
LOGICS FOR UNRANKED TREES

Leonid Libkin

University of Toronto

Libkin 1 ICALP 2005

Paper in the proceedings

• A much shortened version of the survey.

• Full version on my webpage

• google.com ⇒ libkin ⇒ “I’m feeling lucky”

• Why? Limits on the number of pages in a single volume.

Libkin 2 ICALP 2005

Paper in the proceedings

• A much shortened version of the survey.

• Full version on my webpage

• google.com ⇒ libkin ⇒ “I’m feeling lucky”

• Why? Limits on the number of pages in a single volume.

• Apparently there is no Moore’s Law in book binding technology:

• Gutenberg’s Bible, published in 1455 — 1282 pages

• Springer’s ICALP Proceedings, published in 2005 – 1477 pages

Libkin 3 ICALP 2005

Trees are everywhere

• One of the most common objects we see in CS.

• Logics and automata on trees found many applications:

• verification;

• program analysis;

• logic programming/constraint programming;

• linguistics;

• databases

Libkin 4 ICALP 2005

Logic/automata connection

• Regular tree languages = given by tree automata.

• Typically characterized via MSO — Monadic Second-Order logic

• MSO is an extension of first-order logic with quantification over sets.

• Classical results (about 35 years old):

• Thatcher-Wright: For finite binary trees, Regular = MS0-definable.

• Rabin: Same is true for infinite trees. Hence S2S, the MSO-theory
of two successors, is decidable.

• This is one of the most powerful decidability results.

• Many more results followed (Thomas+colleagues, Wilke, Walukiewicz,
Segoufin, Schwentick, Neven, etc etc)

Libkin 5 ICALP 2005

Ranked Trees

Typically one works with ranked trees; e.g., binary, ternary, etc trees.

A binary tree:

a

b

a b

b

a

b a

a

Libkin 6 ICALP 2005

Unranked trees

Recently focus has shifted towards unranked trees.

In them, nodes can have arbitrarily many children, and different nodes may
have different number of children.

a

b b

a b a

a b

a

b

Libkin 7 ICALP 2005

Why unranked trees?

• Main reason: XML.

• XML = eXtensible Markup Language, the standard for exchanging
data on the web.

• XML data is modeled as unranked trees.

• A lot of recent work on XML: W3C standards such as XML Schema,
XPath, XSLT, XQuery define types, navigation mechanism, transfor-
mations, and query languages for XML.

• Active work on XML in many communities, especially databases, infor-
mation retrieval.

• Brings techniques (sometimes old and almost forgotten) from formal
language theory and merges them nicely with logic.

Libkin 8 ICALP 2005

XML documents look like this

<db>

<book>

<title attr_title="Free Nations don’t develop WMD"></title>

<publisher publ_attr="White House Press"></publisher>

<author>

<name name_attr="GW Bush">

</author>

<author>

<name name_attr="C Rice">

</author>

</book>

<book>

<title attr_title="I Love Poor People"></title>

<publisher publ_attr="World Bank Press"></publisher>

<author>

<name name_attr="P Wolfowitz">

</author>

</book>

<book>

<title attr_title="10 Floors of the United Naion"></title>

<publisher publ_attr="Senate Foreign relations Committee"></publisher>

<status status_attr="submitted"></status>

<author>

<name name_attr="J Bolton">

</author>

</book>

</db>

Libkin 9 ICALP 2005

But we like to view them as unranked trees:

db

book book book

title
publ

title
publ author

name
name

title
publ author statusauthor

author

”Free

nations

don’t

develop

WMDs”

”WHPress”

”GW Bush” ”C Rice”

name

”I love

poor people”

”World Bank”

”P Wolfowitz”

”10 Floors

of the UN”

”Senate

Foreign

Relations

Cmte”
”J Bolton”

”submitted”

Libkin 10 ICALP 2005

But we like to view them as unranked trees:

db

book book book

title
publ

title
publ author

name
name

title
publ author statusauthor

author

”Free

nations

don’t

develop

WMDs”

”WHPress”

”GW Bush” ”C Rice”

name

”I love

poor people”

”World Bank”

”P Wolfowitz”

”10 Floors

of the UN”

”Senate

Foreign

Relations

Cmte”
”J Bolton”

”submitted”

Document description (DTD = Document Type Definition)

db → book∗

book → title, publ, author+, status?
author → name

plus attribute names.

