Regular Path Queries and Constraints CSC2428 – Foundations of XML

Pablo Barceló

1 Regular path queries

A semistructured database (I, o) is composed by:

- a directed graph that is labeled over a finite alphabet Σ , and

- a *source* element *o*.

Notice that this is not necessarily a tree.

Given a regular expression \mathcal{R} over Σ , the *path query* \mathcal{R} is the function:

$$\mathcal{R}: (I, o) \rightarrow 2^I,$$

such that $\mathcal{R}(I, o)$ is

 $\{ o' \in I \mid \text{there is a path labeled } a_1, \ldots, a_m \text{ from } o \text{ to } o', \text{ such that } (a_1, \ldots, a_m) \in L(\mathcal{R}) \}.$

Nice way to evaluate path queries in *linear monadic* Datalog. Let $(Q, s, \Sigma, F, \delta)$ be any finite state automaton that computes $L(\mathcal{R})$. The extensional predicates are source(x) and E(x, a, y) for each $a \in \Sigma$. Then path query \mathcal{R} is computable by:

> $state_{s}(x) : - source(x)$ $state_{h}(x) : - state_{j}(y), E(y, a, x) \quad \forall a \in \Sigma, \text{ and } \forall j \in Q \text{ with } \delta(j, a) = h$ $ans(x) : - state_{f}(x) \quad \forall f \in F$

First, the complexity of evaluating a linear Datalog program is in NC, that is, the small parallel complexity class that contains families of circuits with polynomial number of gates, polylogarithmic depth, and constant fan-in. Second, monadic datalog programs allow nice optimization techniques to be used.

2 Regular path constraints

A regular path inclusion is of the form $\mathcal{R} \subseteq \mathcal{R}'$, for $\mathcal{R}, \mathcal{R}'$ regular expressions over Σ . Then

$$(I,o) \models \mathcal{R} \subseteq \mathcal{R}' \iff \mathcal{R}(I,o) \subseteq \mathcal{R}'(I,o).$$

If \mathcal{R} and \mathcal{R}' are words, that is, sequences of symbols in Σ , then $\mathcal{R} \subseteq \mathcal{R}'$ is a word constraint. If E is a set of regular path inclusions, then $(I, o) \models E$ iff $(I, o) \models \mathcal{R} \subseteq \mathcal{R}'$ for each $\mathcal{R} \subseteq \mathcal{R}'$ in E.

We write $E \models \mathcal{R} \subseteq \mathcal{R}'$ iff for each (I, o),

$$(I,o) \models E \implies (I,o) \models \mathcal{R} \subseteq \mathcal{R}'.$$

Theorem 1 (Abiteboul and Vianu,'97) It is decidable in 2-EXPSPACE (in the number of inclusions in E) whether $E \models \mathcal{R} \subseteq \mathcal{R}'$.

Not very nice complexity, and not known if it can be improved. But,

Theorem 2 (Abiteboul and Vianu,'97) If both E and $\mathcal{R} \subseteq \mathcal{R}'$ contain only word constraints, then it is polynomial to check whether $E \models \mathcal{R} \subseteq \mathcal{R}'$. Also, if E is a set of path constraints and $\mathcal{R} \subseteq \mathcal{R}'$ is a word constraint, then checking whether $E \models \mathcal{R} \subseteq \mathcal{R}'$ is in PSPACE.

3 Extended path constraints

A path is a FO formula $\alpha(x, y)$ of one the following forms:

- x = y,
- E(x, a, y) for $a \in \Sigma$, and
- $\exists z(E(x, a, x) \land \beta(z, y))$, where $a \in \Sigma$ and $\beta(z, y)$ is a path.

A *path constraint* is any expression of the form:

$$\forall x (\alpha(o, x) \to \forall y (\beta(x, y) \to \gamma(y, x))) \quad (backward \text{ constraint}) \\ \forall x (\alpha(o, x) \to \forall y (\beta(x, y) \to \gamma(x, y))) \quad (forward \text{ constraint})$$

where o denotes the source of I.

An example of a backward constraint is

$$\forall x (\operatorname{Student}(o, x) \to \forall y (\operatorname{Taking}(x, y) \to \operatorname{Enrolled}(y, x)))).$$

Not expressible as a path inclusion constraint!

Theorem 3 (Buneman, Fan, Winstein, '98) For E a set of path constraints, and ϕ a path constraint, it is undecidable to check if $E \models \phi$, even when we restrict to the finite case, and even if we restrict to the forward form.

