heads [5].

Example 4 (example 1 continued) The repair program2

Π(D,FD) contains the original database atoms as
facts, and the rule P ′(x, y, z,d) ∨ P ′(x, u, v,d) ←
P (x, y, z), P (x, u, v), y �= u, where the extra annotation
d used in the head indicates that one of the conflicting tu-
ples should be deleted. The body is satisfied when the FD
is violated.

The annotation constant r is used to read off the
database tuples that are inside a repair P (x̄, r) ←
P (x̄), not P ′(x̄,d), i.e. they contain those database
atoms that were not deleted from the original database.

The stable models of the repair program are in one-to-
one correspondence with the database repairs; and if the
consistent answers to the query ∃y∃zP (x, y, z) are to be
computed, the repair program can be extended with the
query rule Ans(x) ← P ′(x, y, z, r). The consistent an-
swers will be those in the extension of the Ans predicate
when the extended program is evaluated according to the
skeptical (or cautious or certain) stable model semantics,
i.e. the one that sanctions as true whatever is true of all
stable models. �

This methodology is provably correct and complete for
any combination of first-order queries (or in extensions of
Datalog), universal ICs, and referential ICs; the latter con-
taining no referential cycles [6]. In spite of its generality,
this approach may be too expensive given that query eval-
uation of disjunctive logic programs under the skeptical
stable model semantics is ΠP

2 -complete [24]. However,
as we will see in Section 3, in some cases we need the ex-
pressive power of this kind of programs. Optimizations of
these repairs programs have been presented in [27, 6, 20].

3 Complexity of Consistent Query
Answering

It is clear that for those cases where the first-order query
rewriting methodology for CQA works, the complexity of
computing consistent answers is polynomial in the size

2In a very simplified form wrt the general methodology, to show the
gist of the approach.

|D| of the underlying database D, i.e. it is in PTIME
in data complexity, a usual measure of complexity in
databases.

The first lower-bounds for CQA were obtained for sets
FD of functional dependencies and scalar (group-by free)
aggregate queries [2]. Since in this case the query returns
a single numerical value from a database, which can be
different in every repair, the semantics for CQA used in
this context is the range semantics. In this case the con-
sistent answer to an aggregate query Q is an optimal nu-
merical interval Iop = (opL, opU), such that for every
D′ ∈ Rep(D, IC), the numerical answer Q(D′) to Q in
D′ falls in Iop .

Example 5 Consider schema P (A,B), the FD
A → B, and the inconsistent instance D =
{P (a, 4), P (a, 9), P (b, 3), P (c, 5)}. The re-
pairs are D1 = {P (a, 4), P (b, 3), P (c, 5)} and
D2 = {P (a, 9), P (b, 3), P (c, 5)}. Here, the consis-
tent answer to the query min(B) should be 3, the
minimum in both repairs, whereas for the query sum(B),
we get answers 13 and 17 from D1,D2, resp. Under
the range semantics for CQA, the answer is the optimal
interval [13, 17], the most informative interval where the
answers to the original query from the different repairs
will be found. �

Finding the optimal lower and upper bounds opL, opU ,
resp., become maximization and minimization prob-
lems, resp., that have associated decision problems:
CQAL(Q,FD) = {(D, k) | k ≤ opL}, and
CQAU (Q,FD) = {(D, k) | opU ≤ k}, resp. As usual,
we are interested in the data complexity of these prob-
lems.

In order to obtain complexity bounds and algorithms
for these decision problems, it is useful to provide a graph-
theoretic characterization of repairs, which are in one-
to-one correspondence with the (set-theoretically) maxi-
mal independent sets of the conflict graph G(D,FD) as-
sociated to instance D and FDs FD . The vertices of
G(D,FD) are the database tuples in D, and any two ver-
tices are connected by an edge if they simultaneously par-
ticipate in the violation of one of the FDs in FD .

A classification of the complexity of CQA for the main
aggregate queries is given in [3]. Basically already with
two FDs the decision problems associated to CQA be-
come NP -complete.

For first-order queries Q(x̄) the decision problem of
CQA is CQA(Q, IC) = {(D, t̄) | t̄ is a consistent
answer to Q from D wrt IC}.

The graph-theoretic methods introduced in [2] were ex-
tended to deal with the CQA problem for sets IC of denial
constraints, that include FDs [23]. In this case, instead of
conflict graphs we find conflict hyper-graphs, whose ver-
tices are the database tuples, but now hyper-edges con-
nect all ad only the tuples that simultaneously violate a
denial of the form (1). For denial constraints repairs can

be obtained via tuple deletions alone, and there is still a
one-to-one correspondence between the S-repairs and the
maximal independent sets in the hyper-graph.

