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Abstract. Transfer learning from natural image to medical image has
established as one of the most practical paradigms in deep learning for
medical image analysis. However, to fit this paradigm, 3D imaging tasks
in the most prominent imaging modalities (e.g., CT and MRI) have to
be reformulated and solved in 2D, losing rich 3D anatomical informa-
tion and inevitably compromising the performance. To overcome this
limitation, we have built a set of models, called Generic Autodidactic
Models, nicknamed Models Genesis, because they are created ex ni-
hilo (with no manual labeling), self-taught (learned by self-supervision),
and generic (served as source models for generating application-specific
target models). Our extensive experiments demonstrate that our Mod-
els Genesis significantly outperform learning from scratch in all five
target 3D applications covering both segmentation and classification.
More importantly, learning a model from scratch simply in 3D may
not necessarily yield performance better than transfer learning from
ImageNet in 2D, but our Models Genesis consistently top any 2D ap-
proaches including fine-tuning the models pre-trained from ImageNet
as well as fine-tuning the 2D versions of our Models Genesis, confirm-
ing the importance of 3D anatomical information and significance of
our Models Genesis for 3D medical imaging. This performance is at-
tributed to our unified self-supervised learning framework, built on a
simple yet powerful observation: the sophisticated yet recurrent anatomy
in medical images can serve as strong supervision signals for deep mod-
els to learn common anatomical representation automatically via self-
supervision. As open science, all pre-trained Models Genesis are available
at https://github.com/MrGiovanni/ModelsGenesis.

1 Introduction

Given the marked differences between natural images and medical images, we
hypothesize that transfer learning can yield more powerful (application-specific)
target models if the source models are built directly from medical images. To test
this hypothesis, we have chosen chest imaging because the chest contains several
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Table 1: Target tasks.

Code: Object Modality Source Description
NCC Lung Nodule CT LUNA2016 Lung nodule false positive reduction
NCS Lung Nodule CT LIDC-IDRI Lung nodule segmentation
ECC Pulmonary Embolism CT PE-CAD Pulmonary embolism false positive reduction
LCS Liver CT LiTS2017 Liver segmentation
DXC Pulmonary Diseases X-ray ChestX-ray8 Eight pulmonary diseases classification
IUC CIMT RoI Ultrasound UFL MCAEL RoI, bulb, and background classification
BMS Brain Tumor MRI BraTS2013 Brain tumor segmentation

: The first letter denotes the object of interest (“N” for lung nodule, “E” for pulmonary embolism,
“L” for liver, etc); the second letter denotes the modality (“C” for CT, “X” for X-ray, “U” for
Ultrasound, etc); the last letter denotes the task (“C” for classification, “S” for segmentation).

critical organs, which are prone to a number of diseases that result in substantial
morbidity and mortality and thus are associated with significant health-care
costs. In this research, we focus on Chest CT, because of its prominent role in
diagnosing lung diseases, and our research community has accumulated several
Chest CT image databases, for instance, LIDC-IDRI1 and NLST2, containing a
large number of Chest CT images. Therefore, we seek to answer the following
question: Can we utilize the large number of available Chest CT images without
systematic annotation to train source models that can yield high-performance
target models via transfer learning?

To answer this question, we have developed a framework that trains generic,
source models for 3D imaging. We call the models trained with our framework
Generic Autodidactic Models, nicknamed Models Genesis, and refer to the model
trained using Chest CT scans as Genesis Chest CT. As ablation studies, we
have also trained a downgraded 2D version using 2D Chest CT slices, called
Genesis Chest CT 2D. To demonstrate the effectiveness of Models Genesis in
2D applications, we have trained a 2D model based on ChestX-ray83, named as
Genesis Chest X-ray.

Our extensive experiments detailed in Sec. 3 demonstrate that Models Gen-
esis, including Genesis Chest CT, Genesis Chest CT 2D, and Genesis Chest
X-ray, significantly outperform learning from scratch in all seven target tasks
(see Table 1). As revealed in Table 4, learning from scratch simply in 3D may
not necessarily yield performance better than fine-tuning state-of-the-art Ima-
geNet models, but our Genesis Chest CT consistently top any 2D approaches
including fine-tuning ImageNet models as well as fine-tuning our Genesis Chest
X-ray and Genesis Chest CT 2D, confirming the importance of 3D anatomical
information in Chest CT and significance of our self-supervised learning method
in 3D medical image analysis.

This performance is attributable to the following key observation: medical
imaging protocols typically focus on particular parts of the body for specific
clinical purposes, resulting in images of similar anatomy. The sophisticated yet
recurrent anatomy offers consistent patterns for self-supervised learning to dis-
cover common representation of a particular body part (the lungs in our case).

1 https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
2 https://biometry.nci.nih.gov/cdas/nlst/
3 https://nihcc.app.box.com/v/ChestXray-NIHCC
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Fig. 1: Our unified self-supervised learning framework consolidates four novel transfor-
mations: I) non-linear, II) local-shuffling, III) out-painting, and IV) in-painting into
a single image restoration task. Specifically, each arbitrarily-size patch X cropped at
random location from an unlabeled image can undergo at most three of above trans-
formations, resulting in a transformed patch X̃ (see I–V). Note that out-painting and
in-painting are mutually exclusive. For simplicity and clarity, we illustrate our idea on
a 2D CT slice, but our Genesis Chest CT is trained using 3D images directly. A Model
Genesis, an encoder-decoder architecture, is trained to learn a common visual repre-
sentation by restoring the original patch X (as ground truth) from the transformed one
X̃ (as input), aiming to yield high-performance target models.

