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Transfer Learning

Thorax Diseases Classification

Atelectasis Pneumonia Pneumothorax

Skin Diseases Classification

> s
Knowledge Transfer ‘“lf’:

Epidermal Melanocytic Dermoscopy

Diabetic Retinopathy Classification

+ Improving the performance of the target task

+ Accelerating the target model convergence

+ Reducing human annotation-efforts Proliferative Severe Moderate
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Fine-grained Pre-training @
Self-supervised Pre-training ?

Supervised IM&GENET Pre-training

Medical Pre-training?
Domain-adaptive Pre-training®

How do newly-developed pre-training techniques work for medical image analysis?
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INaturalist

VS.

IMAGENET
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IMAGENET iINaturalist

Partridge Magpie Cedar Waxwing Bohemian Waxwing
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Coarse-grained dataset Fine-grained dataset
Coarse-grained features Fine-grained features

M.R. Hosseinzadeh Taher github.com/JLianglLab/BenchmarkTransferLearning MICCAI-DART21



Fine-grained Tasks Demand Fine-grained Features

Pneumothorax segmentation Blood vessel segmentation

Brain tumor segmentation Kidney/lesion segmentation
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What advantages can
supervised iNat2021
models offer for
medical imaging
in comparison with
supervised ImageNet
models?
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Benchmarking the Transferability of Supervised iNat2021 Model

Target Tasks
Classification U Segmentation

Fourteen thorax diseases classification (X-ray) Pneumothorax Segmentation (X-ray)

Tuberculosis Detection (X-ray) Lung Segmentation (X-ray)

Five thorax diseases classification (X-ray) Blood vessel classification (Fundus)

Pulmonary Embolism Detection (CT)
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Result |: Pre-trained model on iNat2021 is better suited for segmentation tasks

v Finer data granularity of iNat2021 yields a more fine-grained Random initialization
visual feature space ImageNet
v’ Capturing essential pixel-level cues for medical segmentation tasks B iNet2021*

*The most recent large-scale
fine-grained datasets
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Pneumothorax segmentation Blood vessels segmentation Lung segmentation
X-ray [SIIM-ACR] Fundoscopic [DRIVE] X-ray [NIH Montgomery]
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Result |: Pre-trained model on ImageNet is superior on classification tasks
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Fourteen thorax diseases classification

X-ray [NIH ChestX-Ray14]
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Five thorax diseases classification Tuberculosis Detection Pulmonary Embolism Detection
X-ray [CheXpert] X-ray [NIH Shenzhen CXR] CT [RSNA PE Detection]
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What advantages can
supervised iNat2021
models offer for
medical imaging
in comparison with
supervised ImageNet
models?

Pre-trained models on fine-grained data are better suited for segmentation tasks, while
pre-trained models on coarse-grained data prevail on classification tasks.
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Self-supervised ImageNet models
VS.

Supervised ImageNet models
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Supervised Learning Self-supervised Learning
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High-level semantics Low/mid-level semantics

Domain-specific features More generalizable features
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How generalizable are the
self-supervised ImageNet
models to medical imaging
in comparison with
supervised ImageNet
models?
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Benchmarking the Transferability of 14 Self-supervised Methods

@ Contrastive learning based on instance discrimination
InsDis, MoCo-v1, MoCo-v2, SimCLR-v1, SimCLR-v2, and BYOL

@ Contrastive learning based on JigSaw shuffling
PIRL

@ Clustering
DeepCluster-v2 and Sela-v2

@ Clustering bridging Contrastive learning
PCL-v1, PCL-v2, and SWAV

@ Mutual information reduction
InfoMin

(6) Redundancy reduction

Barlow Twins
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Result II: Top self-supervised ImageNet models outperform supervised ImageNet model

v’ Self-supervised models attend
to larger image regions, helping
in higher transferability to

segmentation tasks.
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Pneumothorax segmentation

X-ray [SIIM-ACR]
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1: InsDis 5: PCL-v2
2: MoCo-v1 6: SImCLR-v1
3: PCL-v1 7: MoCo-v2
4: PIRL 8: SimCLR-v2
n.s.  No Significance ** p<0.01

9: Sela-v2 13: SWAV
10: InfoMin 14: Barlow Twins
11: BYOL Baseline (supervised)

12: DeepCluster-v2
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Blood vessels segmentation

Fundoscopic [DRIVE]
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Lung segmentation

X-ray [NIH Montgomery]
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Fourteen thorax diseases classification
X-ray [NIH ChestX-Ray14]
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Five thorax diseases classification

X-ray [CheXpert]
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t Il: Top self-supervised ImageNet models outperform supervised ImageNet model
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Tuberculosis detection

X-ray [NIH Shenzhen CXR]
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Pulmonary embolism detection

CT [RSNA PE Detection]
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How generalizable are the

self-supervised ImageNet

models to medical imaging
in comparison with

supervised ImageNet
models?