Example 6 The schema has tables Client(ID , A,C),
with attributes ID , an identification key, age and
credit line; and Buy(ID , I ,P), with key {ID , I},
for clients buying items (I) at certain prices (P).
There are denial constraints IC 1 : ∀ID , P,A,C¬(
Buy(ID , I, P),Client(ID , A,C), A < 18, P > 25) and
IC 2 : ∀ID , A,C¬(Client(ID , A,C), A < 18, C > 50),
requiring that people younger than 18 cannot spend more
than 25 on one item nor have a credit line higher than 50
in the store. The following is an inconsistent instance D
(we use an extra column to denote the tuple)

Client Buy
ID A C
1 15 52 t1
2 16 51 t2
3 60 900 t3

ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

The hyper-edges are {t1,t4} and {t1,t5} for IC 1 and {t1}
and {t2} for IC 2. The figure shows the hyper-graph asso-
ciated to D and the denial constraints (the key constraints
are satisfied in this example). For example, the instance
consisting of database tuples {t3, t4, t5, t6} would be an
S-repair, that corresponds to maximal independent set. �

In [23] the complexity analysis was extended to denials
in combination with inclusion dependencies of the form
∀x̄∃ȳ(P (x̄)→ R(x̄′, ȳ)), with x̄′ ⊆ x̄. These constraints
can be repaired by deleting the inconsistent tuple in P or
inserting a tuple into R. However [23] considers only re-
pairs that are obtained through tuple deletions. This class
of dependencies include universal inclusion dependencies
and referential ICs. In [23] it shown that for conjunctive
queries with projections and FDs, the problem of CQA be-
comes coNP -complete; and with inclusion dependencies,
even ΠP

2 -complete.
Similar complexity results were obtained in [18] un-

der a repair semantics that allows for both tuple deletions
and insertions when FDs and inclusion dependencies are
combined. In this case, CQA becomes undecidable due
to the possible presence of cycles among the inclusion de-
pendencies and the possibility of using arbitrary elements
from the underlying infinite database domain U when tu-
ples are inserted.

Interestingly, the tight complexity upper bound for de-
cidable CQA coincides with the complexity upper bound

of query evaluation from the repair programs that specify
the repairs, which shows that in the worst cases, the ex-
pressive power of disjunctive logic programs is necessary.

The complexity results mentioned above show that
first-order query rewriting for CQA has intrinsic limita-
tions, which makes it necessary to rewrite the original
query into a logic program as opposed to a first-order
query. As shown in [6], this program may be simpler
than disjunctive. There, classes of ICs are identified for
which the disjunctive programs can be transformed into a
(non-disjunctive) normal programs, whose query evalua-
tion complexity becomes coNP -complete [24].

From the previous discussion, we can see that for
FDs and conjunctive queries we can go from PTIME ,
e.g. for projection-free conjunctive queries, to coNP -
completeness for some particular classes of existentially
quantified conjunctive queries. In consequence, a natu-
ral problem was to identify classes of conjunctive queries
with projection for which CQA is still tractable. The
first such classes were identified in [23], and polynomial
time algorithms were developed appealing to the conflict
graph-based representation of repairs. This analysis was
extended in detail in [32], were a tight class, CTree , of
conjunctive queries was identified for which CQA is still
tractable.

More precisely, as defined in [32], the join graph G(Q)
of a boolean conjunctive query Q is a directed graph,
whose vertices are the database atoms in Q. There is an
arc from L to L′ if L �= L′ and there is a variable w that
occurs at the position of a non-key attribute in L and also
occurs in L′. Furthermore, there is a self-loop at L if there
is a variable that occurs at the position of a non-key at-
tribute in L, and at least twice in L. By definition, a query
Q belongs to the class CTree if Q does not have repeated
relations symbols and G(Q) is a forest and every non-key
to key join of Q is full i.e. involves the whole key. CQA
becomes tractable for queries in CTree .3

Algorithms for consistently answering queries in the
class CTree wrt FDs were implemented and reported in
[33]. Tractable classes of union of queries in CTree are
identified in [37].

Example 7 Consider the following boolean queries,
where the primary keys of the relations involved are un-
derlined and all the variables are existentially quantified:
Q1 : P (x, y) ∧R(y, w) ∧ T (u, v, y); Q2 : T (x, y, y); Q3 :
R(x, y) ∧ P (y, z) ∧ S(z, u); and Q4 : R(x, y) ∧ S(w, z)
∧ P (y, u). The four associated join graphs, respectively,
are shown below. G(Q1) and G(Q2) are not forests, there-
fore their queries are not in CTree . Even though G(Q3) is
a forest, since it has a non-key to key join that is not full,
it does not belong to CTree .

3Open conjunctive queries can be accommodated in this class by
treating the free variables in them as constants in the definition of their
join graph.