Libkin 11 ICALP 2005

Why are we interested in logics?

• XML documents describe data.

• Standard relational database approach:

• data model – relations

• declarative languages for specifying queries

• procedural languages for evaluating queries

• Standard declarative languages are all logic-based:

• relational calculus = first-order logic (FO)

• datalog = fragment of fixed-point logic

• basic SQL = FO with counting

Libkin 12 ICALP 2005

What does XML add?

• New logics.

• New procedural languages:

• logic–automata connection.

Libkin 13 ICALP 2005

What do logics do?

Most commonly they define:

• Boolean (that is, yes/no) queries:

• DTD conformance

• Existence of certain paths

• Unary queries which select nodes in trees:

• all nodes reachable by a certain path from the root;

• all nodes with a certain label or certain data element.

Libkin 14 ICALP 2005

Commonalities between logics

• (Almost) all have associated automata models.

• Crucial aspect is navigation.

• Hence we often see close connection with temporal logics.

• Logics are specifically designed for unranked trees.

Libkin 15 ICALP 2005

Ranked/Unranked Connection

(used by Rabin in 1970 to interpret SωS in S2S):

a

b

a

a

a b a

=⇒

a

b

a a

a

⊥ b

⊥ a

⊥

⊥

It preserves recognizability by automata, MSO-definability, FO-definability...

Libkin 16 ICALP 2005

Why not just use it?

• Instead of defining logics for unranked trees, just translate them into
binary trees and use known logical formalisms.

• Problem: hard to navigate!

• A path in a translation becomes a union of arbitrarily many child paths
and sibling paths.

• Hard (at least not natural) to express many properties such as DTD
conformance.

Libkin 17 ICALP 2005

Classification: Yardstick logic

Most logics are based either on FO or MSO.

• FO:

• Boolean connectives ∨,∧,¬,

• quantifiers ∃x, ∀x ranging over nodes of trees.

• MSO: in addition

• quantifiers ∃X , ∀X ranging over sets of nodes;

• plus new formulae x ∈ X .

Libkin 18 ICALP 2005

Classification: Ordered vs Unordered Trees

In unordered trees, there is no order among siblings (children of the same
node).

Libkin 19 ICALP 2005

Classification: Ordered vs Unordered Trees

In unordered trees, there is no order among siblings (children of the same
node).

In ordered trees, siblings are ordered (from the oldest to the youngest).

Libkin 20 ICALP 2005

Formal definition of unranked trees

ε

1 2 3 4 5

21 22 41 42 43

Tree domain: prefix-closed subset D of N
∗ such that s · i ∈ D implies

s · j ∈ D for j < i.

Libkin 21 ICALP 2005

Formal definition of unranked trees

ε

1 2 3 4 5

21 22 41 42 43

a

b

a a a
b

a b b b a

Tree domain: prefix-closed subset D of N
∗ such that s · i ∈ D implies

s · j ∈ D for j < i.

Tree over finite alphabet Σ: tree domain plus a mapping from it to Σ.

Libkin 22 ICALP 2005

Basic predicates

child ≺ch

next-sibling ≺ns

first child ≺fc

Transitive closures: • ≺∗
ch of ≺ch (descendant)

• ≺∗
ns of ≺ns (younger child)

We normally use transitive closures (since they are not definable in FO).

For MSO, we can use either ≺ch, ≺ns or ≺∗
ch, ≺∗

ns as they are interdefinable.

Libkin 23 ICALP 2005

LOGICS FOR ORDERED TREES

Libkin 24 ICALP 2005

Logic/automata connection

A set T of trees is definable in a logic L iff there is a sentence ϕ of L such
that

T ∈ T ⇔ T |= ϕ

A set T of trees is regular if it is recognizable by a tree automaton.

Theorem

• A set of binary trees is regular iff it is MSO-definable (Thatcher-Wright,
1966).

• A set of unranked trees is regular iff it is MSO-definable (almost folk-
lore; stated many times by different authors).

