

A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis

Mohammad Reza Hosseinzadeh Taher¹, Fatemeh Haghighi¹, Ruibin Feng², Michael B. Gotway³, and Jianming Liang¹

¹ Arizona State University

² Stanford University

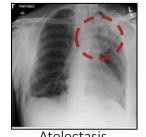
³ Mayo Clinic

Transfer Learning

- - Knowledge Transfer

- + Improving the performance of the target task
- + Accelerating the target model convergence
- + Reducing human annotation-efforts

Thorax Diseases Classification



Atelectasis

Pneumonia

Pneumothorax

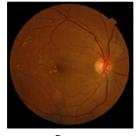
Skin Diseases Classification

Epidermal

Melanocytic

Dermoscopy

Diabetic Retinopathy Classification



Proliferative

Severe

Moderate

Fine-grained Pre-training?

Self-supervised Pre-training?

Supervised IMAGENET Pre-training

Medical Pre-training?

Domain-adaptive Pre-training?

How do newly-developed pre-training techniques work for medical image analysis?

Naturalist

VS.

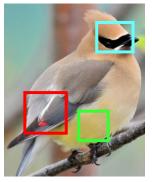
Partridge

Magpie

Coarse-grained dataset

Coarse-grained features

Cedar Waxwing

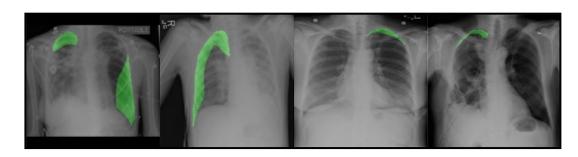


Bohemian Waxwing

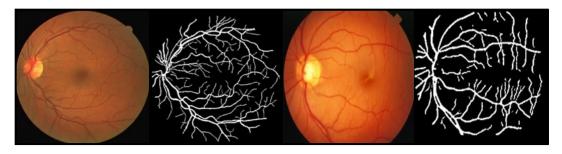
Fine-grained dataset

Fine-grained features

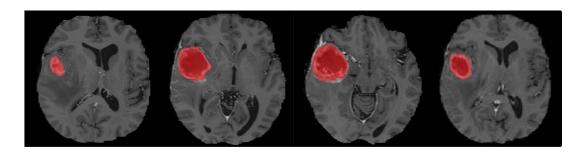
Fine-grained Tasks Demand Fine-grained Features



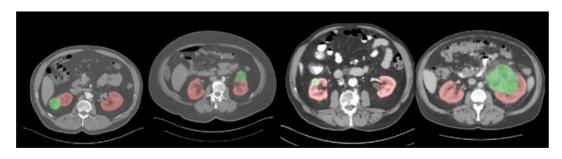
Pneumothorax segmentation



Blood vessel segmentation

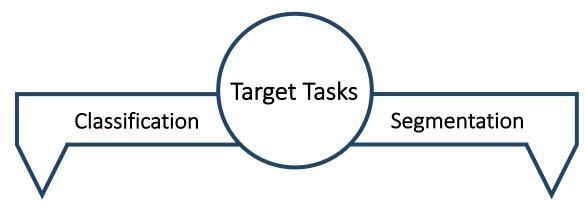


Brain tumor segmentation



Kidney/lesion segmentation

Benchmarking the Transferability of Supervised iNat2021 Model



Fourteen thorax diseases classification (X-ray)

Tuberculosis Detection (X-ray)

Five thorax diseases classification (X-ray)

Pulmonary Embolism Detection (CT)

Pneumothorax Segmentation (X-ray)

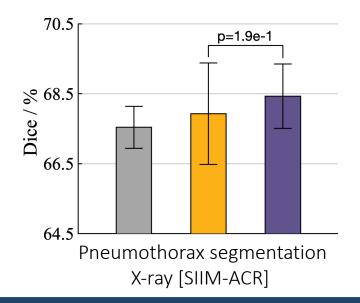
Lung Segmentation (X-ray)

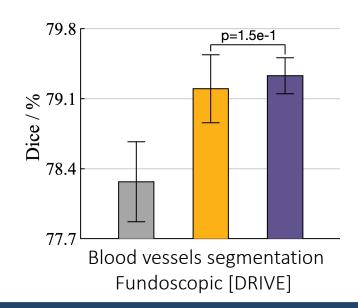
Blood vessel classification (Fundus)