R

PS

P

RT T

R

PS

Q4 is in CTree because G(Q3) is a forest and all the non-
key to key joins are full. �

4 Other Repair Semantics
We have seen that the notion of consistent answer is de-
fined in terms of the auxiliary notion of repair, which in-
cludes in its turn a notion of minimal restoration of con-
sistency. Most of the research in CQA has been concen-
trated on repairs that differ from the original database by
a minimal set of whole (inserted or deleted) tuples under
set inclusion, as were defined above.

Depending on the application domain, or complexity is-
sues, other notions of repair could be considered and stud-
ied, in particular, in terms of their impact on CQA.

4.1 Attribute-based repairs
In Example 6, if we consider the repair semantics intro-
duced before, inconsistencies would be solved by deleting
complete database tuples from the database. In [48, 31]
a different kind of repairs was introduced; they are ob-
tained by changing some attribute values in existing tu-
ples. We call them, attribute-based repairs (simply A-
repairs). Except for [48], all the A-repairs considered so
far [31, 10, 29] minimize a numerical aggregation func-
tion over the attribute-value changes.

More precisely, we can use a numerical function w de-
fined on tuples of the form (R(t̄), A,newValue), where
R indicates a tuple in the original instance, A the attribute
of R, and newValue is the new value that attribute A
gets in R(t̄). Then, we minimize an aggregation func-
tion g over the values taken by w in the instance, that is
the A-repairs are consistent instances that minimize the
value of g. Typically [31, 29], w(R(t̄), A,newValue) =
δ(R(t̄).A,newValue), i.e. it gives 1 if there is a change,
and 0 otherwise. Next g is the sum, that is, the number of
changes is minimized.

Most of the research around this kind of repairs has
been motivated by the real need to repair the original
database without getting rid of the whole conflicting
database tuples. Typical applications are related to cen-
sus data [31, 10], where census forms have to be edited in
order to make them consistent wrt to certain denial con-
straints that forbid certain combinations of data. For ex-
ample, in household data associated to a census, we may
consider that there is a mistake if a child under 5 shows
“married” as marital status.

In this kind of statistical applications, a main focus of
interest is on obtaining concrete repairs. Consistent query
answering based on A-repairs is a natural problem for ag-
gregate numerical queries under the range semantics (cf.
Section 3).

In [10], the class of attribute repairs was defined in
terms of the functions square difference and sum (w and
g above, resp.), i.e. repairs minimize the sum of square
differences of numerical values in fixable numerical at-
tributes taking integer values. The basic assumptions are
that these numerical values are associated to -non neces-
sarily numerical- values taken by a key, and that the key
constraint is satisfied by the original database and its re-
pairs (which makes it possible to compare numerical val-
ues associated to values of the key). For example, in a
census database, this assumption means that a a household
code is unique, but values associated to this code may be
incorrect wrt to a separate set of denial constraints, e.g.
number of people in the house; or the age of the oldest
son, etc.

Numerical distances capture in a better way the numeri-
cal nature of some relevant attributes, and also the fact that
when we repair (in this case, correct mistakes), the correc-
tions are minimal in numerical difference while satisfying
the constraints.
Example 8 (example 6 continued) The A-repairs of D
that minimize the square distance are
D′: Client Buy

ID A C
1 15 50 t′1
2 16 50 t2′
3 60 900 t3

ID I P
1 CD 25 t4′
1 DVD 25 t5′
3 DVD 40 t6

D′′: Client Buy
ID A C
1 18 52 t1′′
2 16 50 t2′′
3 60 900 t3

ID I P
1 CD 27 t4
1 DVD 26 t5
3 DVD 40 t6

These repairs have the square distances to the original in-
stance 12 + 22 + 12 + 22 = 10 and 12 + 32 = 10, resp.;
and they satisfy the denial constraints. �

A relevant decision problem to solve in this context con-
sists in determining if there is a repair at a distance smaller
than a given budget to the initial instance. This problem
turns out to be NP -hard [10] even for the natural class
of denial constraints that are “local”, as those in Example
6 (intuitively, inconsistencies can be solved by concen-
trating on changes that are local to each denial). Even
more, for this class of constraints there is no polynomial-
time approximation schema (PTAS) for the associated op-
timization problem. However, it is possible to provide
a polynomial-time approximation algorithm that gives an
answers within a constant factor of the optimal solution.

Another relevant decision problem is CQA for aggre-
gate queries under the range semantics. This problem is
coNP -hard for the most common scalar aggregate func-
tions, and even for one database atom denial constraints
(like IC 2 in Example 6). For example, for sum no PTAS
exists, but, again, a polynomial-time and constant fac-
tor approximation algorithm can be given for the optimal
bounds of the range semantics [10].

Attribute-based repairs under aggregation constraints
have been investigated in [29].

4.2 Cardinality-based repairs
Less attention than CQA based on S-repairs (introduced
in Section 1) has received the same problem relative
to “cardinality-based repairs” of the original database
(simply C-repairs) that minimize the number of whole
database tuples by which the instances differ.