Libkin 25 ICALP 2005

Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

Libkin 26 ICALP 2005

Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

Libkin 27 ICALP 2005

Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

Libkin 28 ICALP 2005

Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

q1 q2 q1 q2

Libkin 29 ICALP 2005

Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

q1 q2 q1 q2

q3q4

Libkin 30 ICALP 2005

Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

q1 q2 q1 q2

q3q4

q5

Libkin 31 ICALP 2005

Tree automata: the ranked case

Transitions are δ : States × States × Σ → 2States.

q1 q2

q

a

if q ∈ δ(q1, q2, a)

a b a b

a b

a

q1 q2 q1 q2

q3q4

q5

accepted if q5 is a final state

Libkin 32 ICALP 2005

Tree automata: unranked case

Transitions are δ : States × Σ → 2States∗ so that each δ(q, a) ⊆ States∗ is
a regular language.

Libkin 33 ICALP 2005

Tree automata: unranked case

Transitions are δ : States × Σ → 2States∗ so that each δ(q, a) ⊆ States∗ is
a regular language.

The run is the same as before:

q1 q2 qn−1 qn

a

Libkin 34 ICALP 2005

Tree automata: unranked case

Transitions are δ : States × Σ → 2States∗ so that each δ(q, a) ⊆ States∗ is
a regular language.

The run is the same as before:

q1 q2 qn−1 qn

a q

if q1 · · · qn ∈ δ(q, a)

Libkin 35 ICALP 2005

Tree automata: unranked case

Transitions are δ : States × Σ → 2States∗ so that each δ(q, a) ⊆ States∗ is
a regular language.

The run is the same as before:

q1 q2 qn−1 qn

a q

if q1 · · · qn ∈ δ(q, a)

A tree is accepted if there is a run such that the root is assigned an accepting
state.

Libkin 36 ICALP 2005

Unary queries

• A unary query selects a set of nodes in a tree.

• A surprisingly simple automaton model captures them.

• Query automaton QA = unranked tree automaton + selecting set S ⊆
States × Σ.

• QA selects a node s from a tree T if there is a run that assigns a state
q to s such that

(q, a) ∈ S.

Theorem (Neven/Schwentick, 1999) For unary queries over unranked
trees,

Query Automata = MSO.

Libkin 37 ICALP 2005

MSO and DTDs

• Recall that DTDs have rules such as

book → title, publ, author+, status?

• Since regular string languages are precisely those MSO-definable, it
follows that all DTDs are MSO-definable.

• Are DTDs and MSO equal?

• The answer is negative.

Libkin 38 ICALP 2005

MSO and DTDs cont’d

• EDTDs = Extended DTDs: these are DTDs over a larger alphabet
Σ′ ⊇ Σ together with a projection π : Σ′ → Σ.

• Trees over Σ that conform to an EDTD: projections of conforming trees
over Σ′

Theorem (Thatcher 1967; rediscovered several times recently)

EDTDs = MSO

Libkin 39 ICALP 2005

MSO and DTDs cont’d

• EDTDs = Extended DTDs: these are DTDs over a larger alphabet
Σ′ ⊇ Σ together with a projection π : Σ′ → Σ.

• Trees over Σ that conform to an EDTD: projections of conforming trees
over Σ′

Theorem (Thatcher 1967; rediscovered several times recently)

EDTDs = MSO

• DTDs are not even closed under ∨ and ¬.

• Unions of DTDs correspond to the existential fragment of MSO over a
smaller vocabulary.

Libkin 40 ICALP 2005

MSO over trees: Complexity

• Model-checking problem:

Input: tree T , sentence ϕ
Question: Is T |= ϕ?

• Two parameters:

• ‖T‖ – data complexity

• ‖ϕ‖ – query complexity

• By translation to automata: The data complexity of MSO is linear.

• Problem: if we keep data complexity linear, the query complexity is
necessarily non-elementary! (Frick/Grohe, 2002)

• Can we do better?

• Yes, by finding different logics that have the power of MSO, and yet
better model-checking properties.

Libkin 41 ICALP 2005

Changing syntax to lower complexity: LTL

Syntax:
ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Libkin 42 ICALP 2005

Changing syntax to lower complexity: LTL

Syntax:
ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

a

a, a ∈ Σ

Libkin 43 ICALP 2005

Changing syntax to lower complexity: LTL

Syntax:
ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

ϕ

Xϕ

Libkin 44 ICALP 2005

Changing syntax to lower complexity: LTL

Syntax:
ϕ := a(∈ Σ) | ϕ ∨ ϕ′ | ¬ϕ | Xϕ | ϕUϕ′

Semantics:

ϕ ϕ ϕ ϕ ψ

ϕUψ

Libkin 45 ICALP 2005

LTL cont’d

• LTL = FO over strings (Kamp’s theorem).

