
CSC2428 – Foundations of XML

Lecture 6

notes taken by Pablo Barceló

1 MSO over Ordered Trees and Lµ

We consider the modal µ-calculus Lµ. This is interpreted over finite transition systems K =
〈S, (Er)r∈R, (Pa)a∈Σ〉, where R is finite list of binary relation symbols and each Er is interpreted as a
subset of S×S; each Pa is a subset of S. We shall view a Σ-tree T = 〈D,≺ch,≺sb,≺∗

ch,≺∗
sb, (Pa)a∈Σ〉

as a transition system with two binary relations ≺ch and ≺sb (their transitive closures ≺∗
ch and ≺∗

sb

are expressible in Lµ).
The formulae of Lµ are given by

ϕ := a (a ∈ Σ) | X | ϕ ∨ ϕ | ¬ϕ | 3(Er)ϕ | µX ϕ(X),

where in µX ϕ(X), the variable X must occur positively in ϕ.
Let K be a transition system. For a Lµ formula ϕ(X,Y1, . . . , Ym) and a valuation v that assigns

a subset Vi of S to each Yi, i ∈ [1,m], we define an operator F v
ϕ : 2S → 2S as

F v
ϕ(V) = { s | (K, s) |= ϕ(V, V1, . . . , Vm)} .

It can be shown that the operator F v
ϕ is monotone, that is, for each X,Y ⊆ S, F v

ϕ(X) ⊆ F v
ϕ(Y)

whenever X ⊆ Y (the proof uses the fact that X only occurs positively on ϕ). Therefore, for the
sequence

X0 = ∅, Xj+1 = F v
ϕ(Xj)

it is the case that for each j ≥ 0, Xj ⊆ Xj+1, and since S is finite, there is ` ≥ 0 for which
X` = X`+1. Furthermore, the fact that F v

ϕ is monotone implies X` = Xm for each m > `. We
denote such X` by lfp(F v

ϕ) (intuitively, lfp(F v
ϕ) is the least fixpoint of the operator F v

ϕ).
Given K, s ∈ S, and a valuation v for free variables (such that each v(X) is a subset of S), we

define the semantics (omitting the rules for propositional letters and Boolean connectives) by

• (K, v, s) |= a iff s ∈ Pa.

• (K, v, s) |= X iff s ∈ v(X).

• (K, v, s) |= ¬ϕ iff (K, v, s) 6|= ϕ.

• (K, v, s) |= ϕ ∨ ϕ iff (K, v, s) |= ϕ or (K, v, s) |= ϕ′.

• (K, v, s) |= 3(Er)ϕ iff (K, v, s′) |= ϕ for some s′ with (s, s′) ∈ Er.

• (K, v, s) |= µX ϕ(X) iff s ∈ lfp(F v
ϕ).

When we refer to Lµ being equivalent to a logic on trees, we mean Lµ formulae without free variables
(which are then evaluated in an element of K). As usual, we define 2(Er)ϕ as ¬3(Er)¬ϕ. If we list

1

explicitly binary relations Ei’s, we write Lµ[E1, . . . , Ek] to refer Lµ formulae that only use those
relations. For example, Lµ[≺ch,≺sb] refers to Lµ formulae that use both ≺ch and ≺sb relations.

The full µ-calculus Lfull
µ (cf. [7]) adds backward modalities 3(E−)ϕ with the semantics (K, s) |=

3(E−)ϕ iff (K, s′) |= ϕ for some s′ such that (s′, s) ∈ E (and 2(E−)ϕ is again ¬3(E−)¬ϕ). Then,

Theorem 1 [1] The equivalence

MSO[≺ch,≺sb] = Lfull
µ [≺ch,≺sb]

hold for unary queries over unranked trees. Furthermore, all translations between these formalisms
are effective.

From the proof it is possible to obtain the following corollary. We assume that relation ≺fc is
interpreted in a tree with domain D as follows: s ≺fc s′ iff s.s′ ∈ D and s′ = s · 0, that is, s′ is the
first child of s in the sibling order.

Corollary 1 [1, 6] The following equivalences hold for Boolean queries over unranked trees,

MSO[≺ch,≺sb] = Lfull
µ [≺ch,≺sb] = Lµ[≺fc,≺ch,≺sb],

and translations between these formalisms are effective.

We do not know much about model checking of Lµ and Lfull
µ over trees at this point, except for

the following which is a corollary of [4]:

Proposition 1 The model-checking of a Lµ[≺fc,≺sb] formula over trees can be done in time
O(||ϕ||2 · ||T ||).

Binary trees A binary tree is a tree where each element s has exactly two children s · 0 and s · 1,
unless s is a leaf. Therefore, binary trees can be represented as structures

T = (D, ≺, <0, <1, (Pa)a∈Σ) ,

where ≺ is the usual prefix relation on strings, s <0 s′ iff s′ = s · 0, and s <1 s′ iff s′ = s · 1. Then,

Theorem 2 [6] The following holds for Boolean queries over binary trees,

Lµ[<0, <1] = FO[≺, <0, <1] .