Example 9 (example 1 continued) Among the S-repairs
D1 and D2, only D2 is a cardinality-based repair, because
the cardinality |∆(D,D2)| of the symmetric set differ-
ence becomes a minimum. �

The complexity of CQA wrt denial constraints under the
C-repair semantics has been investigated in [44]. Sim-
ilarly as with S-repairs, the C-repairs are in a one-to-
one correspondence with the maximum (in cardinality) in-
dependent sets (MISs) in the conflict hyper-graph deter-
mined by the original instance and the constraints.

A database tuple is consistently true if it belong to ev-
ery MIS. In contrast to the S-repair semantics, a database
tuple in the original instance may not belong to any
MIS. Actually we obtain that CQA for ground atomic
queries and denial constraints under the C-repair seman-
tics is PNP(log n)-complete [44], which contrast with the
polynomial time complexity for the same problem wrt
the S-semantics [23]. That is, for C-repairs we need
polynomial-time algorithm that makes O(log(n)) calls to
an NP -oracle, where n is the size of the original database.

4.3 CQA under null values
The database repairs considered so far have not explicitly
taken into account that a database may have null values
and that consistency can also be restored using them, e.g.
for referential integrity constraints. There are many differ-
ent semantics for null values and for databases that repre-
sent incomplete information. Some of them consider dif-
ferent kinds of null values, or different but labelled nulls
of the same kind, etc. In commercial DBMS we find only
one null value. There is something like a semantics for its
use in the SQL standard, which is not always implemented
in real systems.

In [15] this issue was systematically studied, consid-
ering databases with possibly many different occurrences
of the same null constant, as found in database practice.
Also repairs of referential ICs made use of this constant,
as an alternative to the co-existing possibility of deleting
the violating tuple. This makes it necessary to provide a
precise and uniform semantics for IC satisfaction in the
presence of null values that extends and is compatible
with the way commercial systems deal with ICs. This se-
mantics was introduced in [15], together with a new repair
semantics that privileges the use null values over arbitrary
constants in the domain when tuples are inserted to satisfy
existential ICs.

Example 10 Consider the ICs ∀xy(P (x, y) → T (x)),
∀x(T (x) → ∃yP (y, x)), and the inconsistent database
D = {P (a, b), P (null , a), T (c)}. In this case, we have a
referential cycle in the set of ICs. According to the modi-
fied repair semantics, the four repairs are:

i Di

1 {P (a, b), P (null , a), T (c), P (null , c), T (a)}
2 {P (a, b), P (null , a), T (a)}
3 {P (null , a), T (c), P (null , c)}
4 {P (null , a)}

We obtain a finite number of repairs (each with finite ex-
tension). If we repaired the database by using the non-
null constants in the infinite domain with the S-repair se-
mantics of [1], we would obtain an infinite number of re-
pairs and infinitely many of them with infinite extension,
as considered in [18]. �

In contrast to the undecidability result for CQA under
classic S-repair semantics for referential ICs reported in
[18], with the null-value based semantics decidability is
reached.

5 Dynamic Aspects of CQA
It is in the context of the C-repair semantics (cf. Section
4.2) that dynamic aspects of CQA have been investigated
for the first time. More precisely, in [44] the incremen-
tal complexity of CQA is considered. In this case, the
original database D, of size n, is consistent wrt a set of
ICs, but after a sequence U : u1, . . . , um of basic updates
ui that are insertions on one tuple, deletion of one tuple,
or a change of an attribute value in a tuple, the updated
database U(D) may become inconsistent. Incremental
complexity of CQA is the complexity of CQA wrt the up-
dated instance U(D).

For the C-repair semantics, first-order boolean queries,
and denial constraints, incremental CQA is in PTIME
in the size of D, however a naive algorithm that gives
this upper bound, namely O(np(m)) with p a polynomial,
gives an exponential complexity in m, the size of the up-
date sequence [44].

It is possible to prove that this problem, still under
the C-repair semantics, for functional dependencies and
ground atomic queries, is fixed parameter tractable (FPT)
[38, 30, 25], i.e. there is an algorithm that of order
O(f(m) · nc), with f a function of m alone, and c a con-
stant. The parameter here is m, the size of the update se-
quence. The algorithm given in [44] appeals to the fixed
parameter tractability of vertex cover. Using the member-
ship to FPT of the d-hitting set problem (finding the size
of a minimum hitting set for a hyper-graph with hyper-
edges bounded in size by d) [46], it is possible to prove
that incremental CQA under the C-repair semantics also
belongs to FPT for denial constraints that have a fixed
number d of database tuples, which is a natural assump-
tion [44].

Summarizing, for boolean queries and denial ICs, in-
cremental CQA is PTIME on n under the C-repair se-
mantics. However, under the same conditions but now the
S-repair semantics, incremental CQA is coNP -complete
on n [44]. The difference with the C-repair semantics be-
comes more clear if we consider that the cost of a C-repair
cannot exceed the size m of the update, whereas the cost
of an S-repair may be unbounded wrt the same size.