Nevertheless, if we denote by P_{β} the set of all path constraints such that either $\alpha \equiv \text{true}$, or β is of the form x = y or E(x, a, y), then

Theorem 4 (Buneman, Fan, Winstein, '98) For E a set of path constraints in P_{β} , and ϕ a path constraint in P_{β} , it is decidable in EXPSPACE to check if $E \models \phi$.

4 Regular path constraints with data values

Idea: *Extended keys* and *extended foreign keys* with regular expressions. That is, constraints of the form

 $\mathcal{R}.a.l \to \mathcal{R}.a$ (keys) and $\mathcal{R}.a.l \subseteq \mathcal{R}'.a'.l'$ (foreign keys)

for $\mathcal{R}, \mathcal{R}'$ regular expressions in Σ , and $a, a' \in \Sigma$.

Keys are evaluated on trees as follows:

 $T \models \mathcal{R}.a.l \rightarrow \mathcal{R}.a \iff \forall s, s' \in \mathcal{R}.a(T, \varepsilon), \text{ if } (s.l = s'.l) \text{ then } (s = s').$

Foreign keys are combinations of inclusion dependencies and foreign keys, that is, $T \models \mathcal{R}.a.l \subseteq \mathcal{R}'.a'.l'$ iff $\mathcal{R}'.a'.l'$ is a key and

 $\forall s \in \mathcal{R}.a(T,\varepsilon), \ s.l = s'.l' \text{ for some } s' \in \mathcal{R}'.a'(T,\varepsilon).$

Theorem 5 (Arenas, Fan, Libkin,'02) Checking for a set Σ of keys and foreign keys whether there is a tree T such that $T \models \Sigma$ is in NEXPTIME, and cannot be less than PSPACE.

This shows that the complexity increases when having extended constraints. From (Fan,Libkin,'01), for *usual* keys and foreign keys the result is NP-complete.

5 Queries with data values

We consider the following fragment of XPath. Syntax for *path* queries p is given by:

 $p \ := \ \epsilon \ \mid \ a, \ a \in \Sigma \ \mid \ \mathrm{child} \ \mid \ \mathrm{desc} \ \mid \ \mathrm{parent} \ \mid \ \mathrm{ancestor} \ \mid \ p/p \ \mid \ p \cup p \ \mid \ p[q]$

where q is a *data value* expression given as follows:

$$q := p \mid p/@a = c \mid p/@a = p/@b \mid q \land q \mid \neg q$$

A node s in a tree T satsifies a path query p iff there is s' such that $T \models p(s, s')$, where:

- if $p = \epsilon$ then s = s',
- if p = a then s' = s, and s is labeled a,
- axis are trivial,
- if $p = p_1/p_2$ then there is s'' such that $T \models p_1(s, s'')$ and $T \models p_2(s'', s')$,
- if $p = p_1 \cup p_2$ then either $T \models p_1(s, s')$ or $T \models p_2(s, s')$,
- if $p = p_1[q]$ then $T \models p_1(s, s')$ and
 - if $q = p_2$ then there is s'' such that $T \models p_2(s', s'')$,
 - if $q = (p_2/@a = c)$ then there is s'' such that $T \models p_2(s', s'')$ and s''.a = c,
 - if $q = (p_2/@a = p_3/@b)$ then there are s_1, s_2 such that $T \models p_2(s', s_1) \land p_3(s', s_2)$ and $s_1.a = s_2.b$,
 - Boolean combinations are trivial.

We write SAT(p, D) if there is a tree T that conforms to DTD D, and such that the output of p in T is nonempty.

Theorem 6 (Benedikt,Fan,Geerts,'05) Checking for a DTD D and a path query p that uses neither concatenation / nor negations in data values expressions, whether SAT(p, D), is NPcomplete. The same is true even for the fragment (child, []) without negation on data value expressions (even if DTDs are non-recursive).

What if we admit negation?

Theorem 7 (Benedikt,Fan,Geerts,'05) By admitting negation inside [] we get undecidability. The fragment (child, \cup , []) is in NEXPTIME, while (parent, []) is already EXPTIME-hard.

Several improvements can be found depending on simplifications on DTDs. What if we do not have DTDs?

Theorem 8 (Benedikt,Fan,Geerts,'05) For the fragment $(\cup, [])$ without negations on data value expressions, SAT (p, \emptyset) is NP-hard. Furthermore, (parent, []) is EXPTIME-hard.