
Regular Path Queries and Constraints

CSC2428 – Foundations of XML

Pablo Barceló

1 Regular path queries

A semistructured database (I, o) is composed by:

- a directed graph that is labeled over a finite alphabet Σ, and

- a source element o.

Notice that this is not necessarily a tree.

Given a regular expression R over Σ, the path query R is the function:

R : (I, o) → 2I ,

such that R(I, o) is

{ o′ ∈ I | there is a path labeled a1, . . . , am from o to o′, such that (a1, . . . , am) ∈ L(R)} .

Nice way to evaluate path queries in linear monadic Datalog. Let (Q, s,Σ, F, δ) be any finite state
automaton that computes L(R). The extensional predicates are source(x) and E(x, a, y) for each
a ∈ Σ. Then path query R is computable by:

states(x) : − source(x)
stateh(x) : − statej(y), E(y, a, x) ∀a ∈ Σ, and ∀j ∈ Q with δ(j, a) = h

ans(x) : − statef (x) ∀f ∈ F

First, the complexity of evaluating a linear Datalog program is in NC, that is, the small parallel
complexity class that contains families of circuits with polynomial number of gates, polylogarithmic
depth, and constant fan-in. Second, monadic datalog programs allow nice optimization techniques
to be used.

2 Regular path constraints

A regular path inclusion is of the form R ⊆ R′, for R,R′ regular expressions over Σ. Then

(I, o) |= R ⊆ R′ ⇐⇒ R(I, o) ⊆ R′(I, o) .

If R and R′ are words, that is, sequences of symbols in Σ, then R ⊆ R′ is a word constraint. If E
is a set of regular path inclusions, then (I, o) |= E iff (I, o) |= R ⊆ R′ for each R ⊆ R′ in E.

We write E |= R ⊆ R′ iff for each (I, o),

(I, o) |= E =⇒ (I, o) |= R ⊆ R′ .

1

Theorem 1 (Abiteboul and Vianu,’97) It is decidable in 2-EXPSPACE (in the number of in-
clusions in E) whether E |= R ⊆ R′.

Not very nice complexity, and not known if it can be improved. But,

Theorem 2 (Abiteboul and Vianu,’97) If both E and R ⊆ R′ contain only word constraints,
then it is polynomial to check whether E |= R ⊆ R′. Also, if E is a set of path constraints and
R ⊆ R′ is a word constraint, then checking whether E |= R ⊆ R′ is in PSPACE.

3 Extended path constraints

A path is a FO formula α(x, y) of one the following forms:

• x = y,

• E(x, a, y) for a ∈ Σ, and

• ∃z(E(x, a, x) ∧ β(z, y)), where a ∈ Σ and β(z, y) is a path.

A path constraint is any expression of the form:

∀x (α(o, x) → ∀y (β(x, y) → γ(y, x))) (backward constraint)
∀x (α(o, x) → ∀y (β(x, y) → γ(x, y))) (forward constraint)

where o denotes the source of I.

An example of a backward constraint is

∀x (Student(o, x) → ∀y (Taking(x, y) → Enrolled(y, x)))) .

Not expressible as a path inclusion constraint!

Theorem 3 (Buneman,Fan,Winstein,’98) For E a set of path constraints, and φ a path con-
straint, it is undecidable to check if E |= φ, even when we restrict to the finite case, and even if we
restrict to the forward form.

Nevertheless, if we denote by Pβ the set of all path constraints such that either α ≡ true, or β
is of the form x = y or E(x, a, y), then

Theorem 4 (Buneman,Fan,Winstein,’98) For E a set of path constraints in Pβ, and φ a path
constraint in Pβ, it is decidable in EXPSPACE to check if E |= φ.

2

4 Regular path constraints with data values

Idea: Extended keys and extended foreign keys with regular expressions. That is, constraints of the
form

R.a.l → R.a (keys) and R.a.l ⊆ R′.a′.l′ (foreign keys)

for R,R′ regular expressions in Σ, and a, a′ ∈ Σ.

Keys are evaluated on trees as follows:

T |= R.a.l → R.a ⇐⇒ ∀s, s′ ∈ R.a(T, ε), if (s.l = s′.l) then (s = s′) .

Foreign keys are combinations of inclusion dependencies and foreign keys, that is, T |= R.a.l ⊆
R′.a′.l′ iff R′.a′.l′ is a key and

∀s ∈ R.a(T, ε), s.l = s′.l′ for some s′ ∈ R′.a′(T, ε) .

Theorem 5 (Arenas, Fan, Libkin,’02) Checking for a set Σ of keys and foreign keys whether
there is a tree T such that T |= Σ is in NEXPTIME, and cannot be less than PSPACE.

This shows that the complexity increases when having extended constraints. From (Fan,Libkin,’01),
for usual keys and foreign keys the result is NP-complete.

5 Queries with data values

We consider the following fragment of XPath. Syntax for path queries p is given by:

p := ε | a, a ∈ Σ | child | desc | parent | ancestor | p/p | p ∪ p | p[q]

where q is a data value expression given as follows:

q := p | p/@a = c | p/@a = p/@b | q ∧ q | ¬q

A node s in a tree T satsifies a path query p iff there is s′ such that T |= p(s, s′), where:

• if p = ε then s = s′,

• if p = a then s′ = s, and s is labeled a,

• axis are trivial,

• if p = p1/p2 then there is s′′ such that T |= p1(s, s′′) and T |= p2(s′′, s′),

• if p = p1 ∪ p2 then either T |= p1(s, s′) or T |= p2(s, s′),

• if p = p1[q] then T |= p1(s, s′) and

– if q = p2 then there is s′′ such that T |= p2(s′, s′′),

– if q = (p2/@a = c) then there is s′′ such that T |= p2(s′, s′′) and s′′.a = c,

– if q = (p2/@a = p3/@b) then there are s1, s2 such that T |= p2(s′, s1) ∧ p3(s′, s2) and
s1.a = s2.b,

– Boolean combinations are trivial.

3

We write SAT(p,D) if there is a tree T that conforms to DTD D, and such that the output of p in
T is nonempty.

Theorem 6 (Benedikt,Fan,Geerts,’05) Checking for a DTD D and a path query p that uses
neither concatenation / nor negations in data values expressions, whether SAT(p,D), is NP-
complete. The same is true even for the fragment (child, []) without negation on data value ex-
pressions (even if DTDs are non-recursive).

What if we admit negation?

Theorem 7 (Benedikt,Fan,Geerts,’05) By admitting negation inside [] we get undecidability.
The fragment (child,∪, []) is in NEXPTIME, while (parent, []) is already EXPTIME-hard.

Several improvements can be found depending on simplifications on DTDs. What if we do not
have DTDs?

Theorem 8 (Benedikt,Fan,Geerts,’05) For the fragment (∪, []) without negations on data value
expressions, SAT(p, ∅) is NP-hard. Furthermore, (parent, []) is EXPTIME-hard.

4