2 FO over Ordered Trees and Conditional XPath

Core XPath is defined by the following grammar:

axes := self | child | desc | nextsib | sib
node tests α := a (a ∈ Σ) | ∗ | ¬α | α ∨ α | [β]

location paths β := axes | axes− | ?α | β ∨ β | β ◦ β

Semantics for node tests is given in nodes of the tree as follows (without easy Boolean combi-
nations):

2

• (T, s) |= a iff s is labeled a in T .

• (T, s) |= ∗ for any s.

• (T, s) |= [β] iff there is s′ such that (T, s, s′) |= β

Semantics for location paths is given by pairs. For instance, (T, s, s′) |= child− iff s′ ≺ch s,
(T, s, s′) |= sib iff s ≺∗

sb s′, and (T, s, s′) |= self iff s = s′. Furthermore,

• (T, s, s′) |=?α iff (T, s) |= α and s = s′.

• (T, s, s′) |= β ∨ β′ iff (T, s, s′) |= β or (T, s, s′) |= β′

• (T, s, s′) |= β ◦ β′ iff there is s′′ such that (T, s, s′′) |= β and (T, s′′, s′) |= β′

A node test α defines the query Qα such that Qα(T) = {s | (T, s) |= α}, while a location path
β defines the query Qβ such that Qβ(T) = {(s, s′) | (T, s, s′) |= β}.

We say that a language L is closed under path complementation, if for every location path β in
L there is a location path β′ in L such that for every tree T ,

Qβ′(T) = {(s, s′) | (s, s′) ∈ T, (s, s′) 6∈ Qβ(T)} .

Theorem 3 [5] The following hold:

1. Core XPath is not closed under path complementation.

2. Any extension of Core XPath that is closed under path complementation has exactly the expres-
sive power of unary FO[≺∗

ch,≺∗
sb] on node tests, and exactly the expressive power of binary

FO[≺∗
ch,≺∗

sb] on location paths.

Of course, adding formula ¬β to Core XPath would make the language closed under path
complementation. However, Marx in [5] suggests that this is not a very intuitive operator. A more
intuitive one in his oppinion are conditional axis operators as follows.

Conditional XPath is the extension of Core XPath with the location path formula (axis/?α)+,
such that:

• (T, s, s′) |= (axis/?α)+ iff there is a path s0, s1, . . . , sk such that s = s0, s′ = sk, (T, si, si+1) |=
axis for each i < k, and (T, s′) |= α.

This is enough, as

Theorem 4 [5] Conditional XPath is closed under path complementation.

From Theorem 3 we obtain that the node tests of Conditional XPath have precisely the power
of unary FO[≺∗

ch,≺∗
sb], and the location paths of Conditional XPath have precisely the power of

binary FO[≺∗
ch,≺∗

sb].

3

3 FO over Ordered Trees and CTL?
past

In this section we look at the full vocabulary containing both ≺∗
ch and ≺∗

sb. We show that these
are captured by CTL? if we add the ability to reason about the past.

We define CTL? in a way that is convenient when we have several binary relations, say
E1, . . . , Em. Then CTL?[E1, . . . , Em] has state formulae α, and Ei-path formulae βi, i ≤ m, defined
by the grammars below:

α := a (a ∈ Σ) | ¬α | α ∨ α | Eβi, i ≤ m

βi := α | ¬βi | βi ∨ βi | XEiβi | βi UEi βi

Of course for the case of just one binary relation this is the standard definition of CTL?. A state
formula is evaluated on a state of the transition system, while an Ei-path formula is evaluated on
an Ei-path of the transition system.

An Ei-path π is a sequence s1s2 . . . of nodes such that (sj , sj+1) ∈ Ei for every sj, sj+1 in π,
and such that if the set {s | (sj , s) ∈ Ei} is nonempty, then one of the elements of this set is sj+1.
(Note that in trees, both ≺ch-paths and ≺sb-paths will be finite, although typically in transition
systems one considers infinite paths. This is not a problem, however, since we can make all paths
infinite by adding a child labeled ⊥ 6∈ Σ to each leaf, and a ≺ch loop for that element, and likewise
for the youngest sibling on each sibling path.)

Given an Ei-path π = s1s2 . . ., we let πk be the path starting at sk. Then (we only list the
essential rules):

• (K, s) |= Eβi iff there exists an Ei-path π = s . . . such that (K, π) |= βi;

• (K, π) |= α iff (K, s1) |= α;

• (K, π) |= XEiβi iff π = s1s2 . . . is an Ei-path and and (K, π2) |= βi; and

• (K, π) |= βi UEi β′
i iff π is an Ei-path and there is a number k such that (K, πk) |= β′

i and
(K, πl) |= βi for all l < k.

