
Automata theory for XML researchers∗

Frank Neven
University of Limburg

frank.neven@luc.ac.be

1 Introduction

The advent of XML initiated a symbiosis between
document research, databases and formal languages
(see, e.g., the survey by Vianu [38]). This symbio-
sis resulted, for instance, in the development of un-
ranked tree automata [3]. In brief, unranked trees
are finite labeled trees where nodes can have an ar-
bitrary number of children. So, there is no fixed
rank associated to each label. As the structure of
XML documents can be adequately represented by
unranked trees, unranked tree automata can serve
XML research in four different ways: (i) as a basis
of schema languages [10, 12, 13, 18, 19] and vali-
dating of schemas; (ii) as an evaluation mechanism
for pattern languages [4, 32, 24]; (iii) as an algo-
rithmic toolbox (e.g., XPath containment [16] and
typechecking [15]); and (iv) as a new paradigm: un-
ranked tree automata use regular string languages
to deal with unrankedness. The latter simple but
effective paradigm found application in several for-
malisms [14, 20, 21, 22, 27].

The present paper is an attempt to provide a gen-
tle introduction to unranked tree automata and to
give references to some applications. We mention
that Vardi, already in 1989, wrote a paper demon-
strating the usefulness of ranked tree automata for
the static analysis of datalog programs [37].

∗Database Principles Column. Column editor: Leonid
Libkin, Department of Computer Science, University of
Toronto, Toronto, Ontario M5S 3H5, Canada. E-mail:
libkin@cs.toronto.edu.

2 Trees

Every XML document can be represented by a tree.
See, for instance, Figure 1. In this view, inner nodes
correspond to elements which determine the struc-
ture of the document, while the leaf nodes and the
attributes provide the content. Sometimes, for in-
stance in the case of typechecking, we are only in-
terested in the structure of documents, not in the
actual values of the attributes or the leaf nodes. In
such cases, we can adequately represent XML docu-
ments as trees over a finite alphabet. Again, this is a
restriction as the alphabet is only known when some
schema information is available (such as a DTD for
instance). For now, however, we fix a finite alphabet
Σ and come back to the finite alphabet restriction
in Section 5.

We next provide the definitions for our abstraction
of XML documents: Σ-trees. The set of Σ-trees,
denoted by TΣ, is inductively defined as follows:

(i) every σ ∈ Σ is a Σ-tree;

(ii) if σ ∈ Σ and t1, . . . , tn ∈ TΣ, n ≥ 1 then
σ(t1, . . . , tn) is a Σ-tree.

Note that there is no a priori bound on the num-
ber of children of a node in a Σ-tree; such trees
are therefore unranked. Denote by N

∗, the set of
strings over the alphabet consisting of the natural
numbers. For every tree t ∈ TΣ, the set of nodes
of t, denoted by Dom(t), is the subset of N

∗ defined
as follows: if t = σ(t1 · · · tn) with σ ∈ Σ, n ≥ 0,
and t1, . . . , tn ∈ TΣ, then Dom(t) = {ε} ∪ {ui |
i ∈ {1, . . . , n}, u ∈ Dom(ti)}. Thus, ε represents
the root while ui represents the i-th child of u. For
instance, the domain of the bottom tree in Figure 1
is graphically represented as follows:

1

ε

1 2 3 4

41

By labt(u) we denote the label of u in t. In the
following, when we say tree we always mean Σ-tree.

3 Unranked Tree Automata

3.1 Automata on strings

Before we define tree automata, let us recall non-
deterministic finite automata on strings (NFAs). In
our definition we have initial states for every σ-
symbol. In this way, we can define a run of the
automaton that starts on the first symbol and ends
on the last one. In particular, an NFA is a tu-
ple M = (Q,Σ, δ, (Iσ)σ∈Σ, F) where Q is the set of
states; for every σ ∈ Σ, Iσ ⊆ Q is the set of initial
states for σ; F ⊆ Q is the sets of final states; and,
δ : Q × Σ → 2Q is the transition function. A run
λ : {1, . . . , n} → Q on a string a1 · · · an ∈ Σ∗ is a
function such that

(i) λ(1) ∈ Ia1 ;

(ii) for all i ∈ {2, . . . , n}, λ(i) ∈ δ(λ(i − 1), ai).