Example 11 Consider the schema R(·), S(·), with de-
nial constraint ∀x∀y¬(R(x) ∧ S(y)). The following
is a consistent instance D = {R(1), . . . , R(n)}, with
empty table for S. After the update U : insert(S(0)),
the database becomes inconsistent, and the S-repairs are
{R(1), . . . , R(n)} and {S(0)}. Only the former is a C-
repair, at a distance 1 from D, but the second S-repair is
at a distance n. �

Finally, we should mention that incremental CQA wrt de-
nial constraints and atomic queries under the A-repair se-
mantics (cf. Section 4.1) becomes PNP -hard on n [44].
In this case, after the update sequence (consisting of in-
sertions, deletions and one attribute value changes), the
database may become inconsistent, but it can only be re-
paired through attribute value changes.

It would be interesting to analyze the complexity of in-
cremental CQA from the point of view of dynamic com-
plexity [40, 47] and incremental complexity as introduced
in [45]. Here the database is not necessarily consistent be-
fore the update, but auxiliary data structures can be used
for incremental computation of CQA.

6 Data Exchange and Integration
Consistent query answering is related to several other ar-
eas, most prominently to virtual data integration, data ex-
change, and peer-to-peer data exchange.

As emphasized in [11], in data exchange, where data
is shipped from a source database in order to populate a
target schema, integrity constraints imposed at the target
level have to be kept satisfied [41]. Instead of restoring the
consistency of data at the target a posteriori, after the pop-
ulation process, a more appealing alternative would take
the ICs at the target into account when the data mappings
between the source and the target are being established
and/or used.

In virtual data integration [43] there is no centralized
consistency maintenance mechanism that makes the data
in the mediated system satisfy certain global ICs. Again,
these ICs have to be captured by the mappings between
the sources and the global schema or at query time [8],
when global queries are being answered. Both in data
exchange and virtual data integration, the plans for data
transfer or query answering have to deal with potential in-
consistencies of data.

Mediator-based data integration is a natural scenario for
applying CQA: We expect to retrieve only the informa-
tion from the global, virtual database that is consistent wrt
to a given set of global ICs. In this scenario, some new is-
sues appear, like characterizing repairs of global virtual
instances, and retrieve consistent answers at query time,
considering that the data is in the sources.

In the following we will illustrate the approach devel-
oped in [7, 13, 14] by means of an extended example. For
a general overview, detailed discussion of related work,
and additional results cf. [8].

We will assume that the local-as-view (LAV)4 approach
is adopted, which means that the relations at the source
schemas are described as views over the global schema
that the mediator offers to the users. The underlying do-
main is U = {a, b, c, . . . }, the global schema is Global
system G consists of relations P (A,B) and R(C,D), and
the source relations are S1, S2, with extensions s1 =
{S(a, b)}, s2 = {S2(a, c), S2(d, e)}. The source rela-
tions are defined by (using Datalog notation):

S1(X,Z) ← P (X,Y), R(Y,Z).
S2(X,Y) ← P (X,Y).

The global relations P,R can be materialized in differ-
ent ways, still satisfying the view definitions (or source
descriptions); so different global instances are possible
become possible. If the sources are declared as open
(or incomplete), a global (material) instance D is legal
if the view definitions applied to it compute extensions
S1(D), S2(D) such that s1 ⊆ S1(D) and s2 ⊆ S2(D).
That is, each source relation contains a possibly proper
subset of the data of its kind in the global system.

The certain answers to a global query Q, i.e. ex-
pressed in terms of relations P and R, are those that
can be (classically) obtained from every possible legal
instance. Among the legal instances we can distinguish
the minimal instances, those that are legal and do not
properly contain any other legal instance [7]. Those
global instances do not contain redundant data, and we
can concentrate on inconsistency already at their level. In
our example, the minimal instances are Mininst(G) =
{{P (a, c), P (d, e), P (a, z), R(z, b)} | z ∈ U}.

The minimal answers to a global query Q are those
answers that can be obtained from every minimal in-
stance. In consequence, the certain answers to a query
are contained in its minimal answers: Certain(Q,G) �
Minimal(Q,G). For monotone queries these two sets co-
incide [7].

Now, let us assume that we have the global FD on P :
A → B. Some of the minimal instances are consistent,
e.g. D1 = {P (a, c), P (d, e), R(c, b)}, but others are not,
e.g. D2 = {P (a, c), P (d, e), P (a, f), R(f, b)}. The re-
pairs of system G are defined as the S-repairs of the mini-
mal instances. For example, D1 here is its own repair, but

4For the basic notions of virtual data integration we refer to [43].

D2 gives rise to two repairs: {P (a, c), P (d, e), R(f, b)}
and {P (d, e), P (a, f), R(f, b)}. The consistent answers
to a global query Q are those answers that can be obtained
from every repair of G [7].