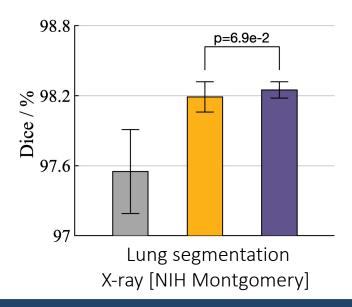
Result I: Pre-trained model on iNat2021 is better suited for segmentation tasks

- ✓ Finer data granularity of iNat2021 yields a more fine-grained visual feature space
 - ✓ Capturing essential pixel-level cues for medical segmentation tasks

*The most recent large-scale fine-grained datasets

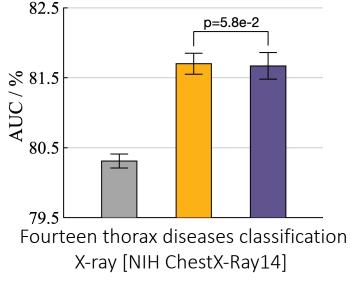




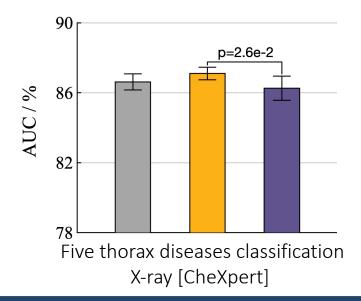


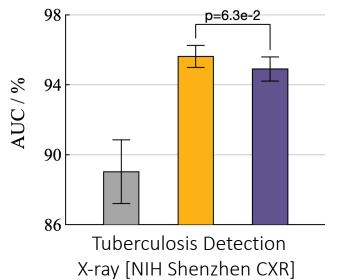
Result I: Pre-trained model on ImageNet is superior on classification tasks

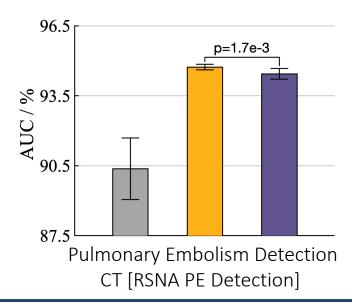
✓ Coarser data granularity yields high-level semantic features.



*The most recent large-scale fine-grained datasets







Pre-trained models on fine-grained data are better suited for segmentation tasks, while pre-trained models on coarse-grained data prevail on classification tasks.

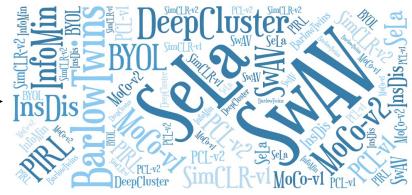
Self-supervised ImageNet models

VS.