A run is accepting if λ(n) ∈ F . A string is accepted
if there is an accepting run for it.

Example 3.1. Consider the automaton M accept-
ing all the strings over {a, b} that start and end with
the same symbol. Set Q := {qa, qb}, Ia := {qa},
Ib := {qb}, F := Q, δ(qa, a) := δ(qa, b) = {qa}, and
δ(qb, a) := δ(qb, b) = {qb}. This automaton has only
one run on every string: for instance, on the string
abaa, we have the run

a b a a

λ qa qa qa qa

2

Usually, we view NFAs as processing input strings
from left to right: an initial state is assigned to the
first position and from there on we assign new states

that are consistent with the transition function. The
string is accepted if we can assign a final state to the
last position. Note, however, that we can also view
M as a right-to-left automaton by simply reversing
the roles of F and I. Indeed, we assign a “final” state
to the last position and assign new states starting
from that position to the left that are consistent with
the transition function. The string is accepted if we
can assign an initial state from the correct set to the
first position. Although processing strings from right
to left might seem a bit strange, for trees processing
in a bottom-up way is equally sensible as processing
in a top-down manner.

3.2 Automata on binary trees

For ease of exposition we assume for this section that
all trees are binary. That is, all non-leaf nodes have
exactly two children. A tree automaton is then a
tuple A = (Q,Σ, δ, (Iσ)σ∈Σ, F) where Q, F , and all
Iσ’s are as before, and δ : Q × Q × Σ → Q is a
function mapping a pair of states and a symbol to a
new state. A run for t is a mapping λ : Dom(t)→ Q
such that

(i) for every leaf node u, λ(u) ∈ Ilabt(u);

(ii) for all inner nodes u,

λ(u) ∈ δ(λ(u1), λ(u2), labt(u)).

Recall that ui is the i-th child of u.

A run is accepting if λ(ε) ∈ F . A tree is accepted if
there is an accepting run for it.

Tree automata can be viewed as processing their
input in a bottom-up or in a top-down fashion de-
pending on the roles of F and Iσ. Indeed, in the
bottom-up view, initial states from the Iσ’s are as-
signed to σ-labeled leaves and new states are as-
signed to inner nodes depending on their label and
on the states at their children. The tree is accepted if
a final state is assigned to the root. In the top-down
view, a ‘final’ state from F is assigned to the root;
new states are assigned to the children of a node u
depending on the label of u and the state of u. A
tree is accepted if every σ-labeled leaf is assigned a
state from Iσ.

2

<muppet creator="Henson">
<name> Kermit </name>
<animal> Frog </animal>
<friends>

<name> Ms. Piggy </name>
</friends>

</muppet>

muppet

creator

Henson

name

Kermit

animal

Frog

friends

name

Ms. Piggy
muppet

creator name animal friends

name

Figure 1: A sample XML document, its tree representation, and its structural representation.

Example 3.2. Consider the alphabet Σ =
{∧,∨, 0, 1}. Suppose for ease of exposition that
trees are always as follows: 0 and 1 only appear at
leaves, and ∧ and ∨ can appear everywhere except
at leaves. These are all tree-shaped boolean circuits.
We next define an automaton accepting exactly the
circuits evaluating to 1. Define A = (Q,Σ, δ, F) with
Q = {0, 1}, I0 = {0}, I1 = {1},F = {1}, and

δ(0, 0,∧) = 0 δ(0, 1,∧) = 0;
δ(1, 0,∧) = 0 δ(1, 1,∧) = 1;
δ(0, 0,∨) = 0 δ(0, 1,∨) = 1;
δ(1, 0,∨) = 1 δ(1, 1,∨) = 1.