The fundamental idea behind our unified self-supervised learning method as il-
lustrated in Fig. 1 is to recover anatomical patterns from images transformed
via various ways in a unified framework.

2 Models Genesis

Models Genesis learn from scratch on unlabeled images, with an objective to
yield a common visual representation that is generalizable and transferable
across diseases, organs, and modalities. In Models Genesis, an encoder-decoder,
as shown in Fig. 1, is trained using a series of self-supervised schemes. Once
trained, the encoder alone can be fine-tuned for target classification tasks; while
the encoder and decoder together can be for target segmentation tasks. For clar-
ity, we formally define a training scheme as the process that transforms patches
with any of the transformations, as illustrated in Fig. 1, and trains a model to
restore the original patches from the transformed counterparts. In the following,
we first explain each of our self-supervised learning schemes with its learning
objectives and perspectives, followed by a summary of the four unique proper-
ties of our Models Genesis. Along the way, we also contrast Models Genesis with
existing approaches to show our innovations and novelties.
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‚ Learning appearance via non-linear transformation. Absolute or rel-
ative intensity values in medical images convey important information about
the imaged structures and organs. For instance, the Hounsfield Units in CT
scans correspond to specific substances of the human body. As such, inten-
sity information can be used as a strong source of pixel-wise supervision.
To preserve relative intensity information of anatomies during image trans-
formation, we use Bézier Curve, a smooth and monotonous transformation
function, which assigns every pixel a unique value, ensuring a one-to-one
mapping. Restoring image patches distorted with non-linear transformation
focuses Models Genesis on learning organ appearance (shape and intensity
distribution). Fig. 1–I shows examples of the transformed images. Due to
limited space, we provide the implementation details in Appendix4 Sec. B.

‚ Learning texture via local pixel shuffling. Given an original patch,
local pixel shuffling consists of sampling a random window from the patch
followed by shuffling the order of contained pixels resulting in a transformed
patch. The size of the local window determines the task difficulty, but we
keep it smaller than the model’s receptive field, and also small enough to
prevent changing the global content of the image. Note that our method is
quite different from PatchShuffling [5], which is a regularization technique
to avoid over-fitting. To recover from local pixel shuffling, Models Genesis
must memorize local boundaries and texture. Examples of local-shuffling
are illustrated in Fig. 1–II. We include the underlying mathematics and
implementation details in Appendix4 Sec. C.

‚ Learning context via out-painting and in-painting. To realize the
self-supervised learning via out-painting, we generate an arbitrary number
of windows of various sizes and aspect ratios, and superimpose them on top
of each other, resulting in a single window of a complex shape. We then
assign a random value to all pixels outside the window while retaining the
original intensities for the pixels within. As for in-painting, we retain the
original intensities outside the window and replace the intensity values of the
inner pixels with a constant value. Unlike [6], where in-painting is proposed
as a proxy task by restoring only the patch central region, we restore the
entire patch in the output. Out-painting compels Models Genesis to learn
global geometry and spatial layout of organs via extrapolating, while in-
painting requires Models Genesis to appreciate local continuities of organs
via interpolating. Examples of out-painting and in-painting are shown in
Fig. 1–III and Fig. 1–IV, respectively. More visualizations can be found in
Appendix4 Secs. D—E.

Models Genesis have the following four unique properties:

1) Autodidactic—requiring no manual labeling. Models Genesis are trained
in a self-supervised manner with abundant unlabeled image datasets, demanding
zero expert annotation effort. Consequently, Models Genesis are very different
from traditional supervised transfer learning from ImageNet [7,9], which offers

4 Appendix can be found in the full version at tinyurl.com/ModelsGenesisFullVersion
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modest benefit to 3D medical imaging applications as well as that from the pre-
trained models of NiftyNet5, which is ineffective (see Sec. 3 and Appendix4 Sec. I)
due to the small datasets and specific applications (e.g., brain parcellation and
organ segmentation) these models are trained for.

2) Eclectic—learning from multiple perspectives. Our unified approach
trains Models Genesis from multiple perspectives (appearance, texture, context,
etc.), leading to more robust models across all target tasks, as evidenced in Ta-
ble 3, where our unified approach is compared with our individual schemes. This
eclectic approach, incorporating multiple tasks into a single image restoration
task, empowers Models Genesis to learn more comprehensive representation.

3) Scalable—eliminating proxy-task-specific heads. Consolidated into a
single image restoration task, our novel self-supervised schemes share the same
encoder and decoder during training. Had each task required its own decoder,
due to limited memory on GPUs, our framework would have failed to accom-
modate a large number of self-supervised tasks. By unifying all tasks as a single
image restoration task, any favorable transformation can be easily amended into
our framework, overcoming the scalability issue associated with multi-task learn-
ing [2], where the network heads are subject to the specific proxy tasks.

4) Generic—yielding diverse applications. Models Genesis learn a general-
purpose image representation that can be leveraged for a wide range of target
tasks. Specifically, Models Genesis can be utilized to initialize the encoder for
the target classification tasks and to initialize the encoder-decoder for the tar-
get segmentation tasks, while the existing self-supervised approaches are largely
focused on providing encoder models only [4]. As shown in Table 2, Models Gen-
esis can be generalized across diseases (e.g., nodule, embolism, tumor), organs
(e.g., lung, liver, brain), and modalities (e.g., CT, X-ray, MRI), a generic be-
havior that sets us apart from all previous works in the literature where the
representation is learned via a specific self-supervised task; and thus lack gener-
ality. Such specific schemes include predicting the distance and 3D coordinates
of two patches randomly sampled from a same brain [8], identifying whether
two scans belong to the same person, predicting the level of vertebral bodies [3],
and finally the systematic study by Tajbakhsh et al. [10] where individualized
self-supervised schemes are studied for a set of target tasks.

