
CSC 2538

Topics in DB: Foundations of XML

Lecture 4

Prof. Leonid Libkin
notes by Solmaz Kolahi

October 21, 2005

1 1-Unambiguous Regular Expressions

Elements in XML DTDs are defined using regular expressions. As a W3C standard, only 1-unambiguous
regular expressions are allowed in DTDs. As we will see later, there is an efficient membership algo-
rithm for this class of regular expressions, which facilitates the process of validating XML documents
with respect to DTDs.

A regular expression is 1-unambiguous if every symbol in any input string can be uniquely matched
to an occurrence of the symbol in the regular expression, without looking ahead in the string. That
is, every string can be parsed with a single-symbol lookahead.

As an example, consider regular expression e = (a + b)∗aa∗ and string s = baa in the language of
e. String s can be parsed in two different ways as shown below. Regular expression e is therefore not
1-unambiguous.

(a + b)∗ a a∗

b a a

(a + b)∗ a a∗

b a a

To define this concept more formally, we mark every occurrence of symbols in the regular expres-
sion with subscripts, such that different occurrences of the same symbol have different subscripts.
For instance, a marking of regular expression e = (a + b)∗aa∗ is em = (a1 + b1)∗a2a

∗
3. Given an

alphabet Σ, we denote the subscripted set of symbols in Σ by Σm. For every symbol x ∈ Σm, x◦ de-
notes the corresponding unmarked symbol in Σ and is obtained by simply removing the subscript of x.

Let e be a regular expression over Σ and em be a marking of e over Σm. Then:

Definition 1 Regular expression e is 1-unambiguous if for every three strings u, v,w ∈ Σ∗
m and every

two symbols x, y ∈ Σm such that uxv, uyw ∈ L(em), x 6= y implies x◦ 6= y◦.

A regular language is 1-unambiguous if it is denoted by a 1-unambiguous regular expression. Note
that the language denoted by regular expression e = (a + b)∗aa∗ is 1-unambiguous, because there is a
1-unambiguous regular expression e′ = b∗a(b∗a)∗ such that L(e) = L(e′).

Given a regular expression e, one can construct a finite automaton Ae that accepts L(e) using
Glushkov construction. Then:

Theorem 1 Regular expression e is 1-unambiguous if and only if Ae is deterministic.

1.1 Glushkov Construction

Let L be a regular language over alphabet Σ. We define the following sets, as we need them later in
the construction of Glushkov automaton.

• first(L) = {a ∈ Σ | ∃ u ∈ Σ∗ au ∈ L}.
• last(L) = {a ∈ Σ | ∃ u ∈ Σ∗ ua ∈ L}.
• follow(L, a) = {b ∈ Σ | ∃u,w ∈ Σ∗ uabw ∈ L}, for every a ∈ Σ.

Let e be a regular expression and em be a marking of e. By Sym(em) we denote the set of all
symbols in em. For example, if e = b∗a(b∗a)∗ and em = b∗1a1(b∗2a2)∗, then Sym(em) = {a1, a2, b1, b2}.

Now the Glushkov automaton for e is defined as Ae = (Q, q0, F, δ), where

• Q = Sym(em) ∪ {q0};

1

• δ(q0, a) = {x | x ∈ first(L(em)), x◦ = a}, for every a ∈ Σ;

• δ(y, a) = {x | x ∈ follow(L(em), y), x◦ = a}, for every y ∈ Sym(em), a ∈ Σ;

• F =
{

last(L(em)) if ε 6∈ L(e),
last(L(em)) ∪ {q0} if ε ∈ L(e).

The Glushkov automaton for regular expressions e = (a + b)∗a is given below. Note that the
automaton is not deterministic sine e is not 1-unambiguous.

em = (a1 + b1)∗a2

Ae = (Q, q0, F, δ)
Q = {q0, a1, b1, a2}
F = {a2}
δ(q0, a) = {a1, a2} δ(a1, a) = {a1, a2} δ(b1, a) = {a1, a2} δ(a2, a) = {}
δ(q0, b) = {b1} δ(a1, b) = {b1} δ(b1, b) = {b1} δ(a2, b) = {}

The Glushkov automaton for regular expressions e′ = b∗a(b∗a)∗ is given below. Note that the
automaton is deterministic sine e is 1-unambiguous.

e′m = b∗1a1(b∗2a2)∗

Ae = (Q, q0, F, δ)
Q = {q0, a1, b1, b2, a2}
F = {a1, a2}
δ(q0, a) = {a1} δ(a1, a) = {a2} δ(b1, a) = {a1} δ(b2, a) = {a2} δ(a2, a) = {a2}
δ(q0, b) = {b1} δ(a1, b) = {b2} δ(b1, b) = {b1} δ(b2, b) = {b2} δ(a2, b) = {b2}

2 Unary (Node-Selecting) Queries over Unranked Trees

In this lecture, by a unary query we refer to a function that maps every tree to a set of its nodes that
satisfy some property. These queries are important in the context of XML documents since we are
often looking for subdocuments (subtrees) that satisfy a certain pattern.

Each query Q can be defined using a formula ϕ in FO or MSO. Recall that a tree T is defined as
a pair (D,λ), where D is a tree domain and λ is a labeling function over the nodes in D. Then given
a tree T = (D,λ),

Q(T) = {s | s ∈ D, T |= ϕ(s)}.
Now we want to know how tree automata can be used to compute such queries.

