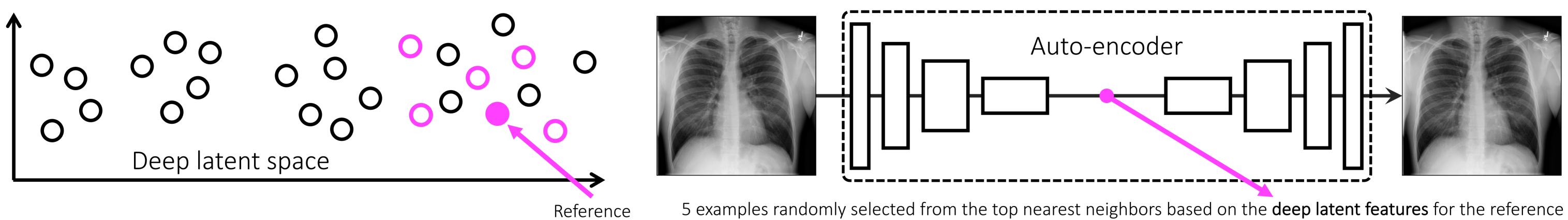
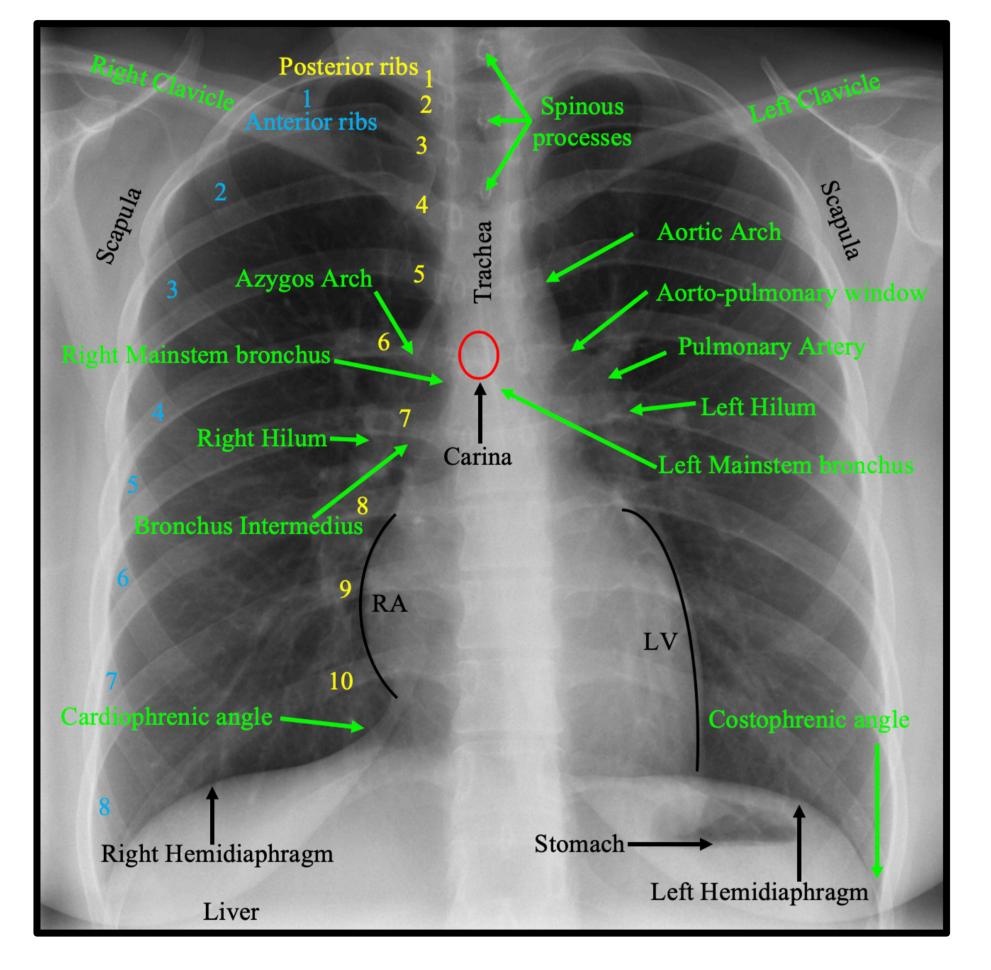
Learning Semantics-enriched Representation via Self-discovery, Self-classification, and Self-restoration