Intuitively, A works as follows: A assigns 0 (1) to
0-labeled (1-labeled) leaves; further, A assigns a 1 to
a ∧-labeled node iff both its children are 1; and, A
assigns a 0 to a ∨-labeled node iff both its children
are 0. Finally, A accepts when the root is labeled
with 1. So, in this example, the bottom-up view
is the most intuitive one. In Figure 2, we give an
example of an accepting run on a tree.

In Example 3.4, we give an automaton evaluating
an XPath expression for which the top-down view is
more natural. 2

3.3 Automata on unranked trees

Extending the tree automata of the previous sec-
tion to unranked trees implies that we should de-
fine the transition functions for any number of chil-
dren: δ :

⋃∞
n=0 Qn × Σ→ 2Q. To achieve the latter,

∧

∨

0 1

∧

1 1

1

1

0 1

1

1 1

Figure 2: A tree and an accepting run of the au-
tomaton of Example 3.2.

Brüggemann-Klein, Murata, and Wood [3], based on
the work of Pair and Quere [30] and Takahashi [36],
use regular string languages over Q to represent tran-
sitions. That is, the transition function δ is a map-
ping δ : Q × Σ → 2Q∗

such that δ(q, a) is a regular
string language over Q.

Definition 3.3. A nondeterministic tree automaton
(NTA) is a tuple B = (Q,Σ, δ, F), where Q is a finite
set of states, F ⊆ Q is the set of final states, and δ is
a function Q×Σ→ 2Q∗

such that δ(q, a) is a regular
string language over Q∗ for every a ∈ Σ and q ∈ Q.

A run of B on a tree t is a labeling λ : Dom(t)→ Q
such that for every v ∈ Dom(t) with n children,

λ(v1) · · · λ(vn) ∈ δ(λ(v), labt(v)).

Note that when v has no children, then the criterion
reduces to ε ∈ δ(λ(v), labt(v)). So, we do not need
an explicit definition of the Iσ’s anymore. A run is
accepting iff the root is labeled with a final state,
that is, λ(ε) ∈ F . A tree is accepted if there is an
accepting run for it. The set of all accepted trees is
denoted by L(B).

3

We illustrate the above definition with two exam-
ples. In the first example we represent the transition
functions by regular expressions. In the second ex-
ample we use logical formulas.

Example 3.4. (1) We continue Example 3.2. Inner
nodes can now have an arbitrary number of children.
Again, we define an automaton accepting exactly the
circuits evaluating to 1. Define B = (Q,Σ, δ, F) with
Q = {0, 1}, F = {1}, and

δ(0, 0) := δ(1, 1) := {ε};
δ(0, 1) := δ(1, 0) := ∅;
δ(0,∧) := (0 + 1)∗0(0 + 1)∗;
δ(1,∧) := 1∗;
δ(0,∨) := 0∗;
δ(1,∨) := (0 + 1)∗1(0 + 1)∗.

Intuitively, B works as follows: B assigns 0 (1) to
0-labeled (1-labeled) leaves; B assigns a 1 to a ∧-
labeled node iff all its children are 1; B assigns a 0 to
a ∨-labeled node iff all its children are 0. Finally, B
accepts when the root is labeled with 1. In Figure 3,
we give an example of a tree and an accepting run.

(2) Let p be the XPath expression /a//b[/b]//a.
We construct an automaton accepting precisely the
trees matching p. The set of states Q consists of all
the subpatterns of p and F = {/a//b[/b]//a}. The
transition function is defined in Figure 4. We use
logical formulas to denote regular languages. For all
states q1, . . . , qn ∈ Q the formula

∧n
i=1 qi denotes the

set of strings containing all the states qi (and pos-
sibly some others). If ϕ1 and ϕ2 are formulas, then
ϕ1∨ϕ2 denotes the union of the set of strings defined
by ϕ1 and ϕ2; true denotes the set of all strings over
Q. Clearly, these formulas can only define regular
languages. Transitions that are not mentioned are
empty.