In order to compute consistent answers from G, we pro-
ceed as follows [13, 14]: (1) First the minimal instances
of G are specified as the stable models of a logic program.
(2) The repairs of G are specified as illustrated in Section
2. This constitutes a second layer on top of the program
in (1). (3) A third layer is the query program that is run in
combination with the other two previous layer. This pro-
gram contains an Answer predicate that collects the con-
sistent answers, that are computed according to the skep-
tical stable model semantics of the combined program.

This methodology provably works for first-order
queries (and Datalog extensions), and universal ICs com-
bined with (acyclic) referential ICs. As an interesting sub-
product we obtain a methodology to compute certain an-
swers to monotone queries (just forget the intermediate
repair layer).

In our example, the minimal instances are specified
by the program containing the following rules (in addi-
tion to the facts dom(a), dom(b), dom(c), . . . , S1(a, b),
S1(d, e), S2(a, c)):

P (X,Z) ← S1(X,Y), F ((X,Y), Z).
P (X,Y) ← S2(X,Y).
R(Z, Y) ← S1(X,Y), F ((X,Y), Z).

F ((X,Y), Z) ← S1(X,Y), dom(Z),
choice((X,Y), (Z)).

This program is inspired by the inverse rules algorithm
for computing certain answers [26]. Here, F is a func-
tional predicate, whose functionality on the second ar-
gument is imposed through the use of the choice opera-
tor choice((X̄), (Z)), that non-deterministically chooses
a unique value for Z for each combination of values for
X̄ [36]. The program with choice can be transformed into
a usual normal program with stable model semantics [36].
In our case, there is a one-to-one correspondence between
its models and the minimal instances of the integration
system [14]. This program not only specifies the mini-
mal instances, but, in combination with a query program,
can be also used to compute certain answers to monotone
queries. Specification programs can also be produced for
case where sources may be closed (or complete) or clopen
(or exact) [8].

Now, in order to specify the repairs of G, we can use a
program like the one presented in Example 4, as a second
layer on top of the previous program.

In a series of papers [17, 16, 42] virtual data integration
systems under the global-as-view (GAV) approach (global
relations are defined as views over the source relations).
Different alternative semantics are studied and different
classes of global ICs are considered. For example, in their

terminology, the repairs of D2 would be loosely sound, in
the sense that, as global instances, they are not legal be-
cause the computed views do not extend the given source
contents.

In semantic approaches to peer-to-peer data exchange
systems [39], peers exchange data according to declara-
tive mappings between them, with the purpose of comple-
menting a peer’s data when a local queries posed to peers
have to be answered. The exchange of data is governed
by theses data mappings, mappings derived by transitiv-
ity, and a peer’s own local constraints that have to be re-
spected when data from other peers is received [9, 19].
Even more, there may be certain trust relationships be-
tween peers that should also be taken into account. When
inconsistencies are “solved”, a peer may decide to trust
one peer more than the others that are contributing with
data [9].

Acknowledgments: Research supported by NSERC, and
CITO/IBM-CAS. L. Bertossi is Faculty Fellow of IBM Cen-
ter for Advanced Studies (Toronto Lab.). Several contributions
and comments by Loreto Bravo are very much appreciated.

References
[1] Arenas, M., Bertossi, L. and Chomicki, J. Consistent

Query Answers in Inconsistent Databases. Proc. ACM
Symposium on Principles of Database Systems (PODS),
ACM Press, 1999, pp. 68–79.

[2] Arenas, M., Bertossi, L. and Chomicki, J. Scalar Ag-
gregation in FD-Inconsistent Databases. Proc. Inter-
national Conference on Database Theory (ICDT 01),
Springer LNCS 1973, 2001, pp. 39-53.

[3] Arenas, M., Bertossi, L., Chomicki, J., He, X., Ragha-
van, V. and Spinrad, J. Scalar Aggregation in Incon-
sistent Databases. Theoretical Computer Science, 2003,
296(3):405-434.

[4] Arenas, M., Bertossi, L. and Chomicki, J. Answer
Sets for Consistent Query Answering in Inconsistent
Databases. Theory and Practice of Logic Programming,
3(4–5):393–424, 2003.

[5] Barcelo, P. and Bertossi, L. Logic Programs for Query-
ing Inconsistent Databases. Proc. Practical Aspects of
Declarative Languages (PADL 03), Springer LNCS
2562, 2003, pp. 208-222.

[6] Barcelo, P., Bertossi, L. and Bravo, L. Characteriz-
ing and Computing Semantically Correct Answers from
Databases with Annotated Logic and Answer Sets. In
Semantics of Databases, Springer LNCS 2582, 2003,
pp. 1-27.