• To evaluate LTL with linear data complexity, one needs non-elementary
query complexity
(modulo some complexity-theoretic assumptions; Frick/Grohe 2002)

• But LTL over strings can be evaluated in time

2O(‖ϕ‖) · |s|

• Of course this implies that translation from FO to LTL is non-elementary.

Libkin 46 ICALP 2005

Efficient Tree Logic (ETL)

Neven/Schwentick, 2000

Idea of ETL: take MSO and

• Disallow:

• next-sibling ≺ns;

• arbitrary quantification;

• Add:

• guarded quantification over children or (sets of) descendants;

• regular expressions over formulae.

• and put some syntactic restrictions.

Libkin 47 ICALP 2005

Efficient Tree Logic (ETL) cont’d

...

.
...

ϕ1

ϕ2

ϕ3

ϕ4

ϕn−1

ϕn

ψ1 ψ2ψ3 ψ4 ψn

x

y

x

ϕ e(x, y) : ϕ1 · · ·ϕn ∈ e ψ e(x) : ψ1 · · ·ψn ∈ e

Libkin 48 ICALP 2005

Efficient Tree Logic (ETL) cont’d

Theorem (Neven/Schwentick)

• ETL = MSO.

• ETL formulae can be evaluated in time

2O(‖ϕ‖) · ‖T‖

Libkin 49 ICALP 2005

Can one do better? – Monadic Datalog

• Datalog = database query language; essentially extension of positive
FO with least fixed point.

• Can also be viewed as prolog without function symbols.

• Datalog program is monadic if all introduced predicates (intensional
predicates) are monadic – have one free variable.

• Example: select (in predicate D) all nodes s such that all their descen-
dants (including s) are labeled a:

D(x) :– Pa(x), Leaf(x)
D(x) :– Pa(x), x ≺fc y, S(y)
S(y) :– Pa(x), LastChild(y), D(y)
S(y) :– Pa(x), x ≺ns y, S(y), D(y)

Libkin 50 ICALP 2005

Monadic Datalog cont’d

Assume that Leaf and LastChild are available as basic predicates.

Theorem (Gottlob/Koch, 2002)

• Monadic Datalog = MSO

• A Monadic Datalog program P can be evaluated on a tree T in time

O(‖P‖ · ‖T‖)

Libkin 51 ICALP 2005

µ-calculus over unranked trees

• µ-calculus (Kozen 82): extension of a temporal logic with the least
fixed point operator.

• Subsumes many logics used in verification: LTL, CTL, CTL∗.

• Syntax:

ϕ := S | a | ϕ ∨ ϕ′ | ϕ ∧ ϕ′ | ¬ϕ | XEϕ | µS ϕ(S)

• S must occur positively;

• E ranges over relations ≺ch and ≺ns

• Full µ-calculus: one can talk about the past.

• That is, E also ranges over inverses of ≺ch and ≺ns

Libkin 52 ICALP 2005

µ-calculus over unranked trees cont’d

Theorem (Barcelo, L., ’05) Over unranked trees,

full µ-calculus = MSO

For Boolean queries:

• MSO = alternation-free µ-calculus (all negations pushed to atomic
formulae)

• Complexity of model-checking (Mateescu, ’02):

• O(‖ϕ‖2 · ‖T‖) for µ-calculus;

• O(‖ϕ‖ · ‖T‖) for alternation-free µ-calculus.

Remark: it is well known that over infinite binary trees µ-calculus and
MSO are the same (Niwinski 1988).

Libkin 53 ICALP 2005

First-Order based formalisms

• These are often studied in connection with XPath

• XPath – a W3C standard, essentially the navigation language for
XML.

Libkin 54 ICALP 2005

XPath – an informal introduction

• XPath has two kinds of formulae: node tests and path formulae.

• Node tests are closed under Boolean connectives and can check if a
path satisfying a path formula can start in a given node.

• Path formulae can:

• test if a node test is true in the first node of a path;

• test if a path starts by going to a child, first child, next child,
previous child, parent, descendant, ansector, etc;

• take union or composition of two paths.

