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Transfer Learning
Thorax Diseases Classification

PneumoniaAtelectasis Pneumothorax

Skin Diseases Classification

MelanocyticEpidermal Dermoscopy

Diabetic Retinopathy Classification

SevereProliferative Moderate

Knowledge Transfer

+ Improving the performance of the target task

+ Accelerating the target model convergence

+ Reducing human annotation-efforts
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How do newly-developed pre-training techniques work for medical image analysis?

Supervised Pre-training

Fine-grained Pre-training

Self-supervised Pre-training

Medical Pre-training
Domain-adaptive Pre-training
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VS.
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Bohemian Waxwing

Fine-grained datasetCoarse-grained dataset

Cedar Waxwing

Fine-grained featuresCoarse-grained features

Partridge Magpie
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Fine-grained Tasks Demand Fine-grained Features

Pneumothorax segmentation Blood vessel segmentation

Brain tumor segmentation Kidney/lesion segmentation
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What advantages can 
supervised iNat2021 

models offer for 
medical imaging 

in comparison with 
supervised ImageNet

models?
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Benchmarking the Transferability of Supervised iNat2021 Model

Classification Segmentation
Target Tasks

Fourteen thorax diseases classification (X-ray)

Five thorax diseases classification (X-ray)

Tuberculosis Detection (X-ray)

Pulmonary Embolism Detection (CT)

Pneumothorax Segmentation (X-ray)

Lung Segmentation (X-ray)

Blood vessel classification (Fundus)
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Result I: Pre-trained model on iNat2021 is better suited for segmentation tasks

Pneumothorax segmentation
X-ray [SIIM-ACR] 

Blood vessels segmentation
Fundoscopic [DRIVE] 

Lung segmentation
X-ray [NIH Montgomery] 

Random initialization

ImageNet

iNat2021*

*The most recent large-scale
fine-grained datasets

ü Finer data granularity of iNat2021 yields a more fine-grained  

visual feature space

ü Capturing essential pixel-level cues for medical segmentation tasks
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Result I: Pre-trained model on ImageNet is superior on classification tasks

Five thorax diseases classification
X-ray [CheXpert] 

Tuberculosis Detection
X-ray [NIH Shenzhen CXR] 

Pulmonary Embolism Detection
CT [RSNA PE Detection] 

Random initialization

ImageNet

iNat2021*

*The most recent large-scale
fine-grained datasets

ü Coarser data granularity yields 

high-level semantic features.

Fourteen thorax diseases classification
X-ray [NIH ChestX-Ray14] 
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Pre-trained models on fine-grained data are better suited for segmentation tasks, while
pre-trained models on coarse-grained data prevail on classification tasks.

What advantages can 
supervised iNat2021 

models offer for 
medical imaging 

in comparison with 
supervised ImageNet

models?
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Self-supervised ImageNet models

VS.

Supervised ImageNet models
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Self-supervised Learning

More generalizable features

Supervised Learning

Low/mid-level semanticsHigh-level semantics

Domain-specific features

A. Islam, et al. “A Broad Study on the Transferability of Visual Representations with Contrastive Learning”. ICCV. 2021.
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How generalizable are the 
self-supervised ImageNet 

models to medical imaging 
in comparison with 

supervised ImageNet 
models?



M.R. Hosseinzadeh Taher github.com/JLiangLab/BenchmarkTransferLearning MICCAI-DART21

Benchmarking the Transferability of 14 Self-supervised Methods

Contrastive learning based on instance discrimination
InsDis, MoCo-v1, MoCo-v2, SimCLR-v1, SimCLR-v2, and BYOL

1

Contrastive learning based on JigSaw shuffling
PIRL

2

Clustering
DeepCluster-v2 and SeLa-v2

3

Clustering bridging Contrastive learning
PCL-v1, PCL-v2, and SwAV

4

Mutual information reduction
InfoMin

5

Redundancy reduction
Barlow Twins

6
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Result II: Top self-supervised ImageNet models outperform supervised ImageNet model

Pneumothorax segmentation
X-ray [SIIM-ACR] 

Blood vessels segmentation
Fundoscopic [DRIVE] 

Lung segmentation
X-ray [NIH Montgomery] 

ü Self-supervised models attend 

to larger image regions, helping 

in higher transferability to 

segmentation tasks.