3 Experiments and Results

Experiment protocol. Our Genesis CT and Genesis X-ray are self-supervised
pre-trained from 534 CT scans in LIDC-IDRI1 and 77,074 X-rays in ChestX-
ray83, respectively. The reason that we decided not to use all images in LIDC-
IDRI and in ChestX-ray8 for training Models Genesis is to avoid test-image leaks
between proxy and target tasks, so that we can confidently use the rest images
solely for testing Models Genesis as well as the target models, although Models

5 NiftyNet Model Zoo: https://github.com/NifTK/NiftyNetModelZoo
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Table 2: Fine-tuning models from our Genesis Chest CT (3D) significantly outperforms
learning from scratch in the five 3D target tasks (p ă 0.05). The cells checked by 7

denote the properties that are different between the proxy and target datasets. Our
results show that our Genesis Chest CT generalizes across organs, diseases, datasets,
and modalities. Footnotes show state-of-the-art performance for each target task.
Task Metric Disease Organ Dataset Modality Scratch (%) Genesis (%) p-value

NCC1 AUC 94.25˘5.07 98.20˘0.51 0.0180
NCS2 IoU 74.05˘1.97 77.62˘0.64 1.04e-4
ECC3 AUC 7 7 79.99˘8.06 88.04˘1.40 0.0058
LCS4 IoU 7 7 7 74.60˘4.57 79.52˘4.77 0.0361
BMS5 IoU 7 7 7 7 90.16˘0.41 90.60˘0.20 0.0041

1 LUNA winner holds an official score of 0.968 vs. 0.971 (ours)
2 Wu et al. holds a Dice of 74.05% vs. 75.86%˘0.90% (ours)
3 Zhou et al. holds an AUC of 87.06% vs. 88.04%˘1.40% (ours)
4 LiTS winner w/ postprocessing (PP) holds a Dice of 96.60% vs. 91.13%˘1.51% (ours w/o PP)
5 BraTS winner w/ ensembling holds a Dice of 91.00% vs. 92.58%˘0.30% (ours w/o ensembling)

Genesis are trained from only unlabeled images, involving no annotation shipped
with the datasets. We evaluate Models Genesis in seven medical imaging applica-
tions including 3D and 2D image classification and segmentation tasks (codified
as detailed in Table 1). For 3D applications in CT and MRI, we investigate
the capability of both 2D slice-based solutions and 3D volume-based solutions;
for 2D applications in X-ray and Ultrasound, we compare Models Genesis with
random initialization and fine-tuning from ImageNet. 3D U-Net architecture6

is used in five 3D applications; U-Net architecture with ResNet-18 encoder7 is
used in seven 2D applications. We utilize the L1-norm distance as the loss func-
tion in the image restoration tasks. Performances of target image classification
and segmentation tasks are measured by the AUC (Area Under the Curve) and
IoU (Intersection over Union), respectively, through at least 10 trials. We report
the performance metrics with mean and standard deviation and further present
statistical analysis based on the independent two-sample t-test.

Models Genesis outperform 3D models trained from scratch. We evalu-
ate the effectiveness of Genesis Chest CT in five distinct 3D medical target tasks.
These target tasks are selected such that they show varying levels of semantic
distance to the proxy task, as shown in Table 2, allowing us to investigate the
transferability of Genesis Chest CT with respect to the domain distance. Table 2
demonstrates that models fine-tuned from Genesis Chest CT consistently out-
perform their counterparts trained from scratch. Our statistical analysis show
that the performance gain is significant for all the target tasks under study.
Specifically, for NCC and NCS where the target and proxy tasks are in the same
domain, initialization with Genesis Chest CT achieves 4 and 3 points increase in
the AUC and IoU score, respectively, compared with training from scratch. For
ECC, the target and proxy tasks are different in both the disease affecting the
organ and the dataset itself; yet, Genesis Chest CT achieves a remarkable im-
provement over training from scratch, increasing the AUC by 8 points. Genesis
Chest CT continues to yield significant IoU gain for LCS and BMS even though

6 3D U-Net Convolution Neural Network: https://github.com/ellisdg/3DUnetCNN
7 Segmentation Models: https://github.com/qubvel/segmentation models
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Table 3: Comparison between our unified framework and each of the suggested self-
supervised schemes on five 3D target tasks. The statistical analyses is conducted be-
tween the top-2 models in each column highlighted in red. While there is no clear
winner, our unified framework is more robust across all target tasks, yielding either the
best result or comparable performance to the best model (p ą 0.05).
Approach NCC (%) NCS (%) ECC (%) LCS (%) BMS (%)
Scratch 94.25˘5.07 74.05˘1.97 79.99˘8.06 74.60˘4.57 90.16˘0.41
Distortion (ours) 96.46˘1.03 77.08˘0.68 88.04˘1.40 79.08˘4.26 90.60˘0.20
Painting (ours) 98.20˘0.51 77.02˘0.58 87.18˘2.72 78.62˘4.05 90.46˘0.21
Unified (ours) 97.90˘0.57 77.62˘0.64 87.20˘2.87 79.52˘4.77 90.59˘0.21
p-value 0.0848 0.0520 0.2102 0.4249 0.4276

their domain distances with the proxy task are the widest. To our knowledge,
we are the first to investigate cross-domain self-supervised learning in medical
imaging. Given the fact that Genesis Chest CT is pre-trained on Check CT
only, it is remarkable that our model can generalize to different diseases, organs,
datasets, and even modalities.