Example: //book[/author[name="GW Bush"]]/title

gives titles of books coauthored by Bush.

Libkin 55 ICALP 2005

CTL∗ vs XPath

• There is a well-known logic, CTL∗, that similarly combines node
(called state) and path formulae.

• Syntax:

state formulae α := a | α ∨ α′ |¬α | Eβ
path formulae β := LTL over state formulae

Example: all descendants of a given node (including self) are labeled a
(with Σ = {a, b}):

¬E
(

(a ∨ b) U b
)

Libkin 56 ICALP 2005

CTL∗ and FO over trees

Theorem With respect to Boolean queries:

• over binary trees, CTL∗ = FO
(Hafer, Thomas, 1987).

• over unranked trees, CTL∗ = FO
(Barcelo, L., 2005; closely related to Marx 2004)

• For unary queries, one adds reasoning about the past (temporal
operators Y – yesterday, and S – since).

• A technical issue: what is a path in an unranked tree? It could be
a path that may change directions from siblings to children, or one
could use two different kinds of path formulae.

• It turns out that this decision does not affect expressiveness.

Libkin 57 ICALP 2005

LOGICS FOR UNORDERED TREES

Libkin 58 ICALP 2005

Easy punchline

• Order buys us counting.

• Without order, counting has to be introduced explicitly.

a b a b aa

• There is no way to say in a temporal logic that there are at least 2
children labeled a.

Libkin 59 ICALP 2005

MSO, order, and counting

• With MSO, ordering gives us even more powerful modulo counting.

• Example: parity in MSO

• The black set:

• contains the first element;

• contains every other element;

• does not contain the last element.

• But if we only have:

we cannot say it.

Libkin 60 ICALP 2005

Automata with counting

• New transition: δ : States × Σ → Boolean function over(V)

• V = {vkq | k ∈ N, q ∈ States}.
• A new notion of run:

q1 q2 qn−1 qn

a q0

• For each q, set vkq to true if the number of children in state q is at
least k.

• If δ(q0, a) evaluates to true, then state q0 can be assigned.

Libkin 61 ICALP 2005

Counting in temporal logics

Extend µ-calculus and CTL∗ to counting versions by changing X to
Xk, meaning the existence of at least k elements satisfying a formula.

Theorem For Boolean queries:

• MSO = counting µ-calculus
(Walukiewicz et al, 2002)

• FO = counting CTL∗

(Moller, Rabinovich, 2003)

• For unary queries, one needs both counting and past
(Schlingloff 1992, Barcelo, L, 2005)

Libkin 62 ICALP 2005

Adding an arbitrary ordering

• Parity example: an order is needed, but it does not matter which
one!

• Such properties are called order-invariant.

• CMSO = Counting MSO: extension of MSO with

Modq(X) meaning |X| = 0 (mod q)

Theorem (Courcelle 1991) Over trees,

order-invariant MSO = CMSO.

Libkin 63 ICALP 2005

Even more powerful counting

q1 q2 qn−1 qn

a q0

• For each q, let vq be the number of nodes assigned state q.

• In a more powerful counting automata, transition δ(q0, a) could be
a formula of Presburger Arithmetic (that is, 〈N,+〉) over vq’s.
For example,

δ(q0, a) =
(
vq1 + vq2 = 2 · vq3

)
∧ ∃x

(
vq4 = x + x + x

)

• Such automata investigated by Seidl, Schwentick, Muscholl, ’03–04.

• Decidability results and fixed-point logic characterizations.

Libkin 64 ICALP 2005

AUTOMATIC STRUCTURES

Libkin 65 ICALP 2005

Strings, trees, and logic: a reminder
Strings and trees are viewed as finite structures.
Universe: {1, . . . , n} or a prefix-closed subset of {1, 2}∗
Predicates: ≺ – prefix, Pa and Pb for positions labeled a and b

a

1

b

2

b

3

a

4

a

5

ε a

1 a

11 b 12 b

112 a

2 a

21 a

221 b

22 b

A string s or a tree T is a structure, Ms or MT , of vocabulary (≺
, Pa, Pb).

If Φ is a sentence of a logic L, then

{s |Ms |= Φ} {T |MT |= Φ}
define string and tree languages.

