
Foundations of XML (CSC2538)

Lecture 3

Prof. Leonid Libkin
notes by Anthony Widjaja To

November 4, 2005

1 Introduction

In the last lecture, we study the notion of binary trees and automata over them. In this lecture,
we study the notion of (labeled) unranked trees, which is a realistic model of XML documents. We
then define a class of automata over unranked trees, which define precisely all regular unranked tree
languages. It turns out that this more general notion of trees can be studied by restricting ourselves
to binary trees. That is, given an unranked tree, it is possible to construct a binary tree in such a
way that (ir)regularity, FO-(in)expressibility, and MSO-(in)expressibility are preserved. From this, we
immediately get a result that connects regularity and MSO-definability for unranked tree languages.
Following this discussion, we move to a different topic: formal model of XML schema languages.
Extended context-free grammars serve as our formal model for DTDs. We also note a particular
weakness of DTDs, that it is impossible to associate two different contexts for one tag label. So, we
introduce the definition of extended DTDs, which captures schema languages that are more expressive
than DTDs such as XSD. It turns out that extended DTDs capture precisely MSO. In the sequel,
unless stated otherwise, “trees” always mean “(labeled) unranked trees”.

2 Formal model of XML documents

In previous lectures, we saw that XML documents can be viewed as trees each of whose nodes may
have an arbitrarily large, but finite, number of children. These types of trees are what we call labeled
unranked trees.

2.1 Unranked Trees

An unranked tree domain is a finite prefix-closed subset of N
∗ (i.e. that s ∈ D implies that any prefix

of s belongs to D) such that whenever s.i ∈ D, we have s.j ∈ D for all j ≤ i. We now define three
ordering relations over D:

1. Child relation ≺∗
ch. This relation is the transitive closure of ≺ch which is defined as: s ≺ch s′ iff

s′ = s.i for some i ∈ N. When s ≺∗
ch s′, we say that s is an ancestor of s′ (and s′ is a descendant

of s).

2. Next sibling relation ≺∗
sib. This relation is the transitive closure of ≺sib which is defined as:

s ≺sib s′ iff s = s0.i and s′ = s0.(i + 1) where s0 ∈ D and i ∈ N. When s ≺∗
sib s′, we say that s

is older than s′ (and s′ younger than s).

3. First-child relation: s ≺fc s.0.

Next we fix a finite non-empty alphabet Σ. We then partition D into several disjoint (not neces-
sarily non-empty) sets {Pa}a∈Σ. The intended interpretation for s ∈ Pa is that the label for s is a.
Intuitively, a label corresponds to an XML tag.

Definition 2.1 An unranked tree is a structure of the form

〈D,≺∗
ch,≺∗

sib, (Pa)a∈Σ〉.

A (unranked) tree language over Σ is a set of trees over Σ. For our purposes, we always assume that,
for every tree language L, there exists an element a ∈ Σ that is used to label the root of every tree in
L. For a tree T , we will also define a labeling function λ : D → Σ with respect to the labeling defined
by {Pa}a∈Σ.

1

ε

0

00 01

010

1

10 11

110

12

120

db

book

title author

name

book

title author

name

author

name

Figure 1: An unranked tree skeleton and its labeled version

See figure 1 for an example. When we talk about trees with respect to MSO, we will replace ≺∗
ch by

≺ch and ≺∗
sib by ≺sib in our structures and vocabularies, as the former is MSO-definable using the

latter.
A few remarks are in order. Notice that we did not include ≺fc as it is definable using ≺∗

ch and ≺∗
sib

in any reasonable logic. Observe also that this model is an approximation of real XML documents
as it does not incorporate attributes. [This is a reasonable design choice because, firstly, most XML
documents do not use this feature, and, secondly, it is wise to minimize the use of attributes in an
XML document as they should only be used to represent extra information.]

2.2 Unranked Tree Automata

A nondeterministic unranked tree automaton (NUTA) A is a triplet (Q,Q0, δ) where Q0 ⊆ Q, and
δ : Q × Σ → 2Q∗

such that the output of δ is always a regular language represented by a regular
expression over Q. In this definition, Q is a set of states and Q0 the set of all initial states. A run
of A on a tree T is a function ρ : D → Q such that, for every s ∈ D, if λ(s) = a and s has children
s.0, . . . , s.(m − 1), then

ρ(s.0) · · · ρ(s.(m − 1)) ∈ δ(ρ(s), a).

Notice that ε ∈ δ(ρ(s), λ(s)) for every leaf s of T , which is the reason why we need not include “final
states” in A. [One may easily switch between the view of NUTA as bottom-up and top-down parallel
automata by identifying Q0 appropriately (either as initial states, or final states).] A run is said to
be accepting if ρ(ε) ∈ Q0. A Σ-tree T is accepted by A is there exists an accepting run of A on T .
The set of trees accepted by A is denoted by L(A). Finally, a tree language L (i.e. a set of unranked
trees) over Σ is regular if there exists a NUTA A over Σ such that L = L(A). The following theorem
is folklore:

Theorem 2.1 An unranked tree language is regular iff it is definable in MSO

2.3 Translation from unranked trees to binary trees

We first state the main theorem.