Models Genesis consistently top any 2D approaches. A common tech-
nique to handle limited data in medical imaging is to reformat 3D data into
a 2D image representation followed by fine-tuning pre-trained ImageNet mod-
els [7,9]. This approach increases the training examples by an order of magnitude,
but it scarifies the 3D context. It is interesting to compare how Genesis Chest
CT compares to this de facto standard in 2D. For this purpose, we adopt the
trained 2D models from an ImageNet pre-trained model7 for the tasks of NCC,
NCS, and ECC. The 2D representation is obtained by extracting axial slices from
volumetric datasets. Table 4 compares the results for 2D and 3D models. Note
that the results for 3D models are identical to those reported in Table 2. As
evidenced by our statistical analyses, the 3D models trained from Genesis Chest
CT significantly outperform the 2D models trained from ImageNet, achieving
higher average performance and lower standard deviation (see Table 4 and Ap-
pendix4 Sec. H). However, the same conclusion does not apply to the models
trained from scratch—3D scratch models outperform 2D scratch models in only
two out of the three target tasks and also exhibit undesirably larger standard
deviation. We attribute the mixed results of 3D scratch models to the larger
number of model parameters and limited sample size in the target tasks, which
together impede the full utilization of 3D context. In fact, the undesirable per-
formance of the 3D scratch models highlights the effectiveness of Genesis Chest
CT, which unlocks the power of 3D models for medical imaging.

Models Genesis (2D) offer equivalent performances to supervised pre-
trained models. To compare our self-supervised approaches with those super-
vised pre-training from ImageNet [1], we deliberately downgrade our Models
Genesis to 2D versions: Genesis Chest CT 2D and Genesis Chest X-ray (2D)
(see visualization of Genesis 2D in Appendix4 Secs. F—G). The statistical anal-
ysis in Fig. 2 suggests that the downgraded Models Genesis 2D offer equiva-
lent performance to state-of-the-art fine-tuning from ImageNet within modal-
ity, outperforming random initialization by a large margin, which is a signifi-
cant achievement because ours comes at zero annotation cost. Meanwhile, the
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Table 4: Comparison between 3D solutions and 2D slice-based solutions on three 3D
target tasks. Training 3D models from scratch does not necessarily outperform the 2D
counterparts (see NCC). However, training the same 3D models from Genesis Check CT
outperforms (p ă 0.05) all 2D solutions, demonstrating the effectiveness of Genesis
Chest CT in unlocking the power of 3D models.

Task
2D (%) 3D (%)

p-value:

Scratch ImageNet Genesis Scratch ImageNet Genesis
NCC 96.03˘0.86 97.79˘0.71 97.45˘0.61 94.25˘5.07 N/A 98.20˘0.51 0.0213
NCS 70.48˘1.07 72.39˘0.77 72.20˘0.67 74.05˘1.97 N/A 77.62˘0.64 ă1e-8
ECC 71.27˘4.64 78.61˘3.73 78.58˘3.67 79.99˘8.06 N/A 88.04˘1.40 5.50e-4

:These p-values are calculated between our Models Genesis vs. the fine-tuning from ImageNet,
which always offers the best performance (highlighted in red) for all three tasks in 2D.

Fig. 2: Comparison of 2D solutions on four 2D target tasks. To investigate the same- and
cross-domain transferability of Models Genesis, we have trained Genesis Chest CT 2D
using 2D axial slices from LUNA dataset (left panel), and Genesis Chest X-ray (2D)
trained using radiographs from ChestX-ray8 dataset (right panel). In same-domain
target tasks (NCC and NCS in the left panel and DXC in the right panel), Models Genesis
2D outperform training from scratch and offer equivalent performance to fine-tuning
from ImageNet. While in cross-domain target tasks (DXC and IUC in the left panel; NCS
and IUC in the right panel), Models Genesis 2D also produce fairly robust performance.

downgraded Models Genesis 2D are fairly robust in cross-domain transfer learn-
ing, although they tend to underperform when domain distance is large, which
suggests same-domain transfer learning should be preferred where possible in
medical imaging. For 3D applications, we also examine the effectiveness of fine-
tuning from NiftyNet5, which is not designed for transfer learning but is the
only available supervised pre-trained 3D model. Compared with training from
scratch, fine-tuning NiftyNet suffers 3.37, 0.18, and 0.03 points decrease for NCS,
LCS, and BMS tasks, respectively (detailed in Appendix4 Sec. I), suggesting that
strong supervision with limited annotated data cannot guarantee good transfer-
ability like ImageNet. Conversely, Models Genesis benefit from both large scale
unlabeled datasets and dedicated proxy tasks which are essential for learning
general-purpose visual representation.