Self-supervised ImageNet models learn holistic features more effectively than
supervised ImageNet models.

M.R. Hosseinzadeh Taher github.com/JLiangLab/BenchmarkTransferLearning MICCAI-DART21



Domain-adapted models
VS.

Supervised ImageNet models
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Natural Images Medical Images

omain

shift

Colorful Grayscale
Different objects Consistent anatomical structures
Lower resolution Higher resolution
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Can moderately sized
medical image datasets
help bridge
the domain gap between
natural and medical
images?
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Domain-adaptive Pre-training

Domain-adapted
[ ImageNet ] {In—domain 1 model (Target task ]

pre-trainingJ pre—trainingJ L fine-tuning
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Result llI: Continual pre-training bridges the domain gap between natural and medical images

—Nlnitialization Scratch ImageNet  ChestX-rayld  CheXpert
14 thorax diseases classification  80.31+0.10 | 81.70+0.15 --- 81.99+0.08
5 thorax diseases classification 86.60+0.17 | 87.10+0.36 87.401+0.26 ---
Tuberculosis detection 89.03+£1.82 | 95.62+0.63 96.32+0.65 97.0710.95
Pneumothorax segmentation 67.54+0.60 | 67.93+£1.45 || 68.92+0.98 69.30+0.50
Lung segmentation 97.55+0.36 | 98.19+0.13 || 98.18+0.06  98.25%0.04

*When pre-training and target tasks are the same, transfer learning is not applicable, denoted by “---".
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Result llI: Continual pre-training bridges the domain gap between natural and medical images

—Nlnitialization Scratch ImageNet  ChestX-rayld  CheXpert ImageNet—> ChestX-rayl4 ImageNet—> CheXpert
14 thorax diseases classification  80.31+0.10 | 81.704£0.15 -—- 81.99+0.08 -—- 82.251+0.18
5 thorax diseases classification 86.60+0.17 | 87.10+0.36 | | 87.40%0.26 -—- 87.09+0.44 -—-
Tuberculosis detection 89.03+1.82 | 95.62+0.63 | | 96.32+0.65 97.07%£0.95 98.4710.26 97.33+0.26
Pneumothorax segmentation 67.54+0.60 | 67.93+1.45|| 68.92+0.98  69.30+0.50 69.52+0.38 69.3610.49
Lung segmentation 97.55+0.36 | 98.1940.13 | | 98.18+0.06  98.25+0.04 98.27+0.03 98.31+0.05

*When pre-training and target tasks are the same, transfer learning is not applicable, denoted by “---".
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Result llI: Continual pre-training bridges the domain gap between natural and medical images

—Nlnitialization Scratch ImageNet  ChestX-rayld  CheXpert ImageNet—> ChestX-rayl4 ImageNet—> CheXpert
14 thorax diseases classification  80.31+0.10 81.7040.15 -—- 81.99+0.08 -—- 82.251+0.18
5 thorax diseases classification 86.60+0.17 87.10+0.36  87.40%0.26 -—- 87.09+0.44 -—-
Tuberculosis detection 89.03+1.82 95.62+0.63  96.32+0.65 97.074£0.95 98.4710.26 97.33+0.26
Pneumothorax segmentation 67.54+0.60 67.9311.45 68.92+0.98 69.30+£0.50 69.52+0.38 69.3610.49
Lung segmentation 97.55+0.36 98.1940.13  98.18+0.06  98.25+0.04 98.27+0.03 98.31+0.05

*When pre-training and target tasks are the same, transfer learning is not applicable, denoted by “---".

*The best methods are bolded while the others are highlighted in blue if they achieve equivalent performance compared with the best one (i.e., p > 0.05).
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Can moderately sized
medical image datasets
help bridge
the domain gap between
natural and medical
images?

Continual pre-training bridges the domain gap between natural and medical images.
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Benchmarking Transfer Learning for Medical Imaging

O What truly matters for the segmentation tasks is fine-grained representation
O Self-supervised ImageNet models learn holistic features more effectively than supervised ImageNet models

O Continual pre-training can bridge the domain gap between natural and medical images
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A Systematic Benchmarking Analysis of
Transfer Learning for Medical Image Analysis

Try it for yourself

Code, data, and models
are available online

github.com/JLianglLab/BenchmarkTransferLearning
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