The most intuitive way to interpret the automa-
ton is to read the rules in a top-down way. The au-
tomaton starts at the root in state /a//b[/b]//a.
A run started as such can only be valid if the root
is labeled with a and one of the children matches
//b[/b]//a. Further, a b-labeled node can only be
in state //b[/b]//a if (1) it has a child that matches
//b[/b]//a; (2) there are two children matching
/b and //a, respectively; or, (3) there is one child

matching /b//a. An a-labeled node can only be in
state //b[/b]//a if one of its children match the
pattern //b[/b]//a. The remaining rules are self-
explanatory. We give an example in Figure 5. 2

3.4 Relationship with ranked automata

Unranked trees can be encoded into binary ones in
several ways. In Figure 6 we illustrate one such pos-
sibility. Intuitively, the first child of a node remains
the first child of that node in the encoding. But it is
explicitly encoded as a left child. The other children
are right descendants of the first child in the encod-
ing. Whenever there is a right child but no left child,
a # is inserted. Also, when there is only a left child,
a # is inserted for the right child.

By using the encodings enc and dec of Figure 6
one obtains the following proposition.

Proposition 3.5. [34]

• For every unranked NTA B there is a tree au-
tomaton A over binary trees such that L(A) =
{enc(t) | t ∈ L(B)}.

• For every tree automaton A over binary trees
there is an unranked NTA B such that L(B) =
{dec(t) | t ∈ L(A)}.

Although Proposition 3.5 provides a tool for trans-
ferring results from ranked to unranked trees, it does
not deal with issues which are specific for unranked
tree automata. The complexity of decision problems
for NTAs, for instance, depends on the formalism
used to represent the regular string languages δ(q, a)
in the transition function. As there are many ways to
represent regular string languages (logical formulas,
automata with various forms of control, grammars,
regular expressions,. . .), Proposition 3.5 does not of-
fer immediate help. Let NTA(M) denotes the set of
NTAs where the regular languages δ(q, a) are repre-
sented by elements in the classM (for instance, the
class of NFAs).

A closer inspection of enc and dec reveals that
the translation between binary and unranked tree
automata is polynomial for NTA(NFA)’s. For this
reason, the latter class can be seen as the default for
unranked tree automata. Also the complexity of the
membership problem for this class is tractable.

4

∨

∨

1 0

∧

1 0 0

∨

0 1 0

1

1

1 0

0

1 0 0

1

0 1 0

Figure 3: A tree and an accepting run of the automaton of Example 3.4(1).

δ(/a//b[/b]//a, a) := //b[/b]//a
δ(//b[/b]//a, b) := //b[/b]//a∨ (/b ∧ //a) ∨ /b//a
δ(//b[/b]//a, a) := //b[/b]//a
δ(/b//a, b) := //a
δ(//a, a) := true
δ(//a, b) := //a
δ(/b, b) := true

Figure 4: The automaton of Example 3.4(2) accepting /a//b[//a]//a.

a

a

b

b a

b

a

/a//b[/b]//a

//b[/b]//a

//b[/b]//a

/b //a

//a

//a

Figure 5: A tree and an accepting run of the automaton of Example 3.4(2).

b

b a

a a

b

b a

enc−→

dec←−

b

b

a

a

a

b

b

a

#

#

Figure 6: An unranked tree and its binary encoding.

5

Proposition 3.6. Let t ∈ TΣ and B ∈ NTA(NFA).
Testing whether t ∈ L(B) can be done in time
O(|t||B|2).

However, when using tree automata to obtain up-
per bounds on the complexity of problems related to
XML, one sometimes needs to turn to more expres-
sive formalisms. In [15], an upper bound on the com-
plexity of the typechecking problem for structural re-
cursion is obtained by a reduction to the emptiness
problem of NTA(2AFA)’s. Here, 2AFA are two-way
alternating string automata.

3.5 Schemas

Like extended context-free grammars form abstrac-
tions of DTDs, unranked tree automata are an ab-
straction of the various XML schema proposals.