Classical Results Regular languages = MSO-definable

Libkin 66 ICALP 2005

A different approach: automatic structures
If M = 〈Σ∗,Ω〉 is a first-order structure, then a formula ϕ(x) defines
the language

{s ∈ Σ∗ | M |= ϕ(s)}
A structure is automatic if all such languages are regular.

Operations on strings:
• x ≺ y: x is a prefix of y
• fa(x) = x · a, a ∈ Σ
• el(x, y) (equal length): |x| = |y|

S

def
= 〈 Σ∗, ≺, (fa)a∈Σ, el 〉

Folklore Theorem S is the universal automatic structure: relations
definable by formulae ϕ(x1, . . . , xn) are precisely the regular relations.

Libkin 67 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a
s3 = b b · · ·

· · · · · ·
sn = a b b · · · a c

Libkin 68 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

Libkin 69 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

⇑

Libkin 70 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

⇑

Libkin 71 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

⇑

Libkin 72 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

⇑

Libkin 73 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

⇑

Libkin 74 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

⇑

Libkin 75 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

⇑

The alphabet of this automaton is (Σ ∪ {#})n.

Libkin 76 ICALP 2005

Regular relations
These are n-tuples of strings accepted by letter-to-letter automata.

s1 = a a b · · · a b c
s2 = a b a · · · a # #
s3 = b b # · · · # # #

· · · · · ·
sn = a b b · · · a c #

⇑

The alphabet of this automaton is (Σ ∪ {#})n.

A reduct of S:

Sp

def
= 〈 Σ∗, ≺, (fa)a∈Σ 〉

Theorem (Benedikt, L., Schwentick, Segoufin, 2001)

Languages definable over Sp are precisely the star-free languages.

Libkin 77 ICALP 2005

Automatic structures on binary trees
Trees(Σ) – the infinite set of all binary Σ-labeled trees.

Operations and predicates on trees:

T ′ extends T
(or T is subsumed by T ′): T ≺ T ′

T
a

a

b b a

a

Libkin 78 ICALP 2005

Automatic structures on binary trees
Trees(Σ) – the infinite set of all binary Σ-labeled trees.

Operations and predicates on trees:

T ′ extends T
(or T is subsumed by T ′): T ≺ T ′

T ′
a

a

b b a

b a

a

a

a b

Libkin 79 ICALP 2005

Operations on binary trees cont’d
Successor operations: succa1, succb1, succa2, succb2.
succa1 adds, to each leaf, a left child labeled a:

T

Libkin 80 ICALP 2005

Operations on binary trees cont’d
Successor operations: succa1, succb1, succa2, succb2.
succa1 adds, to each leaf, a left child labeled a:

. . .

a a a a a a

succa1(T)

Libkin 81 ICALP 2005

Operations on binary trees cont’d
Analog of equal length – domain equivalence:

T ≈dom T
′ ⇔ domain(T) = domain(T ′)

Libkin 82 ICALP 2005

Operations on binary trees cont’d
Analog of equal length – domain equivalence:

T ≈dom T
′ ⇔ domain(T) = domain(T ′)

T
a

b

a a

b

b

a b

Libkin 83 ICALP 2005

Operations on binary trees cont’d
Analog of equal length – domain equivalence:

T ≈dom T
′ ⇔ domain(T) = domain(T ′)

T ′
a

a

b a

a

a

b a

Libkin 84 ICALP 2005

Tree-Automatic Structures

T = 〈 Trees(Σ), ≺, succa,b1,2, ≈dom 〉

Libkin 85 ICALP 2005

Tree-Automatic Structures

T = 〈 Trees(Σ), ≺, succa,b1,2, ≈dom 〉

Tp = 〈 Trees(Σ), ≺, succa,b1,2 〉

Libkin 86 ICALP 2005

Tree-Automatic Structures

T = 〈 Trees(Σ), ≺, succa,b1,2, ≈dom 〉

Tp = 〈 Trees(Σ), ≺, succa,b1,2 〉

Theorem (Benedikt, L., 2002)

• For both Tp and T, the class of definable sets is precisely the class
of regular tree languages.

• T is the universal tree-automatic structure: a relation on Trees(Σ)
is T-definable iff it is regular.

• Tp is weaker than T.

Libkin 87 ICALP 2005

Operations on unranked trees
Reusing the extension operation ≺ requires infinitely many successor
operations, which is undesirable. Hence, we split it into two: extension
right ≺→ and extension down ≺↓.

