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1 Introduction

XML pervades the web, and XML is the language for data exchange among disparate data sources
like a relational database, an XML database, and a spatial database. A data provider or party creates
a common XML schema and agrees to produce only XML data conforming to that schema. Since
different parties have their own schemas, the challenge is how to communicate among different parties
and exchange data. Transformations need to be done to convert from one XML document to another
according to the associated schema. People perform queries on the web to get responses to questions.
As illustrated by Figure 1 , the query response is an XML document which is a result from the many
XML transformations and aggregation of data pulled together to satisfy that query.

Figure 1: Performing a query on the web and how XML is used to return the query response [2]

2 The Typechecking Problem

The problem that arises from querying and performing transformations for XML data exchange on
the web is called the typechecking problem and can be illustrated in Figure 2. The main reference from
which this paper is based on is from Milo, Suciu and Vianu called Typechecking for XML Transformers
from the PODS 2000 conference [3].

The question is this: Does every XML document that comes from an XML transformation T , and
an XML schema Sin (input schema) satisfy the output schema Sout? For example, a mobile device
wants to view information from Google Base but Google Base has its own XML schema (Sout) and
the mobile device’s browser is in WML (Wireless Markup Language) (Sin).

2.1 Types of typechecking

In order to solve the typechecking problem, we need to look at the different types of typechecking that
exist. There are two types of typechecking: dynamic typechecking and static typechecking. Dynamic
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Figure 2: The typechecking problem [2]

typechecking involves validating each XML document at run time. The drawbacks of dynamic type-
checking are that it is resource-intensive and the XML document has to be parsed in real-time, which
makes it slow. Static typechecking, on the other hand, validates each XML document at compile time.
The focus of this paper is on static typechecking.

2.2 Addressing the typechecking problem

2.2.1 Issues

There are basically two issues in addressing the typechecking problem. First, there is no generally
accepted and universally agreed upon XML transformation language. The authors [3] address this
problem by defining an abstract model called a k-pebble tree transducer which allows all transforma-
tions in XML query languages to be expressed without joins on data values. Second, regular tree
languages can be used to formalize schemas without having to consider the type of schema (like DTD
or XML Schema). In fact, it is known that a DTD forms a regular tree language.

2.2.2 Previous work

Several researchers have addressed the typechecking problem, notably Alon et al. who conclude that
typechecking becomes undecidable when there are data or attribute values [1]. From the authors, they
conclude that typechecking is decidable for a large fragment of tree transformations using structural
properties [3].

2.3 Formal definition of the typechecking problem

We can provide a formal definition of the typechecking problem. Given an input tree language τin, an
output tree language τout, and XML transformation T , verify that:

∀t ∈ τin =⇒ T (t) ∈ τout

3 Background to Solving the Typechecking Problem

The solution for solving the typechecking problem involves modelling the XML schemas as regular
trees and XML transformations [5] as k-pebble tree transducers. Before showing the solution, since we
know regular trees, we need to know what a k-pebble tree transducer is.
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3.1 k-Pebble Tree Transducer

A k-pebble tree transducer uses k pebbles to mark certain nodes in the tree. The pebbles are ordered
and numbered from 1,2,,k. Pebbles are placed in order, and removed in reverse order like pushing and
popping from a stack. Only the highest-numbered pebble on the tree can be moved.

3.1.1 How a k-pebble tree transducer works

Figure 3 illustrates the k -pebble tree transducer in action on a tree with k=5.

3
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Current pebble, i = 3

Figure 3: Example of k-pebble tree transducer with k=5

First, pebble 1 is placed on the root. The next pebble is placed onto the root which pushes the
other pebbles down the tree. As can be seen from the above figure, 3 pebbles have been placed on
the tree. We can only move the highest-numbered pebble (in this case, it is pebble 3) by examining
the current state, the symbol under the current pebble, and the presence or absence of the other
i-1 pebbles where the current pebble being moved is i. Transitions for pebble i are either move and
output. Valid moves are down-left, down-right, up-left, up-right, stay, place-new-pebble and pick-
current-pebble. The output node is returned with a symbol from the output alphabet.