2: MoCo-v1

1: InsDis

3: PCL-v1

4: PIRL

5: PCL-v2

6: SimCLR-v1

7: MoCo-v2

9: Sela-v2

8: SimCLR-v2

10: InfoMin

11: BYOL

12: DeepCluster-v2

13: SwAV

14: Barlow Twins

Baseline (supervised)

n.s.      No Significance **        p<0.01 *          p<0.05 >***        p<0.0001
L. Ericsson, et al. CVPR. 2021.
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Fourteen thorax diseases classification
X-ray [NIH ChestX-Ray14] 

Five thorax diseases classification
X-ray [CheXpert] 

Tuberculosis detection
X-ray [NIH Shenzhen CXR] 

Pulmonary embolism detection
CT [RSNA PE Detection] 

Result II: Top self-supervised ImageNet models outperform supervised ImageNet model

2: MoCo-v1

1: InsDis

3: PCL-v1

4: PIRL

5: PCL-v2

6: SimCLR-v1

7: MoCo-v2

9: Sela-v2

8: SimCLR-v2

10: InfoMin

11: BYOL

12: DeepCluster-v2

13: SwAV

14: Barlow Twins

Baseline (supervised)

n.s.      No Significance **        p<0.01 *          p<0.05 >***        p<0.0001
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Self-supervised ImageNet models learn holistic features more effectively than
supervised ImageNet models.

How generalizable are the 
self-supervised ImageNet 

models to medical imaging 
in comparison with 

supervised ImageNet 
models?
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Domain-adapted models

VS.

Supervised ImageNet models
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Natural Images Medical Images

Colorful Grayscale

Consistent anatomical structuresDifferent objects

Lower resolution Higher resolution
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Can moderately sized 
medical image datasets 

help bridge 
the domain gap between 

natural and medical 
images?
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Domain-adaptive Pre-training

Domain-adapted 
modelImageNet 

pre-training
In-domain 
pre-training

Target task 
fine-tuning

ImageNet 
pre-training

In-domain 
pre-training
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Result III: Continual pre-training bridges the domain gap between natural and medical images

Task                            Initialization Scratch ImageNet ChestX-ray14 CheXpert ImageNetà ChestX-ray14 ImageNetà CheXpert

14 thorax diseases classification 80.31±0.10 81.70±0.15 --- 81.99±0.08 --- 82.25±0.18

5 thorax diseases classification 86.60±0.17 87.10±0.36 87.40±0.26 --- 87.09±0.44 ---

Tuberculosis detection 89.03±1.82 95.62±0.63 96.32±0.65 97.07±0.95 98.47±0.26 97.33±0.26

Pneumothorax segmentation 67.54±0.60 67.93±1.45 68.92±0.98 69.30±0.50 69.52±0.38 69.36±0.49

Lung segmentation 97.55±0.36 98.19±0.13 98.18±0.06 98.25±0.04 98.27±0.03 98.31±0.05

*When pre-training and target tasks are the same, transfer learning is not applicable, denoted by “---”.
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*The best methods are bolded while the others are highlighted in blue if they achieve equivalent performance compared with the best one (i.e., p > 0.05).

*When pre-training and target tasks are the same, transfer learning is not applicable, denoted by “---”.



M.R. Hosseinzadeh Taher github.com/JLiangLab/BenchmarkTransferLearning MICCAI-DART21

Continual pre-training bridges the domain gap between natural and medical images.

Can moderately sized 
medical image datasets 

help bridge 
the domain gap between 

natural and medical 
images?
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Benchmarking Transfer Learning for Medical Imaging

✓

✓

✓

What truly matters for the segmentation tasks is fine-grained representation

Self-supervised ImageNet models learn holistic features more effectively than supervised ImageNet models

Continual pre-training can bridge the domain gap between natural and medical images



Try it for yourself

Code, data, and models
are available online

github.com/JLiangLab/BenchmarkTransferLearning

A Systematic Benchmarking Analysis of 
Transfer Learning for Medical Image Analysis
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