[7] Bertossi, L., Chomicki, J., Cortes, A. and Gutierrez, C.
Consistent Answers from Integrated Data Sources. Proc.
Flexible Query Answering Systems (FQAS 02), Springer
LNCS 2522, 2002, pp. 71–85.

[8] Bertossi, L. and Bravo, L. Consistent Query Answers
in Virtual Data Integration Systems. In Inconsistency
Tolerance, Springer LNCS 3300, 2004, pp. 42-83.

[9] Bertossi, L. and Bravo, L. Query Answering in Peer-to-
Peer Data Exchange Systems. Proc. EDBT International
Workshop on Peer-to-Peer Computing & DataBases
(P2P&DB 04), Springer LNCS 3268, 2004, pp. 478-
485.

[10] Bertossi, L., Bravo, L., Franconi, E. and Lopatenko,
A. Fixing Numerical Attributes under Integrity Con-
straints. Proc. International Symposium on Database
Programming Languages (DBPL 05), Springer LNCS
3774, 2005, pp. 262-278.

[11] Bertossi, L., Chomicki, J., Godfrey, P., Kolaitis, Ph.,
Thomo, A. and Zuzarte, C. Exchange, Integration, and
Consistency of Data: Report on the ARISE/NISR Work-
shop. SIGMOD Record, 2005, 34(3):87-90.

[12] Bertossi, L. and Chomicki, J. Query Answering in In-
consistent Databases. In Logics for Emerging Applica-
tions of Databases. Springer, 2003, pp. 43-83.

[13] Bravo, L. and Bertossi, L. Logic Programs for Consis-
tently Querying Data Integration Systems. Proc. Inter-
national Joint Conference in Artificial Intelligence (IJ-
CAI 03), Morgan Kauffmann Publishers, 2003, pp. 10-
15.

[14] Bravo, L. and Bertossi, L. Disjunctive Deductive
Databases for Computing Certain and Consistent An-
swers to Queries from Mediated Data Integration Sys-
tems. Journal of Applied Logic, 2005, 3(2):329-367.

[15] Bravo, L. and Bertossi, L. Semantically Correct Query
Answers in the Presence of Null Values. Proc. EDBT
International Workshop on Inconsistency and Incom-
pleteness in Databases (IIDB 06). To appear in Springer
LNCS. Technical Report arXiv:cs.DB/0604076 v1.
Posted April 19, 2006.

[16] Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini,
M. Data Integration Under Integrity Constraints. In
Proc. Conference on Advanced Information Systems En-
gineering (CAISE 02), Springer LNCS 2348, 2002, pp.
262–279.

[17] Cali, A., Calvanese, D., De Giacomo, G. and Lenzerini,
M. On the Role of Integrity Constraints in Data Inte-
gration. IEEE Data Engineering Bulletin, 2002, 25(3):
39-45.

[18] Calı̀, A., Lembo, D. and Rosati, R. On the Decidability
and Complexity of Query Answering over Inconsistent
and Incomplete Databases. Proc. ACM Symposium on
Principles of Database Systems (PODS), ACM Press,
2003, pp. 260–271.

[19] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini,
M. and Rosati, R. Inconsistency Tolerance in P2P Data
Integration: An Epistemic Logic Approach. Proc. In-
ternational Symposium on Database Programming Lan-
guages (DBPL 05), Springer LNCS 3774, 2005, pp. 90-
105.

[20] Caniupan, M. and Bertossi, L. Optimizing Repair Pro-
grams for Consistent Query Answering. Proc. Interna-
tional Conference of the Chilean Computer Science So-
ciety (SCCC 05), IEEE Computer Society Press, 2005,
pp. 3-12.

[21] Celle, A. and Bertossi, L. Querying Inconsistent
Databases: Algorithms and Implementation. In Compu-
tational Logic - CL 2000, Springer LNCS 1861, 2000,
pp. 942-956.

[22] Chomicki, J., Marcinkowski, J. and Staworko, S. Com-
puting Consistent Query Answers using Conflict Hyper-
graphs. Proc. Conference on Information and Knowl-
edge Management (CIKM 04), ACM Press, 2004, pp.
417 - 426.

[23] Chomicki, J. and Marcinkowski, J. Minimal-Change In-
tegrity Maintenance Using Tuple Deletions. Information
and Computation, 197(1-2):90-121, 2005.

[24] Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A.
Complexity and Expressive Power of Logic Program-
ming. ACM Computing Surveys, 2001, 33(3): 374-425.

[25] Downey, R.G. and Fellows, M.R. Parameterized Com-
plexity. Springer, Monographs in Computer Science,
1999.

[26] Duschka, O., Genesereth, M. and Levy, A. Recursive
Query Plans for Data Integration. Journal of Logic Pro-
gramming, 2000, 43(1):49-73.

[27] Eiter, T., Fink, M., Greco, G. and Lembo, D. Efficient
Evaluation of Logic Programs for Querying Data In-
tegration Systems. Proc. International Conference on
Logic Programming (ICLP 03), Springer LNCS 2916,
2003, pp. 163-177. 2916, 2003.