The output from the k -pebble tree transducer is as follows. First, we start with a single computa-
tion branch and no output nodes. Then, the computations result in some top fragment of the output
tree. The remaining output subtrees are then computed. The outputs a′ ∈ Σ′ can be binary (a′ ∈ Σ′

2)
in which there are two computation branches that compute the left and right child, or they can be
nulary (a′ ∈ Σ′

0) in which only the leaf is output and the branch of computation halts. a′ is the output
symbol which is from the output alphabet Σ, Σ′

2 indicates the output alphabet for the left and right
child, and Σ′

0 indicates the output alphabet for the leaf.

3.1.2 Formal definition of a k-pebble tree transducer

A k -pebble tree transducer is

T = (Σ,Σ′, Q, q0, P ) where :

1. Σ, Σ′ are the ranked input and output alphabets

2. Q is a finite set of states and is partitioned into: Q = Q1
⋃

...
⋃

Qk

3. q0 ∈ Q1 is the initial state

3



4. P is a finite set of transitions:
(a, b, q

(i)
1 ) −→ (q(i)

2 , stay)
(a, b, q

(i)
1 ) −→ (q(i)

2 , down − left)
(a, b, q

(i)
1 ) −→ (q(i)

2 , down − right)
(a, b, q

(i)
1 ) −→ (q(i)

2 , up − left)
(a, b, q

(i)
1 ) −→ (q(i)

2 , up − right)
(a, b, q

(i)
1 ) −→ (q(i+1)

2 , place − new − pebble)
(a, b, q

(i)
1 ) −→ (q(i−1)

2 , pick − current − pebble)
(a, b, q

(i)
1 ) −→ (a

′
0, output0)

(a, b, q
(i)
1 ) −→ (a

′
2(q

(i)
1 , q

(i)
2 ), output2)

b ∈ {0, 1}i−1, for i = 1, b = ε

What this means is that P has a set of transitions in which the move operations for current pebble
i are stay, down-left, down-right, up-left, and up-right given an input symbol a, the presence/absence
of the previous i-1 pebbles denoted by b ∈ {0, 1}i−1 (obviously if i = 1, then there is no b), then the
state transitions from q1 to q2. If the move is to place a new pebble, then pebble i+1 is placed and
the state moves from q1 to q2. If the current pebble is picked, then pebble i is in state q1, and the
previous pebble i-1 enters the q2 state. For output transitions, if the output is nulary, then the leaf is
output a

′
0, otherwise if it is binary output, then left child enters q1, the right child enters q2 and the

output is the left and right child along with the output symbol a
′
2.

3.1.3 Example of a k-pebble transducer (1-pebble)

This example copies the input tree to the output tree and is obtained from Example 3.2 of [3].

T = (Σ,Σ′, q, q1, q2, q0, q, P ) where :

1. Σ, Σ′ are the ranked input and output alphabets

2. P is the following:
(a2, q) −→ (a2(q1, q2), output2) for all a2 ∈ Σ2

(a2, q1) −→ (q, down − left)
(a2, q2) −→ (q, down − right)
(a0, q1) −→ (a0, output0) for all a0 ∈ Σ0

As can be seen, every input symbol is then output. output0 is a leaf, while output2 is the left and
right child. Note that there is no b because k = 1, and b = ε so it is omitted.

There are other examples of k -pebble transducers like in Example 3.3 and 3.4 of [3].

3.1.4 Complexity of k-pebble transducer

Let T be a fixed k -pebble transducer. Then for each input tree t,

1. the set T (t) is a regular tree language

2. one can construct in PTIME (in the size of t) a regular tree automaton At that accepts the
language T (t)
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3.1.5 Restating the typechecking problem - formal definition

Given an input tree type τin, an output tree type τout, and a k -pebble tree transducer T , verify:

∀t ∈ τin =⇒ T (t) ∈ τout

4 Solution to the Typechecking Problem

Now that we have the background information on k -pebble tree transducers, we can solve the type-
checking problem. In solving the typechecking problem, the authors examine a closely related problem
which is type inference. The idea is that if type inference can be solved, then that immediately leads
to solving the typechecking problem.