4 Conclusion and Future Work

A key contribution of ours is a collection of generic source models, nicknamed
Models Genesis, built directly from unlabeled 3D image data with our novel uni-
fied self-supervised method, for generating powerful application-specific target
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models through transfer learning. While our empirical results are strong, sur-
passing state-of-the-art performances in most of the applications, an important
future work is to extend our Models Genesis to modality-oriented models, such
as Genesis MRI and Genesis Ultrasound, as well as organ-oriented models, such
as Genesis Brain and Genesis Heart. In fact, we envision that Models Genesis
may serve as a primary source of transfer learning for 3D medical imaging ap-
plications, in particular, with limited annotated data. To benefit the research
community, we make the development of Models Genesis open science, releasing
our codes and models to the public, and inviting researchers around the world
to contribute to this effort. We hope that our collective efforts will lead to the
Holy Grail of Models Genesis, effective across diseases, organs, and modalities.
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Abstract. This document provides supplementary material for the pa-
per entitled “Models Genesis: Generic Autodidactic Models for 3D Medi-
cal Image Analysis”. The supplementary material is organized as follows.
In Sec. A, we begin with a brief overview of Models Genesis. Secs. B—E
describe at length the detailed implementation and illustration of four in-
dividual transformations. Secs. F—G contain a qualitative visualization
on the pre-trained Genesis CT and Genesis X-ray for both same- and
cross-domain image restoration. Secs. H—I present the transfer learning
results of Models ImageNet, NiftyNet, and our Models Genesis in various
target tasks.

Fig. 3: Overview of our unified self-supervised learning framework. Given an image,
we first extract patches X of arbitrary sizes from random locations and then apply
the transformations on them as mentioned in Fig. 4. Models Genesis learns the visual
representation by restoring the original patches X from the transformed ones X̃.



A Models Genesis

Fig. 4: [Better viewed on-line in color and zoomed in for details] Our novel unified self-
supervised learning framework aims to learn general-purpose visual representation by
recovering original image patches from their transformed ones. We have designed four
individual transformations: I) non-linear (see Sec. B), II) local-shuffling (see Sec. C),
III) out-painting (see Sec. D), and IV) in-painting (see Sec. E). We have provided ex-
amples of the transformed images for Genesis Chest CT (left) and Genesis Chest X-ray
(right). For simplicity and clarity, we illustrate our idea on a 2D CT slice and a 2D
X-ray image, but our Genesis Chest CT is trained using 3D Check CT images directly.
Each transformation is independently applied to a patch with a predefined probabil-
ity, while out-painting and in-painting are considered mutually exclusive. Therefore,
in addition to the four original individual transformations, this process yields eight
more transformations framed in red, including one identity mapping (i.e., V: none,
meaning none of the four individual transformations is selected) and seven combined
transformations as indicated under each patch framed in red. For clarity, we further
define a training scheme as the process that transforms patches with any of the twelve
aforementioned transformations and trains a model to restore the original patches from
the transformed ones. For convenience, we refer to an individual training scheme as the
scheme using one particular individual transformation. Finally, our unified learning
framework utilizes all possible transformations randomly with pre-defined probabili-
ties and trains a model to restore the original patches from the ones undergone any
possible transformations.

As shown in Fig. 3, our proposed self-supervised learning framework con-
sists of two components: image transformation (illustrated in Fig. 4) and image
restoration, where Models Genesis, taking an encoder-decoder architecture, are
trained by restoring original patch X from transformed patch X̃, aiming to learn
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common visual representation that is transferable and generalizable across dis-
eases, organs and, modalities and thus yield high-performance target models.
From this work, we have concluded:

1. Models Genesis significantly outperform learning from scratch in all five
target 3D applications covering both segmentation and classification. More
importantly, learning a model from scratch simply in 3D may not necessarily
yield performance better than transfer learning from ImageNet in 2D, but
Models Genesis consistently top any 2D approaches including fine-tuning
from ImageNet [11] as well as fine-tuning our 2D Models Genesis, confirming
the importance of 3D anatomical information and significance of our Models
Genesis for 3D medical imaging.

2. Despite the outstanding performance of Models Genesis, a large, strongly
annotated dataset for medical image analysis like ImageNet [4] for computer
vision is still highly demanded. In computer vision, at the time this paper is
written, no self-supervised learning method outperforms fine-tuning models
pre-trained from ImageNet [10,3,12]. One of our goals of developing Models
Genesis is to help create such a large, strongly annotated dataset for medical
image analysis, because based on a small set of expert annotations, models
fine-tuned from Models Genesis will be able to help quickly generate initial
rough annotations of unlabeled images for expert review, thus reducing the
annotation efforts and accelerating the creation of a large, strongly anno-
tated, medical ImageNet. In summary, Models Genesis are not designed to
replace such a large, strongly annotated dataset for medical image analysis
like ImageNet for computer vision, but rather helping create one.

3. Same-domain transfer learning is always preferred whenever possible. Same-
domain transfer learning strikes as a preferred choice in terms of perfor-
mance; therefore, as our future work, we continue training modality-oriented
models, including Genesis CT, Genesis MRI, Genesis X-ray, and Genesis Ul-
trasound, as well as organ-oriented models, including Genesis Brain, Genesis
Lung, Genesis Heart, and Genesis Liver.