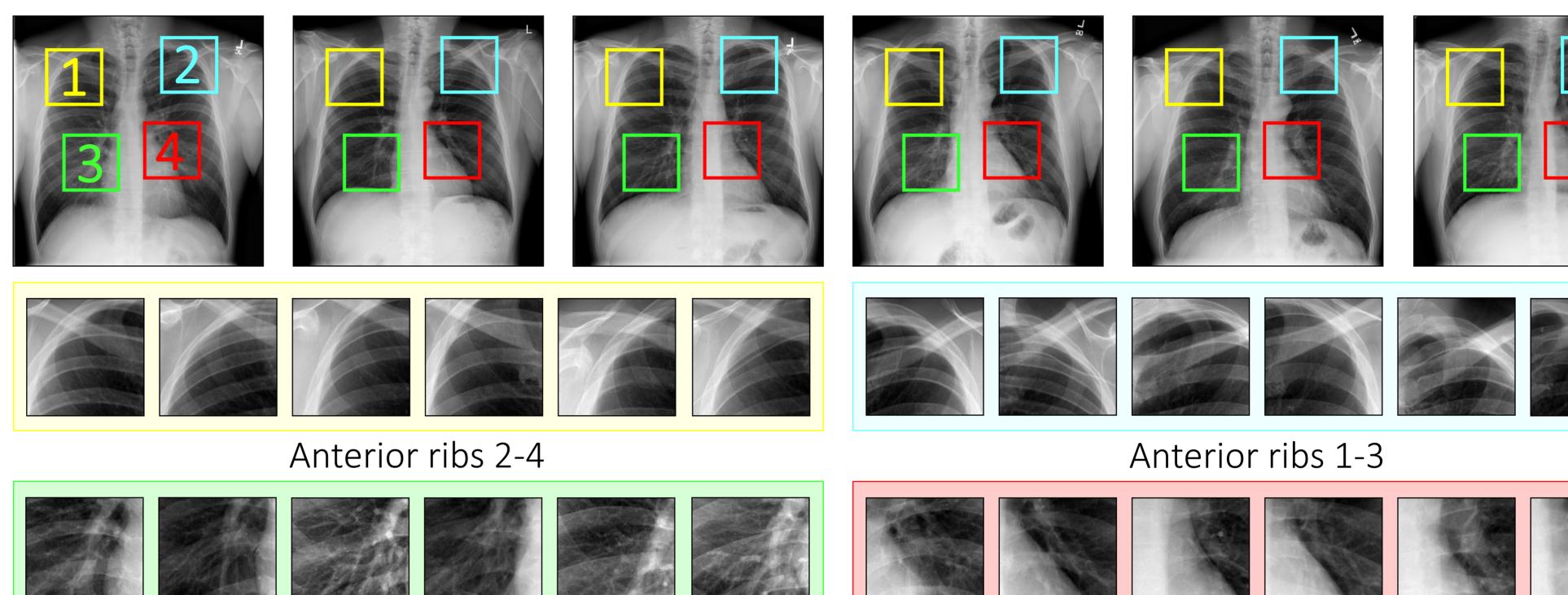
Fatemeh Haghighi¹, Mohammad Reza Hosseinzadeh Taher¹, Zongwei Zhou¹, Michael B. Gotway², and Jianming Liang¹

> ²Mayo Clinic ¹Arizona State University Project page: github.com/JLiangLab/SemanticGenesis

Motivation: Medical imaging follows protocols for defined clinical purposes, generating images of similar anatomy across patients and yielding recurring anatomical patterns across images. These recurring patterns are naturally associated with rich semantic knowledge about human body, offering unique potential to foster deep semantic representation learning and leading to semantically more powerful models. **Question:** How to exploit the semantics imbedded in recurring anatomical patterns to enrich self-supervised representation learning?