T ≺→ T ′

Libkin 88 ICALP 2005

Operations on unranked trees
Reusing the extension operation ≺ requires infinitely many successor
operations, which is undesirable. Hence, we split it into two: extension
right ≺→ and extension down ≺↓.

T ≺→ T ′

Libkin 89 ICALP 2005

Operations on unranked trees
Reusing the extension operation ≺ requires infinitely many successor
operations, which is undesirable. Hence, we split it into two: extension
right ≺→ and extension down ≺↓.

T ≺↓ T
′

Libkin 90 ICALP 2005

Operations on unranked trees
Reusing the extension operation ≺ requires infinitely many successor
operations, which is undesirable. Hence, we split it into two: extension
right ≺→ and extension down ≺↓.

T ≺↓ T
′

Libkin 91 ICALP 2005

Unranked Tree-Automatic Structures

T
u = 〈 UTrees(Σ), ≺→, ≺↓, (La)a∈Σ, ≈dom 〉

Here La(T) is true if the rightmost node of T is labeled a.

Libkin 92 ICALP 2005

Unranked Tree-Automatic Structures

T
u = 〈 UTrees(Σ), ≺→, ≺↓, (La)a∈Σ, ≈dom 〉

Here La(T) is true if the rightmost node of T is labeled a.

T
u

p

= 〈 UTrees(Σ), ≺→, ≺↓, (La)a∈Σ 〉

Libkin 93 ICALP 2005

Unranked Tree-Automatic Structures

T
u = 〈 UTrees(Σ), ≺→, ≺↓, (La)a∈Σ, ≈dom 〉

Here La(T) is true if the rightmost node of T is labeled a.

T
u

p

= 〈 UTrees(Σ), ≺→, ≺↓, (La)a∈Σ 〉

Libkin 94 ICALP 2005

Unranked Tree-Automatic Structures: basic results
Theorem (L., Neven, 2003)

• Unranked tree languages definable in Tu and Tu
p

are precisely the
regular unranked tree languages.

Libkin 95 ICALP 2005

Unranked Tree-Automatic Structures: basic results
Theorem (L., Neven, 2003)

• Unranked tree languages definable in Tu and Tu
p

are precisely the
regular unranked tree languages.

• Tu is the universal unranked tree automatic structure: relations de-
finable in Tu are precisely the regular unranked tree relations.

Libkin 96 ICALP 2005

Unranked Tree-Automatic Structures: basic results
Theorem (L., Neven, 2003)

• Unranked tree languages definable in Tu and Tu
p

are precisely the
regular unranked tree languages.

• Tu is the universal unranked tree automatic structure: relations de-
finable in Tu are precisely the regular unranked tree relations.

• The theory of Tu is decidable.

Libkin 97 ICALP 2005

Unranked Tree-Automatic Structures: basic results
Theorem (L., Neven, 2003)

• Unranked tree languages definable in Tu and Tu
p

are precisely the
regular unranked tree languages.

• Tu is the universal unranked tree automatic structure: relations de-
finable in Tu are precisely the regular unranked tree relations.

• The theory of Tu is decidable.

• Tu
p

is weaker than Tu.

Libkin 98 ICALP 2005

Ranked an unranked branches
A tree T is a branch if

∀T ′, T ′′ � T
(

(T ′ � T ′′) ∨ (T ′′ � T ′)
)

Libkin 99 ICALP 2005

Ranked an unranked branches
A tree T is a branch if

∀T ′, T ′′ � T
(

(T ′ � T ′′) ∨ (T ′′ � T ′)
)

Libkin 100 ICALP 2005

Ranked an unranked branches
A tree T is a branch if

∀T ′, T ′′ � T
(

(T ′ � T ′′) ∨ (T ′′ � T ′)
)

•

Libkin 101 ICALP 2005

Ranked an unranked branches
A tree T is a branch if

∀T ′, T ′′ � T
(

(T ′ � T ′′) ∨ (T ′′ � T ′)
)

•

Ranked branch

Libkin 102 ICALP 2005

Ranked an unranked branches
A tree T is a branch if

∀T ′, T ′′ � T
(

(T ′ � T ′′) ∨ (T ′′ � T ′)
)

•

Unranked branch

Libkin 103 ICALP 2005

Logics with branch quantification
We write FOη to indicate that we quantify only over branches.