2.1 Nondeterministic Unranked Query Automata

One way to define query automata for unranked trees is to add a selecting set to nondeterministic tree
automata. A nondeterministic unranked query automaton over alphabet Σ is defined as

A = (Q,F, δ, S),

where (Q,F, δ) is a nondeterministic unranked tree automata, and S ⊆ Q × Σ is a selecting set.
Such an automata defines two unary queries Q∃

A and Q∀
A. Given an unranked tree T = (D,λ), the

semantics of these queries on T are defined as follows:

• For every s ∈ D, s ∈ Q∃
A(T) ⇐⇒ there exists an accepting run ρA : D → Q on T such that

(ρA(s), λ(s)) ∈ S.

2

• For every s ∈ D, s ∈ Q∀
A(T) ⇐⇒ for every accepting run ρA : D → Q on T , (ρA(s), λ(s)) ∈ S.

Theorem 2 For a unary query Q on unranked trees, the following are equivalent:

1. Q is definable in MSO.

2. Q is of the form Q∃
A for some query automaton A.

3. Q is of the form Q∀
A for some query automaton A.

2.2 Deterministic Query Automata

To define deterministic ranked query automata, we extend the definition of two-way deterministic tree
automata over ranked trees by adding a selecting set.

2.2.1 Two-Way Deterministic Tree Automata over Binary Trees

A two-way deterministic tree automaton (2DTA) over the alphabet Σ is defined as

A = (Q, q0, F, δ↓, δ↑, δroot, δleaf),

where Q is a finite set of states, F ⊆ Q is the set of final states, and q0 ∈ Q is the initial state. There
are two disjoint subsets D and U of Q × Σ such that:

• δ↓ : D → Q × Q is the transition function for down transitions.

• δ↑ : U × U → Q is the transition function for up transitions.

• δroot : Q × Σ → Q is the transition function for the root.

• δleaf : Q × Σ → Q is the transition function for the leaves.

Note that U and D are disjoint to ensure that for a given node of the tree at a particular state, there
is only one transition. To define the behavior of this automaton, we need to define some notations. A
cut in a tree T = (D,λ) is a subset C of D such that C contains exactly one node of each path from
the root to a leaf. A configuration of automaton A on T is a mapping c : C → Q.

The automaton A operating on T makes a transition between configurations c1 : C1 → Q and
c2 : C2 → Q, written as c1 → c2, if it makes one of the following transitions:

1. Down transition: if there is a node s ∈ D such that

• s is in the cut C1,

• C2 = C1 − {s} ∪ {s0, s1},
• (c2(s0), c2(s1)) = δ↓(c1(s), λ(s)), and c2 is identical to c1 on C1 ∩ C2.

2. Up transition: if there is a node s ∈ D such that

• both children of s are in the cut C1 (s0, s1 ∈ C1),

• C2 = C1 − {s0, s1} ∪ {s},
• c2(s) = δ↑((q1, λ(s0)), (q2, λ(s1))), where q1 = c1(s0) and q2 = c1(s1), and c2 is identical to

c1 on C1 ∩ C2.

3. Root transition: if

3

• C1 = {root}; cut only contains the root of T ,

• C2 = C1,

• C2(root) = δroot(c1(root), λ(root)), and c2 is identical to c1 on C1 − {root}.
4. Leaf transition: if there is a leaf node s ∈ D such that

• s is in the cut C1,

• C2 = C1,

• c2(s) = δleaf (c1(s), λ(s)), and c2 is identical to c1 on C1 − {s}.

The initial configuration is c : {root} → q0. A configuration is accepting if it is of the form c : {root} →
q such that q ∈ F . A run is a sequence of configurations c1, . . . , cm, m ≥ 1, such that c1 is the initial
configuration, and ci → ci+1 for i ∈ [1,m − 1]. A run is accepting if cm is accepting and there is no
configuration c such that cm → c.

There can be more than one run for a given tree. However, for every node, the sequence of states
in which the node is visited is the same in all these runs. This is because a node labeled with a certain
state cannot make an up transition in one run and a down transition in another run. Therefore, the
behavior of the automaton is considered as deterministic, and as of now, we can use the term the run
of A on a tree.

A 2DTA A accepts a tree T if the run of A on T is accepting. For A to accept a tree T it should
start at the root and return there. Note that A can run for ever on a tree T . In this case the run is
not finite and therefore not accepting. It is however decidable to determine whether a 2DTA halts on
an input tree. We only consider automata that always terminate on every input tree.

2.2.2 Query Automata

A deterministic ranked query automaton is defined as

A = (Q, q0, F, δ↓, δ↑, δroot, δleaf , S ⊆ Q × Σ),

where (Q, q0, F, δ↓, δ↑, δroot, δleaf) is a two-way deterministic ranked tree automata, and S is a selecting
set.

Given a tree T = (D,λ), we say A selects a node s ∈ D if the run c1, . . . , cm of A on T is accepting,
and there is a configuration ci : C → Q, i ∈ [1,m], such that s ∈ C and (c(s), λ(s)) ∈ S. The query
computed by A is defined as

A(T) = {s | s ∈ D, A selects s}.

Theorem 3 A query is computable by a ranked query automaton if and only if it is definable in MSO.

To define deterministic query automaton for unranked trees, we need to add stay transitions in
order to obtain the equivalence with MSO. You can refer to [1] for more details.

Given an MSO query ϕ, the size of the query automaton that computes ϕ is not elementary. In
the next lecture, we will talk about logics equivalent to MSO in expressive power, for which query
computation can be done more efficiently.

References

[1] Frank Neven and Thomas Schwentick, Query automata over finite trees, Theor. Comput. Sci.,
275(1-2): 633–674, 2002.

4