4. Cross-domain transfer learning is the Holy Grail. Retrieving a large number
of unlabeled images from a PACS system requires an IRB approval, often a
long process; the retrieved images must be de-identified; organizing the de-
identified images in a way suitable for deep learning is tedious and laborious.
Therefore, large quantities of unlabeled datasets may not be readily available
to many target domains. Evidenced by our results in Table 2 and Fig. 2,
Models Genesis have a great potential for cross-domain transfer learning;
particularly, distortion-based approaches take advantage of relative intensity
values (in all modalities) to learn shapes and appearances of various organs.
Therefore, as our future work, we will be focusing on methods that general-
ize well in cross-domain transfer learning. Building the Holy Grail of Models
Genesis, effective across diseases, organs, and modalities, takes a village. As
a result, we make the development of Models Genesis open science, inviting
researchers around the world to join this effort. All pre-trained Models Gen-
esis will be made public at https://github.com/MrGiovanni/ModelsGenesis.
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B Non-linear Intensity Transformation Visualization

Fig. 5: We adopt non-linear intensity transformation as a new training scheme for self-
supervised learning, which allows the model to learn the absolute or relative appearance
of structures. Illustration of various non-linear intensity transformations (Examples 1—
6) for CT (Rows 2—3) and X-ray (Rows 4—5) images is provided. We utilize four
control points (P0—P3) in Eq. 1 to modify the shape of the transformation function
(Row 1). Notice that, when P0 “ P1 and P2 “ P3 the transformation function is a
linear function (shown in Examples 1—2). Besides, we set P0 “ p0, 0q and P3 “ p1, 1q
to get an increasing function (shown in Examples 1, 3, and 5) and the opposite to get a
decreasing function (shown in Examples 2, 4, and 6). The control points are randomly
generated for more variances.

We propose a novel self-supervised training scheme based on non-linear trans-
lation, with which the model learns to restore the intensity values of the input
image transformed with a set of non-linear functions. The rationale is that the
absolute intensity values (i.e., Hounsfield Units) in CT scans or relative inten-
sity values in other imaging modalities convey important information about the
underlying structures and organs [2,5]. Hence, this training scheme enables the
model to learn the appearance of the anatomic structures present in the images.
In order to keep the appearance of the anatomic structures perceivable, we keep
the non-linear intensity transformation function monotonic, allowing pixels of
different values to be assigned with new distinct values. To realize this idea, we
use Bézier Curve [14], a smooth and monotonous transformation function, which
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is generated from two end points (P0 and P3) and two control points (P1 and
P2), defined as:

Bptq “ p1´ tq3P0 ` 3p1´ tq2tP1 ` 3p1´ tqt2P2 ` t3P3, t P r0, 1s, (1)

where t is a fractional value along the length of the line. In Fig. 5, we illustrate
the original patches (the left-most column) and the transformed patches of 2D
CT and X-rays based on different transformation functions. The correspond-
ing transformation functions are shown in the top row. In order to apply the
transformation functions on CT images, we first clip the HU values to a range
of r´1000, 1000s and then normalize to r0, 1s for each of the CT image slices.
In contrast, the X-ray images are directly normalized to r0, 1s without intensity
clipping.
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C Local Pixel Shuffling Visualization

Fig. 6: We adopt local pixel shuffling as a new training scheme for self-supervised learn-
ing, which allows the model to learn the global geometry and spatial layout of organs
as well as the local shape and texture of organs. Illustration of local pixel shuffling
using multiple window sizes (Columns 2—7) applied on CT (Rows 1—2) and X-ray
(Rows 3—4) images is provided. When 5ˆ 5 window is applied, the shapes are largely
maintained; while the ribs are mostly invisible for window size equal to 20 ˆ 20. Be-
sides, various aspect ratios of windows also impose more local variances in different
directions. Taking the restored X-ray patches in the last two columns as examples, a
window size with h ! w (Column 6) distorts the boundary of the spine while preserving
the overall presence of the ribs. On the other hand, when h " w (Column 7), the ribs
are hardly visible but the width of spine and heart is barely changed.

We propose local pixel shuffling to enrich local variations of a patch without
dramatically compromising its global structures, which encourages the model to
learn the shapes and boundaries of the objects as well as the relative layout of
different parts of the objects. To be specific, for each input patch, we randomly
select 1,000 windows from the patch and then shuffle the pixels inside each
window sequentially. Mathematically, let us consider a small window W with
the size of mˆn. The local-shuffling acts on each window and can be formulated
as

W̃ “ PˆW ˆP1, (2)

where W̃ is the transformed window, P and P1 denote permutation metrics with
the size of mˆm and nˆ n, respectively. Pre-multiplying W with P permutes
the rows of the window W, whereas post-multiplying W with P1 results in
the permutation of the columns of the window W. In practice, we keep the
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window sizes smaller than the receptive field of the network, so that the network
can learn a more robust visual representation by “resetting” the original pixel
positions. To facilitate the understanding, we have explored the local-shuffling
transformation of varying window sizes and illustrated them along with the
original patches. The window sizes can control the degree of distortion. As shown
in Fig. 6, local-shuffling within an extent keeps the objects perceivable, it will
benefit the deep neural network in learning invariant visual representations by
restoring the original patches. Unlike de-noising [16] and in-painting [15,9], our
local-shuffling transformation does not intend to replace the pixel values with
noise, which therefore preserves the identical global distributions to the original
patch.
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D Out-painting Visualization

Fig. 7: We adopt out-painting as a new training scheme for self-supervised learning,
which allows the model to learn the global geometry and spatial layout of organs. Il-
lustration of the transformation for out-painting using various window sizes in CT
(Rows 1—3) and X-ray (Rows 4—6) images is provided. The first and last columns
denote the original patches and the final transformed patches, respectively. From Col-
umn 2 to Column 6, we generate a new window (red framed) and merge it with the
existing ones. Moreover, to prevent the task to be too difficult or even unsolvable, we
limit the masked surrounding region less than 1{4 of the whole patch.