To capture FO over ≺∗
ch and ≺∗

sb, we shall use an extension CTL?
past of CTL? that allows

reasoning about the past. Normally such a logic is defined by allowing in addition to X and U
their “inverses” usually called Y (yesterday) and S (since) [3]. We shall use the notation X≺−

ch
and

X≺−
sb

instead of Y, referring to them as next with respect to inverses of ≺−
ch and ≺−

sb of ≺ch and
≺sb. In general, the semantics of path formulae of CTL?

past refers to a path and a position in a
path; that is, one defines the notion (K, π, `) |= β. A path therefore includes not only the future
but also the past, and we require that paths include the entire past. That is, all ≺ch-paths start in
the root, and all ≺sb-paths start in the oldest child.

The semantics of CTL?
past[E1, . . . , Er] is as follows [3] (again, listing only the essential rules):

• (K, s) |= Eβi if there is an Ei-path π = s1s2 . . . and ` ≥ 1 such that s = s` and (K, π, `) |= βi;

• (K, π, `) |= XE−
i
βi iff π is an Ei-path, ` > 1 and (K, π, ` − 1) |= βi;

• (K, π, `) |= βi SEi β′
i iff π is an Ei-path and there exists k < ` such that (K, π, k) |= β′

i and
(K, π, j) |= βi for all k < j ≤ `.

One can also define a version of CTL?
past with one “until” and “since” operator and several

“next” and “previous” operators. We shall denote this logic by CTL?
past[≺ch ∪ ≺sb]. The semantics

naturally combines the semantics of past and the the semantics of CTL?[
⋃

i Ei] (that is, we have

4

≺ch ∪ ≺sb paths). For example, (T, π, `) |= X≺ch
ϕ if (T, π, ` + 1) |= ϕ and from position ` to

position ` + 1 one goes by the child relation.
It is known that over a Kripke structure (or a transition system with a single binary relation),

CTL?
past = CTL? if each state has a unique path that leads from an initial state to it [3]. But

unranked trees are modeled as transition systems with two binary relations, and over the union of
these relations, there may be more than one history. In fact one can easily show that over unranked
trees, CTL? (CTL?

past (for example, a formula saying that the root’s oldest child is labeled b and
one other child is labeled a is not expressible in CTL? as can be shown by a simple game argument).

Theorem 5 [1] The equivalences

FO[≺ch,≺sb] = CTL?
past[≺ch,≺sb] = CTL?

past[≺ch ∪ ≺sb] = CTL?[≺fc,≺ch,≺sb]

hold for unary queries over unranked trees. Furthermore, all translations between these formalisms
are effective.

By inspecting the proof of the previous theorem, we can get the following characterization of
Boolean FO over ordered trees.

Theorem 6 [1] For Boolean queries,

FO[≺∗
ch,≺∗

sb] = CTL?
past[≺ch,≺sb] = CTL?

past[≺ch ∪ ≺sb] = CTL?[≺fc ∪ ≺sb]

hold over unranked trees. Moreover, every formula of CTL?
past[≺ch,≺sb] is equivalent to a formula

that does not use past operators S≺ch
and X≺−

ch
but uses X≺−

sb
and S≺sb

, and the translations between
these logics are effective.

By combining results in the previous section with the ones presented here, we can see a very
interesting fact: over unranked trees languages originally designed for querying XML data (XPath)
are essentially the same than languages designed in a totally different context, that of verification
of formal systems (CTL?).

Regarding model checking of these logics we know the following. First, the model checking
of either CTL?

past[≺ch,≺sb] or CTL?[≺fc,≺ch,≺sb] is polynomial in both the size of the tree and
size of the formula. However, exact bounds still have to be determined. The model checking
of CTL?

past[≺ch ∪ ≺sb] is O(2||ϕ|| · ||T ||), which matches the complexity of CTL? over arbitrary
transition systems.

Binary trees From [2] we know the following,

Theorem 7 [2] For Boolean queries over binary trees,

CTL?[<0 ∪ <1] = FO[≺, <0, <1] .

References

[1] P. Barceló, and L. Libkin. Temporal Logics over Unranked Trees. In LICS’05, pages 31–40.

[2] T. Hafer, W. Thomas. Computation tree logic CTL* and path quantifiers in the monadic
theory of the binary tree. In ICALP’87, 269–279, 1987.

5

[3] O. Kupferman, and A. Pnueli. Once and for all. In LICS’95, pages 25–35.

[4] R. Mateescu. Local model-checking of modal mu-calculus on acyclic labeled transition systems.
In TACAS 2002, pages 281–295.

[5] M. Marx. Conditional XPath. TODS, to appear.

[6] D. Niwinski. Fixed points vs. infinite generation. In LICS 1988, pages 402–409.

[7] M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP 1998, pages
628–641.

6