4.1 The type inference problem

Given an input tree type τin, an output tree type τout, and a k -pebble tree transducer T , construct
τ

′
out such that

τ
′
out = T (τin)

How can type inference solve typechecking? If we infer that τ
′
out = T (τin), then we can check that

τ
′
out ⊆ τout. This implies that T (τin) ⊆ τout and therefore we have solved the typechecking problem.

However, type inference is not possible for all types and transformations as can be seen from Example
4.2 from [3]. Since type inference is not possible, then what can we do? The authors discovered that
inverse type inference is possible.

4.2 The inverse type inference problem

If we can solve the inverse type inference problem, then this admits type inference which immediately
yields a solution to typechecking. The inverse type inference problem is this. Given an output type τ
and a k -pebble transducer T , construct τ−1 (inverse inferred type) such that

τ−1 = {t | T (t) ⊆ τ}

To typecheck T with respect to input τin and output τout, find the inverse type τ−1
out for T and τout.

Then check that τin ⊆ τ−1
out. This means that τ−1

out = T (τin) and since τ−1
out ⊆ τ−1

out, then T (τin) = τout.
So, a solution to the inverse type inference problem immediately yields a solution to the typechecking
problem.

4.3 Solving the inverse type inference problem

The authors solve the inverse type inference problem using the following three steps: 1) define an
acceptor variant of the transducer, called k -pebble automaton, 2) for each k -pebble transducer T and
type τ , the complement of {t | T (t) ⊆ τ} (denoted by {t | T (t) ⊆ τ}) is recognized by some k -pebble
automaton, and 3) prove that every k -pebble automaton recognizes a regular tree language.
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4.3.1 Define a k-pebble automaton

A k -pebble automaton is a 4-tuple (Σ, Q, q0, P ) where:

1. Σ, Q, q0 are as in a k -pebble transducer

2. P is a set of transitions. Move transitions are as in a k -pebble transducer. Output transitions
are replaced by:
(a0, b, q

(i)) −→ (branch0)
(a2, b, q

(i)) −→ ((q(i)
1 , q

(i)
2 ), branch2)

A k -pebble automaton is like a k -pebble transducer except that it produces no output, and just
accepts or rejects input. branch0 stops the current computation branch and accepts, whereas branch2
spawns two independent computations in states q

(i)
1 , and q

(i)
2 .

4.3.2 Inverse type inference with k-pebble automata

The next step is to realize inverse type inference with k -pebble automata. For each k -pebble transducer
T and type τ , there exists a k -pebble automaton A such that

inst(A) = {t | T (t) ⊆ τ}
Note that this is the inverse of type inference. The proof of this can be found in Appendix B,

Proof of Proposition 4.5 from [3].

4.3.3 k-pebble tree automata accepts regular tree languages

The third step is to prove that every k -pebble tree automaton recognizes a regular tree language. The
proof of this can be found in Appendix B, Proof of Theorem 4.6 from [3].

By solving the inverse type inference problem, we have immediately solved the typechecking prob-
lem.

4.4 Limitations of the typechecking approach

Even though k -pebble tree automata is concise and convenient, the problem is that it has high com-
plexity because it is hyperexponential in k. A second problem is that it lacks data values. Data in
XML (#PCDATA) is modeled in a tree with an infinite alphabet D. To address this, the k -pebble
transducer can be extended with 3 kinds of transitions. The first transition is a comparison predicate
that checks whether x = y, state q1 is entered when x = y and state q2 is entered when x <> y. The
second transition is unary comparison on data values, while the third transition is an output transition
that copies the data value from the input tree to the output tree.

5 XML Transformation Languages with Typechecking

We have described the solution and the formal model and definition for the typechecking problem.
This section explores the XML transformation languages that have typechecking in practice [4]. XDuce
is considered the first programming language with typechecking of XML operations using schemas.
Other languages that Moller compare are XACT, XJ, XOBE, JDOM (Java implementation of DOM),
JAXB, HaXml, Cω, XQuery (SQL for XML), XSLT, and tree transducers.

In practice, XML transformation languages do not perform rigorous typechecking because of the
complexity and for most implementations, an approximation is adequate.
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