We devise out-painting as a new training scheme for self-supervised learning,
which allows the network to learn global geometry and spatial layout of organs in
medical images by extrapolation. To realize it, we generate an arbitrary number
(ď 10) of windows with various sizes and aspect ratios, and superimpose them
on top of each other, resulting in a single window of a complex shape. When
applying this merged window to a patch, we leave the patch region inside the
window exposed and mask its surrounding with a random number. We have
illustrated this process step by step in Fig. 7.
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E In-painting Visualization

Fig. 8: We adopt in-painting as a new training scheme for self-supervised learning,
which allows the model to learn local shape and texture of organs in medical images
via interpolation. The final transformed patches (Column 7) are obtained by iteratively
superimposing a window of random size and aspect ratio, filled with a random number,
to the original patches (Column 1). Columns 2—6 illustrate this process step by step.
Similar to out-painting, the masked areas are also limited to be less than 1{4 of the
whole patch, in order to keep the task reasonably difficult.
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F Genesis Chest CT

Fig. 9: Qualitative assessment of CT image restoration quality using Models Genesis
trained with different training schemes, including the unified framework and four in-
dividual training schemes. LIDC-IDRI [1] is used for both training and testing. We
test these models with transformed patches that have undergone four individual trans-
formations as well as the identity mapping (i.e., no transformation). First of all, it
can be seen the models trained with single-transformation-based schemes fail to han-
dle other transformations. Taking non-linear transformation (Row 2) as an example,
any individual training scheme besides non-linear transformation itself cannot invert
the pixel intensity from transformed whitish to the original blackish. As expected, the
model trained with the unified framework successfully restores original images from
various transformations. Second, the model trained with the unified framework shows
its superior to other models even if they are trained with and tested on the same trans-
formation. For example, in local-shuffling case (Row 3), the patch recovered from the
local-shuffling pre-trained model (Column 4) is noisy and lacks texture. However, the
model trained with the unified framework (Column 7) generates a patch with more un-
derlying structures, which demonstrates that learning with augmented tasks can even
improve the performance on each individual tasks. These observations suggest that
the model trained with the proposed unified self-supervised learning framework can
successfully learn general anatomical structures and yield promising transferability on
different target tasks.
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Fig. 10: Continued from Fig. 9. To further test our models, we show the restoration
results on CT slices undergone seven different combined transformations. As expected,
the model trained with our unified self-supervised framework significantly outperforms
models trained with individual training schemes, further demonstrating the effective-
ness of the proposed unified training framework as well as the pre-trained Models
Genesis.
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Fig. 11: Qualitative assessment of image restoration quality by Genesis Chest CT across
dataset, organ, and modality is visualized. Genesis Chest CT is trained on LIDC-IDRI
(CT) [1] via our unified self-supervised training framework. For testing, we use the
pre-trained model to directly restore images from LIDC-IDRI (CT), ChestX-ray8 (X-
ray) [17], CIMT (Ultrasound) [8,18], and BraTS (MRI) [13]. Though the model is
only trained on CT data, it can largely maintain the texture and structures during
restoration not only in the same modality (CT), but also in different modalities in-
cluding X-ray, Ultrasound, and MRI, suggesting that Genesis Chest CT is transferable
across datasets, organs, and modalities. Besides, we notice that the restoration quality
is also consistent with the results of Genesis Chest CT on target tasks (see Fig. 2).
For example, compared to cross-modality performance, Genesis Chest CT yields better
performance in CT for both restoration and target tasks (i.e., NCC and NCS). Moreover,
the relative lower restoration quality of ultrasound images may explain the relative
lower target performance of Genesis Chest CT on IUC (see Fig. 2). Finally, by com-
paring the performance of Genesis Chest CT in various modalities, we find out that a
model pre-trained in the same domain is still preferred whenever possible. Thereby, we
will continue developing modality-oriented models including Genesis MRI and Genesis
Ultrasound.
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G Genesis Chest X-ray

Fig. 12: Qualitative comparisons of Genesis Chest X-ray trained with unified self-
supervised framework and four individual training schemes. We train and test all five
models on ChestX-ray8 [17] where transformed patches (Column 1) undergo one of the
four transformations (Rows 2—5) as well as an identity mapping (Row 1). It is clear
from the figure that the models trained with a single transformation fail to handle other
transformations. For example, considering the training scheme based on in-painting
(Row 5), models trained on individual training schemes fail to in-paint the masked re-
gion except for the in-painting-trained model (Column 6). However, the model trained
with the unified framework (Column 7) handles all of the transformations and gener-
ates patches fairly close to the ground truths. These observations suggest that Models
Genesis trained with proposed unified self-supervised learning framework learns gen-
eral anatomical structures better, yielding high-performance target models through
transfer learning.
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Fig. 13: Continued from Fig. 12. We further test our five models on seven combinations
of transformations. The models train with individual training scheme can only handle a
single transformation (Columns 3—6) and fail to restore the patches completely, while
Models Genesis trained via proposed unified self-supervised learning framework (Col-
umn 7) fairly handle seven augmented transformations and restores the patches close
to the original patch. Taking a combination of out-painting and non-linear transforma-
tion (Row 1) as an example, the model trained on non-linear-based scheme (Column
3) recovers the original intensity values, but fails to out-paint the image; however, the
model trained with a unified framework not only recovers the original intensity values
but also out-paints the image. This observation demonstrates the superiority of Models
Genesis trained with unified self-supervised learning framework.
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Fig. 14: Qualitative results of image restoration from Genesis Chest X-ray across
dataset, organ, and modality are visualized. Genesis Chest X-ray is trained on Chest X-
ray8 (X-ray) [17] via our unified training framework, and tested to restore images from
Chest X-ray8 (X-ray), LIDC-IDRI (CT) [1], CIMT (Ultrasound) [8,18], and BraTS
(MRI) [13]. Similar to Fig. 11, we observe that the performance of restoration and tar-
get tasks in various modalities may be positively correlated. For instance, while Genesis
Chest X-ray restores ultrasound images reasonably, it injects unintended artifacts in
the restored CT slices. As a result, Genesis Chest X-ray achieves better performance
on IUC task compared with Genesis Chest CT, but it fails on NCC task (see Fig. 2). The
analysis further confirms our claims provided in Fig. 11.
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H Models Genesis vs. Models ImageNet