Theorem 2.2 (Rabin 1971 & 1972) There exists a recursive function rΣ from the set of all un-
ranked trees over Σ to the set of all binary trees over Σ such that for any unranked tree language L
over Σ:

1. L is regular iff r(L) is regular,

2. L is MSO-definable iff r(L) is MSO-definable, and

3. L is FO-definable iff r(L) is FO-definable.

Fact 2.3 r in the above theorem is MSO-definable.

2

a

b

d

c

e

a

b

d c

e ⊥

⊥

Figure 2: Translating unranked trees to binary trees

So, theorem 2.1 is a corollary of the above theorem and the famous Doner-Thatcher-Wright theorem,
which was discussed in the previous lecture. We now sketch how r is defined. We inductively define
a map R : N

∗ → {0, 1}∗ as follows:

1. R(ε) def= ε and R(0) def= 0.

2. If R(s) = s′ where s = s0.i and i ∈ N, then R(s.0) def= s′.0 and R(s0.(i + 1)) def= s′.1.

When D is a tree domain, we define

R(D) def= {R(s) : s ∈ D}.
Furthermore, we define

r(D) def= R(D) ∪ {R(s).i : s ∈ D, R(s).(i − 1) ∈ R(D), but R(s).i /∈ R(D)}.
The label of the nodes in R(D) follow those of D, whereas the new extra nodes are labeled by the
symbol ⊥ /∈ Σ. See figure 2 for an example.

3 Formal Model of DTDs

There are two kinds of XML documents: those that are “valid”, and those that are “invalid”. In
order to distinguish them, we have to impose an XML schema on these documents. XML Document
Type Definition (DTDs) is one possible (and the most commonly used) such schema language. In
this section, we focus on a formal model of DTDs. As we do not incorporate attributes in our formal
model of XML documents, we shall restrict ourselves only to DTDs without attribute declarations.

Definition 3.1 Suppose Σ is a fixed finite alphabet (of “element types”). A DTD over Σ is d = (r, P)
where r is a distinguished element of Σ, which we call root, and P : Σ → regex(Σ) where regex(Σ) is
the set of all regular expressions over Σ.

Notice the similarity between the definition of context-free grammars (CFGs) and that of DTDs.
The only differences are that the body of each production rule in P can contain regular expressions
(like a∗) and that there is exactly one production rule in P for every element of Σ, whereas both
of these constraints are not imposed for CFGs. In this sense, we can think of DTDs as extended
context-free grammars (ECFGs).

Example 3.1 Suppose we have the following DTD:

<!DOCTYPE db [
<!ELEMENT db (book)*>
<!ELEMENT book (title,author+)>
<!ELEMENT author (name)>
<!ELEMENT name (#PCDATA)>

]>

3

This can be modelled as follows. Set Σ def= {db,book, title, author,name}, and d = (db, P), where P is
defined as follows:

db 7→ book∗

book 7→ title.author+

author 7→ name
name 7→ ε

Notice that we map name to ε. This is because we are interested only in the structure of XML
documents. For an example of a tree that satisfies this DTD (we will define this notion shortly), see
figure 1. a

Definition 3.2 Suppose that T is a tree over Σ and d = (r, P) is a DTD over Σ. Then, we say that
T satisfies d (or T is valid with respect to d), written T |= d, if:

1. The root of T is labeled r.

2. For each node s in T labeled a with children labeled a0, . . . , am−1, we have a0.am−1 ∈ P (a).

Furthermore, we define SAT (d) = {T : T |= d}, i.e., the set of trees that satisfy d (or more intuitively,
the set of trees that are “generated” by d).

It is not hard to see that there is a NUTA that recognizes exactly SAT (d) for any given d. However,
in general the set

{SAT (d) : d is a DTD over Σ}
does not capture all the regular tree languages. This is because this set is in general not closed under
union and complementation (exercise!). Fortunately, we can find a natural extension of the notion of
DTDs in order to capture all the regular tree languages.

Definition 3.3 An extended DTD over Σ is a triplet (Σ′, µ, d′) where Σ′ is any finite alphabet with
Σ ⊆ Σ′, µ : Σ′ → Σ is a “specialization” function, and d′ is a DTD over Σ′.

We say that a tree T (over Σ) satisfies d, denoted T |= d, if there exists a tree T ′ over Σ′ that
satisfies d′ such that µ(T ′) = T , i.e., replacing each label a in T ′ by g(a) gives us T . The set of
Σ-labeled trees that satisfy d is denoted SAT (d).

Theorem 3.2 (Thatcher 1968) The set

{SAT (d) : d is an extended DTD over Σ}

is precisely the set of all regular tree languages over Σ.

This theorem was reproved by Vianu in 1999.

Proof Idea We will sketch how to prove one direction: L is a regular tree language over Σ only if
there exists an extended DTD d that satisfies precisely the unranked trees in L. So, assume that L is
a regular tree language with a distinguished root label a ∈ Σ. Then, there must exists an automaton
A = (Q,Q0, δ) for L. Without loss of generality, one may assume that Q0 = {q0} (exercise!). Let us
now define d = (Σ′, µ, d′):

1. Σ′ def= Σ × Q,

2. for each b ∈ Σ and q ∈ Q, µ((a, q)) = a,

4

3. set the root element of d′ to be a, and

4. for each b ∈ Σ and q ∈ Q, set d′(a, q) = e where e is the output of δ(q, a) in which each occurrence
of q′ ∈ Q is replaced by the disjunction of (q′, b) where b ranges over all Σ.

We leave it as an easy exercise for the reader to check that this construction works. �

5

