
Learning semantics-enriched representation by (a) self-discovery, 
(b) self-classification, and (c) self-restoration of anatomical patterns
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Result II: Semantic Genesis outperforms existing pre-trained models for 3D medical image analysis

Task                                           Method Modality Metric Scratch MedicalNet I3D Inpainting Shuffling Rubik's 
Cube

Self-
restoration

Self-
classification Semantic Genesis

Lung nodule false positive reduction CT AUC 94.25±5.07 95.80±0.51 98.26±0.27 95.12±1.74 94.90±1.18 96.24±1.27 98.07±0.59 97.49±0.45 98.46±0.30
Lung nodule segmentation CT IoU 74.05±1.97 75.68±0.32 71.58±0.55 76.02±0.55 75.55±0.82 72.87±0.16 77.41±0.40 76.93±0.87 77.33±0.52
Liver segmentation CT IoU 79.76±5.42 85.52±0.58 70.65±4.26 81.36±4.83 82.82±2.35 75.59±0.20 85.10±2.15 84.14±1.78 86.53±1.30
Brain tumor segmentation MRI IoU 59.87±4.04 66.09±1.35 67.83±0.75 61.38±3.84 59.05±2.83 62.75±1.93 67.96±1.29 64.02±0.98 68.82±0.38

The best methods are bolded while the others are highlighted in red if they achieve equivalent performance compared with the best one (i.e., p > 0.05).
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Deep latent space

Motivation: Medical imaging follows protocols for defined clinical purposes, generating images of similar anatomy across patients and
yielding recurring anatomical patterns across images. These recurring patterns are naturally associated with rich semantic knowledge about
human body, offering unique potential to foster deep semantic representation learning and leading to semantically more powerful models.
Question: How to exploit the semantics imbedded in recurring anatomical patterns to enrich self-supervised representation learning?

Result I: Learning semantics, as an add-on, enriches existing self-supervised learning approaches
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dLearning semantics-enriched representations
from anatomical patterns

Learning different sets of visual representations 
from multiple image transformations

A collection of pre-trained 3D deep models
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Discovering similar anatomical patterns across different patients automatically
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