Task
2D (%) 3D (%)

p-value:

Scratch ImageNet Genesis Scratch ImageNet Genesis
NCC 96.03˘0.86 97.79˘0.71 97.45˘0.61 94.25˘5.07 N/A 98.20˘0.51 0.0213
NCS 70.48˘1.07 72.39˘0.77 72.20˘0.67 74.05˘1.97 N/A 77.62˘0.64 ă1e-8
ECC 71.27˘4.64 78.61˘3.73 78.58˘3.67 79.99˘8.06 N/A 88.04˘1.40 5.50e-4

:These p-values are calculated between our Models Genesis vs. the fine-tuning from ImageNet,
which always offers the best performance (highlighted in red) for all three tasks in 2D.

Approach NCC (%) NCS (%) ECC (%) LCS (%) BMS (%)
Scratch 94.25˘5.07 74.05˘1.97 79.99˘8.06 74.60˘4.57 90.16˘0.41
Distortion (ours) 96.46˘1.03 77.08˘0.68 88.04˘1.40 79.08˘4.26 90.60˘0.20
Painting (ours) 98.20˘0.51 77.02˘0.58 87.18˘2.72 78.62˘4.05 90.46˘0.21
Unified (ours) 97.90˘0.57 77.62˘0.64 87.20˘2.87 79.52˘4.77 90.59˘0.21

p-value:: 0.0848 0.0520 0.2102 0.4249 0.4276
::These p-values are calculated between the top-2 models in each column highlighted in red.

Fig. 15: Comparison of Models Genesis and Models ImageNet. In the top three sub-
figures, the 3D volume-based solutions and 2D slice-based solutions are denoted with
square and diamond markers, respectively. The horizontal and vertical error bars in-
dicate 95% confidence intervals of training from scratch and fine-tuning, respectively.
The shorter the vertical bar, the more consistent and stable the model is.

The comparisons of our Models Genesis and Models ImageNet (i.e., models
pre-trained on ImageNet) are summarized in three figures and two tables in Fig. 15.
Training 3D models simply from scratch does not necessarily outperform the 2D
counterparts (see NCC), however, fine-tuning the same 3D models from Genesis
Chest CT significantly outperforms (p ă 0.05) the slice-based 2D models includ-
ing fine-tuning from Models ImageNet. As seen, Models Genesis enjoys a higher
stability on the target tasks. Moreover, comparing our unified framework with
individual training schemes demonstrates that the former is more robust across
all target tasks, yielding either the best result or comparable performance to the
best model (p ă 0.05). This superiority of our Models Genesis is attributable to
consolidating multiple self-supervised training schemes, which enables the model
to learn a stronger image representation. Thus, fine-tuning Models Genesis leads
to powerful and stable application-specific target models, confirming the impor-
tance of Models Genesis in 3D medical imaging.
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I The NiftyNet Transfer Learning Capability

Initialization NCS (Dice %) LCS (Dice %) BMS (Dice %)
Models Genesis (ours) 75.86˘0.90 91.13˘1.51 92.58˘0.30
NiftyNet scratch [7] 69.65˘2.56 91.09˘0.76 90.68˘0.24
NiftyNet model zoo [6] 69.24˘1.77 90.84˘0.63 90.65˘0.54

p-value: 0.3433 0.2214 0.4301
:These p-values are calculated between NiftyNet scratch and NiftyNet model zoo.

Fig. 16: Fine-tuning the pre-trained NiftyNet vs. training it from scratch. The results
reported in the table statistically infer that fine-tuning the pre-trained NiftyNet offers
no benefit over training it from scratch. This fact is further supported by the learning
curve comparison provided in the figures.

The table in Fig. 16 compares fine-tuning the pre-trained NiftyNet with train-
ing from scratch on three target tasks: (1) lung nodule segmentation (NCS) in
CT images, (2) liver segmentation (LCS) in CT images, and (3) brain tumor
segmentation (BMS) in MRI images using dice-coefficient (mean˘s.d.) as the
evaluation metric, demonstrating that fine-tuning NiftyNet’s 3D supervised pre-
trained weights has no benefit over random initialization (p ą 0.05). It is further
corroborated by the learning curves on validation dataset provided at the bot-
tom in Fig. 16. However, Models Genesis significantly improve performance over
random initialization (see Table 2 in the main paper) and perform consistently
better than NiftyNet models on the three same target tasks. Note that the pre-
trained NiftyNet model was trained using strong supervision, whereas Models
Genesis learns representations using the proposed self-supervised paradigm. In
contrast to pre-trained weights of NiftyNet’s model zoo, the pre-trained weights
from our proposed self-supervised method are found to be more robust across
diseases, organs, and imaging modalities, thanks to the ability of our approach
to learn representations from a large-scale unannotated dataset.
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