Definition 3.7. A DTD is a tuple (d, sd) where d is
a function that maps Σ-symbols to regular expres-
sions over Σ and sd ∈ Σ is the start symbol.

Example 3.8. As an example consider the follow-
ing DTD (taken from [35]) describing a catalog of
products

d(catalog) := product∗

d(product) := name? · (mfr-price + sale-price) ·
color∗

Here, w? denotes w + ε.
The equivalent unranked tree automaton

is defined next: B = (Q,Σ, δ, F) with Q :=
{catalog,product,name,mfr-price, sale-price, color},
F := {catalog}, for all a ∈ {name,mfr-price,
sale-price, color}, δ(a, a) = {ε}, and

δ(catalog, catalog) := product∗

δ(product,product) := name? · (mfr-price +
sale-price) · color∗

The δ(q, a) that are not mentioned are empty. 2

It is not so hard to see that for every DTD
there is an equivalent unranked tree automaton.
Moreover, the unranked tree automata are equiva-
lent to the specialized DTDs of Papakonstantinou
and Vianu[31] and the XDuce types of Hosoya and
Pierce [10]. Lee, Mani, and Murata provide provide
a comparison of XML schema languages based on
formal language theory [13].

4 Related work

We briefly discuss a number of applications of un-
ranked tree automata or related formalisms. We
refer the interested reader to [26] for a more de-
tailed overview of pattern languages based on tree
automata.

Several researchers defined pattern languages for
unranked trees that can be implemented by un-
ranked tree automata: Neumann and Seidl develop
a µ-calculus for expressing structural and contextual
conditions on forests [21].1 They show that their for-
malism can be implemented by push-down forest au-
tomata. The latter are special cases of unranked tree
automata. Murata defines an extension of path ex-
pressions based on regular expressions over unranked
trees [20]. Brüggemann-Klein and Wood consider
caterpillar expressions [4]. These are regular expres-
sions that in addition to labels can specify move-
ment through the tree. Neven and Schwentick define
a guarded fragment ETL of monadic second-order
logic (MSO) whose combined complexity is much
more tractable than that of general MSO [32, 24].
Expressiveness and complexity results on ETL are
partly obtained via techniques based on unranked
tree automata.

Neven and Schwentick define query automata [27].
These are two-way deterministic unranked tree au-
tomata that can select nodes in the tree. Query au-
tomata correspond exactly to the unary queries de-
finable in monadic second-order logic. By a result of
Gottlob and Koch they also correspond to the unary
queries definable in monadic datalog [9].

In [22], an extension of the Boolean attribute
grammars considered in [29] to unranked trees is de-
fined. These also express precisely the unary queries
in MSO. A translation of the region algebra, consid-
ered by Consens and Milo [5], into these attribute
grammars drastically improves the complexity of the
optimization problems of the former.

1A forest is a concatenation of unranked trees.

6

5 Discussion

We recalled the definition of unranked tree automata
and provided some examples of applications in the
context of XML. In addition to tree automata, some
other formalisms regained attention in the area of
databases:

Tree-walking. The tree-walking paradigm dates
back from the early research on compilers and
attribute grammars [1, 6]. Tree-walking au-
tomata are still considered in formal language
theory as the connection with tree automata
is still unknown [7, 8, 25]. In the context of
XML, the tree-walking paradigm attracted at-
tention as an abstraction of XML query lan-
guages [2, 17, 23] and streaming [33].

Infinite alphabets. The framework considered in
this paper is limited in two ways. It assumes
that the element names of XML documents are
from a finite and known set and it ignores the
data values in the leaf nodes and attributes of
XML documents. For this reason, the work of
Kaminski and Francez [11] on automata on in-
finite alphabets has been reexamined from an
XML perspective [28, 23].

We mention that Miklau and Suciu obtained a
translation of XPath expressions to ranked tree au-
tomata through an involved simulation [16]. The
translation shows how the different XPath language
constructs parameterize the complexity of the XPath
containment problem. Although a direct translation
of that XPath fragment to unranked automata is im-
mediate, it is not clear at the moment whether there
is an easy translation to unranked tree automata
which gives the same parameterized results for con-
tainment. The main problem is the filter predicate
as each predicate introduces a conjunction.