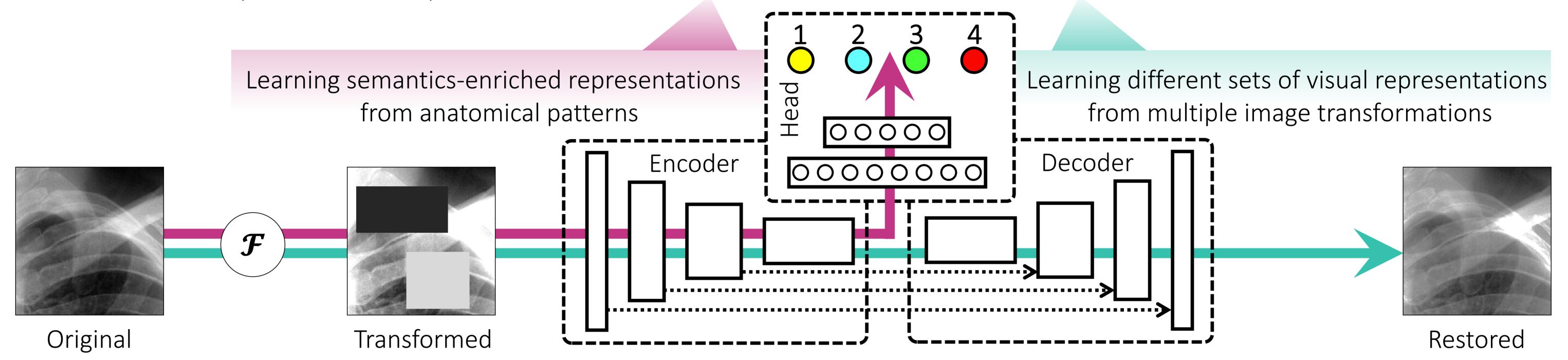


Right pulmonary artery

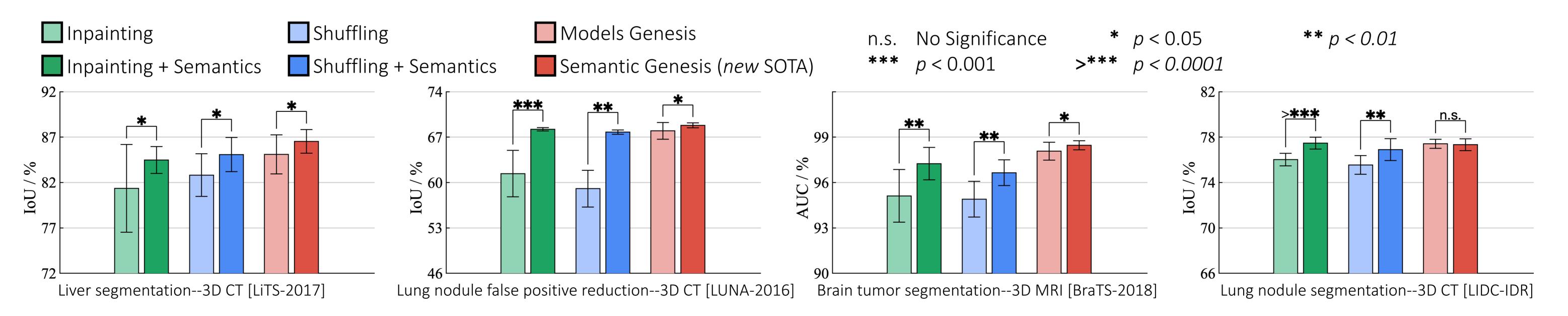
Left ventricular

Discovering similar anatomical patterns across different patients automatically

Learning semantics-enriched representation by (a) self-discovery, (b) self-classification, and (c) self-restoration of anatomical patterns



Result I: Learning semantics, as an add-on, enriches existing self-supervised learning approaches



Result II: Semantic Genesis outperforms existing pre-trained models for 3D medical image analysis

Task Method	Modality	Metric	Scratch	MedicalNet	I3D	Inpainting	Shuffling	Rubik's Cube	Self- restoration	Self- classification	Semantic Genesis
Lung nodule false positive reduction	СТ	AUC	94.25 ± 5.07	95.80±0.51	98.26±0.27	95.12±1.74	94.90±1.18	96.24±1.27	98.07±0.59	97.49 ± 0.45	98.46±0.30
Lung nodule segmentation	СТ	IoU	74.05±1.97	75.68±0.32	71.58 ± 0.55	76.02±0.55	75.55 ± 0.82	72.87±0.16	77.41±0.40	76.93±0.87	77.33±0.52
Liver segmentation	CT	loU	79.76±5.42	85.52±0.58	70.65 ± 4.26	81.36±4.83	82.82 ± 2.35	75.59±0.20	85.10 ± 2.15	84.14 ± 1.78	86.53±1.30
Brain tumor segmentation	MRI	loU	59.87±4.04	66.09 ± 1.35	67.83±0.75	61.38±3.84	59.05 ± 2.83	62.75±1.93	67.96±1.29	64.02±0.98	68.82±0.38

The best methods are **bolded** while the others are highlighted in red if they achieve equivalent performance compared with the best one (i.e., p > 0.05).

This research has been supported partially by ASU and Mayo Clinic through a Seed Grant and an Innovation Grant, and partially by the NIH under Award Number R01HL128785.