[28] Fagin, R., Kolaitis, Ph. G., Miller, R. J., and Popa, L.
Data Exchange: Semantics and Query Answering. Proc.
International Conference on Database Theory (ICDT).
207–224, 2003.

[29] Flesca, S., Furfaro, F. Parisi, F. Consistent Query An-
swers on Numerical Databases under Aggregate Con-
straints. Proc. International Symposium on Database
Programming Languages (DBPL 05), Springer LNCS
3774, 2005, pp. 279-294.

[30] Flum, J. and Grohe, M. Parameterized Complexity The-
ory. Springer, Texts in Theoretical Computer Science,
2006.

[31] Franconi, E., Laureti Palma, A., Leone, N., Perri, S. and
Scarcello, F. Census Data Repair: a Challenging Appli-
cation of Disjunctive Logic Programming. Proc. Logic
for Programming, Artificial Intelligence, and Reasoning
(LPAR 01). Springer LNCS 2250, 2001, pp. 561-578.

[32] Fuxman, A. and Miller, R. First-Order Query Rewriting
for Inconsistent Databases. Proc. International Confer-
ence on Database Theory (ICDT 05), Springer LNCS
3363, 2004, pp. 337-351.

[33] Fuxman, A., Fazli, E. and Miller, R.J. ConQuer: Ef-
ficient Management of Inconsistent Databases. Proc.
ACM International Conference on Management of Data
(SIGMOD 05), ACM Press, 2005, pp. 155-166.

[34] Gelfond, M. and Lifschitz, V. Classical Negation in
Logic Programs and Disjunctive Databases. New Gen-
eration Computing, 1991, 9:365–385.

[35] Greco, G., Greco, S. and Zumpano, E. A Logical
Framework for Querying and Repairing Inconsistent
Databases. IEEE Transactions on Knowledge and Data
Engineering, 15(6):1389–1408, 2003.

[36] Giannotti, F., Greco, S., Sacca, D. and Zaniolo,
C. Programming with Non-determinism in Deductive
Databases. Annals of Mathematics and Artificial Intelli-
gence, 1997, 19(1-2):97-125.

[37] Grieco, L., Lembo, D., Rosati, R. and Ruzzi, M. Consis-
tent Query Answering under Key and Exclusion Depen-
dencies: Algorithms and Experiments. Proc. ACM In-
ternational conference on Information and Knowledge
Management (CIKM 05), ACM Press, 2005, pp. 792-
799.

[38] Grohe, M. Parameterized Complexity for the Data-base
Theorist. SIGMOD Record, 2002, 31(4):86-96.

[39] Halevy, A., Ives, Z., Suciu, D. and Tatarinov, I. Schema
Mediation in Peer Data Management Systems. Proc. In-
tenational Conference on Data Engineering (ICDE 03),
IEEE Computer Society Press, 2003, pp. 505-518.

[40] Immerman, N. Descriptive Complexity. Graduate Texts
in Computer Science. Springer, 1999.

[41] Kolaitis, Ph. Schema Mappings, Data Exchange, and
Metadata Management. Proc. ACM Symposium on Prin-
ciples of Database Systems (PODS 05), ACM Press,
2005, pp. 61-75.

[42] Lembo, D., Lenzerini, M. and Rosati, R. Source In-
consistency and Incompleteness in Data Integration. In
Proc. International Workshop Knowledge Representa-
tion meets Databases (KRDB 02), CEUR Electronic
Workshop Proceedings, 2002.

[43] Lenzerini, M. Data Integration: A Theoretical Perspec-
tive. Proc. ACM Symposium on Principles of Database
Systems (PODS 02), ACM Press, 2002, pp. 233-246

[44] Lopatenko, A. and Bertossi, L. Complexity of Consis-
tent Query Answering in Databases under Cardinality-
Based and Incremental Repair Semantics. Technical Re-
port arXiv:cs.DB/0604002 v1. Posted April 2, 2006.

[45] Miltersen, P.B., Subramanian, S., Vitter, J.S. and Tamas-
sia, R. Complexity Models for Incremental Computa-
tion. Theoretical Computer Science, 1994, 130(1):203-
236.

[46] Niedermeier, R. and Rossmanith, P. An Efficient Fixed-
Parameter Algorithm for 3-Hitting Set. Journal of Dis-
crete Algorithms, 2003, 1(1):89-102.

[47] Weber, V. and Schwentick, T. Dynamic Complexity
Theory Revisited. Proc. Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS 05), Springer
LNCS 3404, 2005, pp. 256-268.

[48] Wijsen, J. Condensed Representation of Database Re-
pairs for Consistent Query Answering. Proc. Interna-
tional Conference on Database Theory (ICDT), pages
378–393. Springer-Verlag, LNCS 2572, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