Acknowledgment

The author thanks Dan Suciu, Leonid Libkin, Jan
Van den Bussche, Wim Martens, and Stijn Vansum-
meren for comments on an earlier version of this pa-
per.

References

[1] A. V. Aho and J. D. Ullman. Translations on a context-
free grammar. Inform. and Control, 19:439–475, 1971.

[2] G. J. Bex, S. Maneth, and F. Neven. A formal model for
an expressive fragment of XSLT. Information Systems,
27(1):21–39, 2002.

[3] A. Brüggemann-Klein, M. Murata, and D. Wood. Regu-
lar tree and regular hedge languages over unranked alpha-
bets: Version 1, april 3, 2001. Technical Report HKUST-
TCSC-2001-0, The Hongkong University of Science and
Technology, 2001.

[4] A. Brüggemann-Klein and D. Wood. Caterpillars: A con-
text specification technique. Markup Languages, 2(1):81–
106, 2000.

[5] M. Consens and T. Milo. Algebras for querying text re-
gions: Expressive power and optimization. Journal of
Computer and System Sciences, 3:272–288, 1998.

[6] P. Deransart, M. Jourdan, and B. Lorho. Attribute Gram-
mars: Definition, Systems and Bibliography, volume 323
of Lecture Notes in Computer Science. Springer, 1988.

[7] J. Engelfriet and H. J. Hoogeboom. Tree-walking pebble
automata. In J. Karhumki, H. Maurer, G. Paun, and
G.Rozenberg, editors, Jewels are forever, contributions to
Theoretical Computer Science in honor of Arto Salomaa,
pages 72–83. Springer-Verlag, 1999.

[8] J. Engelfriet, H.J. Hoogeboom, and J.-P. van Best. Trips
on trees. Acta Cybernetica, 14:51–64, 1999.

[9] G. Gottlob and C. Koch. Monadic datalog and the expre-
sive power of languages for web information extraction.
In Proc. 21th Symposium on Principles of Database Sys-
tems (PODS 2002), pages 17–28. ACM Press, 2002.

[10] H. Hosoya and B. C. Pierce. Regular expression pattern
matching for XML. In Proceedings of 28th Symposium
on Principles of Programming Languages (POPL 2001),
pages 67–80. ACM Press, 2001.

[11] M. Kaminski and N. Francez. Finite-memory automata.
Theoretical Computer Science, 134(2):329–363, 1994.

[12] N. Klarlund, A. Moller, and M. I. Schwartzbach. The
DSD schema language. In Proceedings of the 3th ACM
SIGSOFT Workshop on Formal Methods in Software
Practice (FMSP 2000), 2000.

[13] D. Lee, M. Mani, and M. Murata. Reasoning about XML
schema languages using formal language theor. Techni-
cal report, IBM Almaden Research Center, 2000. Log#
95071.

[14] S. Maneth and F. Neven. Structured document transfor-
mations based on XSL. In R. Connor and A. Mendelzon,
editors, Research Issues in Structured and Semistructured
Database Programming (DBPL’99), volume 1949 of Lec-
ture Notes in Computer Science, pages 79–96. Springer,
2000.

7

[15] W. Martens and F. Neven. Typechecking of top-down
uniform unranked tree transducers. Manuscript.

[16] G. Miklau and D. Suciu. Containment and equivalence
for an XPath fragment. In Proc. 21th Symposium on
Principles of Database Systems (PODS 2002), pages 65–
76, 2002.

[17] T. Milo, D. Suciu, and V. Vianu. Type checking for XML
transformers. In Proceedings of the Nineteenth ACM
Symposium on Principles of Database Systems, pages 11–
22. ACM Press, 2000.

[18] M. Murata. Relax. http://www.xml.gr.jp/relax/.