Then definable sets of trees have analog in the classical theory of logical
definability over trees, which uses logics such as FO, MSO, MSOpath

(only quantification over chains is allowed).

Libkin 104 ICALP 2005

Logics with branch quantification
We write FOη to indicate that we quantify only over branches.

Then definable sets of trees have analog in the classical theory of logical
definability over trees, which uses logics such as FO, MSO, MSOpath

(only quantification over chains is allowed).

Theorem Over ranked trees:
FOη(Tp)-definable = FO-definable
FOη(T)-definable = MSOpath-definable

Libkin 105 ICALP 2005

Logics with branch quantification
We write FOη to indicate that we quantify only over branches.

Then definable sets of trees have analogs in the classical theory of
logical definability over trees, which uses logics such as FO, MSO,
MSOpath (only quantification over chains is allowed).

Theorem Over ranked trees:
FOη(Tp)-definable = FO-definable
FOη(T)-definable = MSOpath-definable

Over unranked trees:
FOη(T

u
p

)-definable = FO-definable
FOη(T

u)-definable = MSO↑
→-definable

MSO↑
→ is MSO with quantification restricted to vertical and horizontal

paths: an analog of MSOpath for unranked trees.

Libkin 106 ICALP 2005

What else is in the survey?

• Edge-labeled trees.

• They occur in a variety of areas:

• computational linguisticts;

• ambient and spatial logics.

• Logics have quite a different flavor.

• Connections between them and logics considered here are being ex-
plored.

Libkin 107 ICALP 2005

Other directions

• We have seen plenty of declarative specification languages with good
associated procedural formalisms in terms of model-checking prop-
erties.

• What causes them to be good?

• One way to look at this: succinctness (Grohe/Schweikardt).
How big are formulae for expressing certain properties?

Libkin 108 ICALP 2005

Other directions: streaming
a

b

c b

a

b ca

<a>

<a>

<c></c>

<a>

<c></c>

Streamed representation:

abaācc̄bb̄b̄abb̄cc̄āā

Question: what properties of trees can we check by a finite automaton
over the streamed representation?

Since the language of balanced parentheses is not regular, we may
assume the input is already a valid stream.

Libkin 109 ICALP 2005

Other directions: streaming cont’d

• Example The following DTD is not stream-verifiable (Segoufin/Vianu
2002):
a → ab | ca | ε
b → ε
c → ε

• Originally an involved pumping-lemma argument, but logic gives a
much simpler proof:

• For every MSO sentence ϕ one can find two strings of the form

abb̄abb̄ . . . abb̄a . . . aācc̄ . . . ācc̄ā . . . ā

that agree on ϕ; one of them corresponds to the above DTD, and
the other one to:
a → a | ab | ca | ε
b → ε
c → ε

Libkin 110 ICALP 2005

Other directions: streaming cont’d

• There is a characterization of a fragment of MSO over trees that defines
precisely the “streamable” properties (checked by string automata).

• However, decidability of that fragment remains open.

Libkin 111 ICALP 2005

Other directions: data values

• So far we considered only labels on trees (e.g., book, author) but no
data values (e.g., ”WH Press”).

• Adding data values quickly leads to undecidability.

• Example: DTDs + key/foreign key constraints.

• Satisfiability problem: is a specification consistent?

• Some known results (Fan, L., 2001):

• It is NP-complete for unary constraints (e.g. title determines pub-
lisher).

• It is undecidable even for binary constraints (e.g., title and author
determine publisher).

Libkin 112 ICALP 2005

Other directions: data values

• Proofs were not logic-based (mostly combinatorial plus integer linear
programming).

• But it appears that logic can provide an explanation.

• Consider strings with data values attached to positions.

• Bojanczyk, Muscholl, Schwentick, Segoufin, 2005:

• FO2, first-order with two variables, is decidable.

• FO3, first-order with three variables, is undecidable.

• One needs two variables to talk about unary constraints, and more for
binary, etc., constraints.

Libkin 113 ICALP 2005

Summing up

• XML application give theoreticians nice problems to work on.

• Combination of well developed tools:

• formal languages,

• logic,

• string and tree automata

• Not everything is a straightforward adaption of old and known results.

Libkin 114 ICALP 2005