[19] M. Murata. Data model for document transformation
and assembly. In E. V. Munson, K. Nicholas, and
D. Wood, editors, Proceedings of the workshop on Prin-
ciples of Digital Document Processing, volume 1481 of
Lecture Notes in Computer Science, pages 140–152, 1998.

[20] M. Murata. Extended path expressions for xml. In
Proc. 20th Symposium on Principles of Database Systems
(PODS 2001), pages 126–137. ACM Press, 2001.

[21] A. Neumann and H. Seidl. Locating matches of tree pat-
terns in forests. In V. Arvind and R. Ramanujam, edi-
tors, Foundations of Software Technology and Theoretical
Computer Science, Lecture Notes in Computer Science,
pages 134–145. Springer, 1998.

[22] F. Neven. Extensions of attribute grammars for struc-
tured document queries. In R. Connor and A. Mendelzon,
editors, Research Issues in Structured and Semistructured
Database Programming (DBPL’99), volume 1949 of Lec-
ture Notes in Computer Science, pages 97–114. Springer,
2000.

[23] F. Neven. On the power of walking for querying tree-
structured data. In Proc. 21th Symposium on Principles
of Database Systems (PODS 2002), pages 77–84. ACM
Press, 2002.

[24] F. Neven and T. Schwentick. Expressive and efficient
pattern languages for tree-structured data. In Proc. 19th
Symposium on Principles of Database Systems (PODS
2000), pages 145–156, 2000.

[25] F. Neven and T. Schwentick. On the power of tree-
walking automata. In U. Montanari, J. D. P. Rolim,
and E. Welzl, editors, International Colloquium on Au-
tomata, Languages and Programming (ICALP 2000), vol-
ume 1853 of Lecture Notes in Computer Science, pages
547–560. Springer, 2000.

[26] F. Neven and T. Schwentick. Automata- and logic-based
pattern languages for tree-structured data. Unpublished,
2001.

[27] F. Neven and T. Schwentick. Query automata on finite
trees. Theoretical Computer Science, 275:633–674, 2002.

[28] F. Neven, T. Schwentick, and V. Vianu. Towards regular
languages over infinite alphabets. In J. Sgall, A. Pultr,
and P. Kolman, editors, Mathematical Foundations of

Computer Science (MFCS 2001), volume 2136 of Lec-
ture Notes in Computer Science, pages 560–572. Springer,
2001.

[29] F. Neven and J. Van den Bussche. Expressiveness of
structured document query languages based on attribute
grammars. Journal of the ACM, 49(1), 2002.

[30] C. Pair and A. Quere. Définition et etude des bilangages
réguliers. Information and Control, 13(6):565–593, 1968.

[31] Y. Papakonstantinou and V. Vianu. DTD inference for
views of XML data. In Proc. 20th Symposium on Prin-
ciples of Database Systems (PODS 2001), pages 35–46.
ACM Press, 2001.

[32] T. Schwentick. On diving in trees. In Proceedings of 25th
Mathematical Foundations of Computer Science (MFCS
2000), pages 660–669, 2000.

[33] L. Segoufin and V. Vianu. Validating streaming XML
documents. In Proc. 21th Symposium on Principles
of Database Systems (PODS 2002), pages 53–64. ACM
Press, 2002.

[34] D. Suciu. Typechecking for semistructured data. In Pro-
ceedings of the 8th Workshop on Data Bases and Pro-
gramming Languages (DBPL 2001), 2001.

[35] D. Suciu. The XML typechecking problem. SIGMOD
Record, 31(1):89–96, 2002.

[36] M. Takahashi. Generalizations of regular sets and their
application to a study of context-free languages. Infor-
mation and Control, 27(1):1–36, 1975.

[37] M. Y. Vardi. Automata theory for database theoreticians.
In Proceedings of the Eighth ACM Symposium on Princi-
ples of Database Systems, pages 83–92. ACM Press, 1989.

[38] V. Vianu. A web odyssey: From Codd to XML. In
Proc. 20th Symposium on Principles of Database Systems
(PODS 2001), pages 1–15, 2001.

8