Supervised ImageNet models

Supervised Learning

Self-supervised Learning



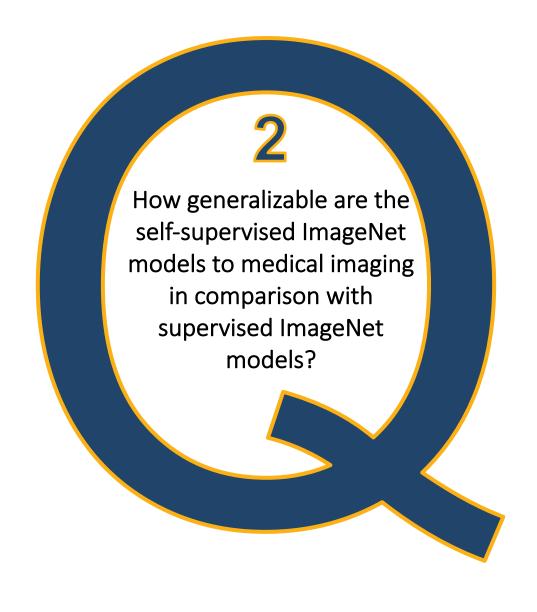
High-level semantics

Domain-specific features

Low/mid-level semantics

More generalizable features

A. Islam, et al. "A Broad Study on the Transferability of Visual Representations with Contrastive Learning". ICCV. 2021.



Benchmarking the Transferability of 14 Self-supervised Methods

1 Contrastive learning based on instance discrimination

InsDis, MoCo-v1, MoCo-v2, SimCLR-v1, SimCLR-v2, and BYOL

2 Contrastive learning based on JigSaw shuffling

PIRL

3 Clustering

DeepCluster-v2 and SeLa-v2

4 Clustering bridging Contrastive learning

PCL-v1, PCL-v2, and SwAV

5 Mutual information reduction

InfoMin

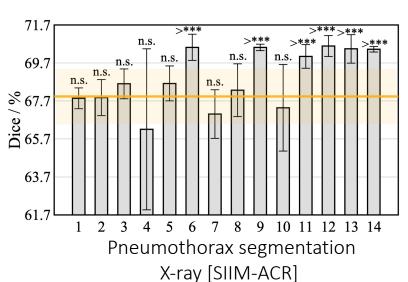
6 Redundancy reduction

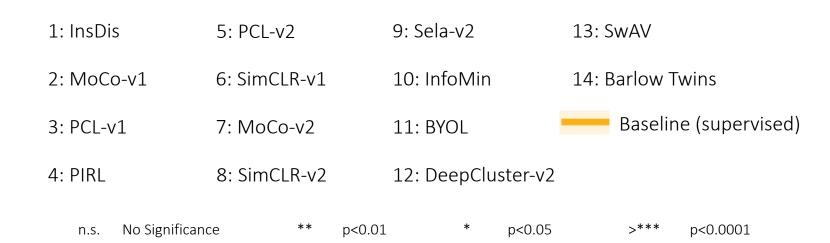
Barlow Twins

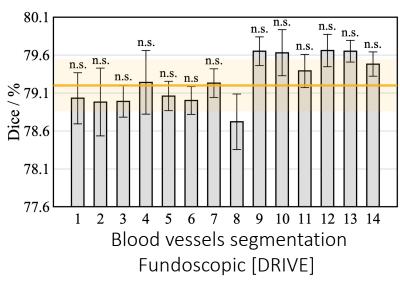
Result II: Top self-supervised ImageNet models outperform supervised ImageNet model

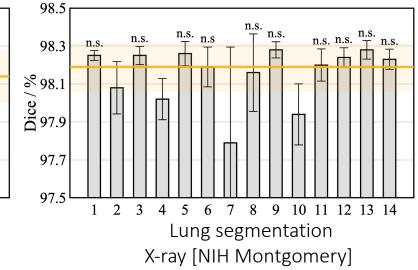
✓ Self-supervised models attend to larger image regions, helping in higher transferability to segmentation tasks.

L. Ericsson, et al. CVPR. 2021.

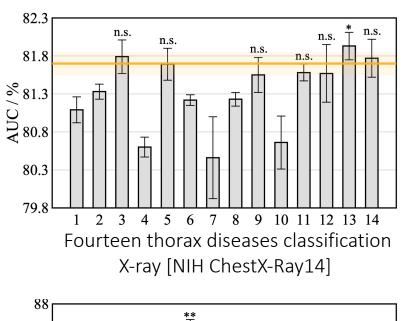


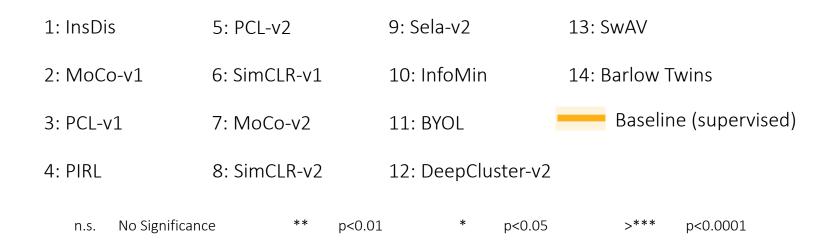


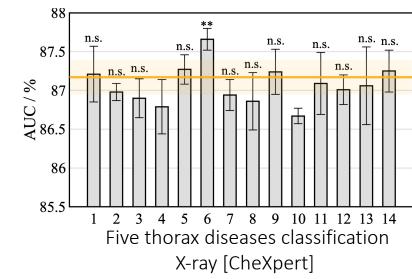


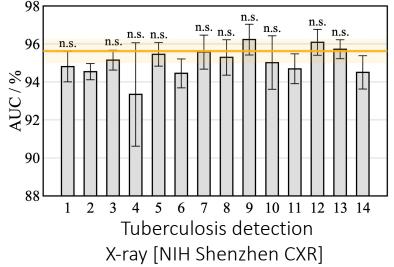


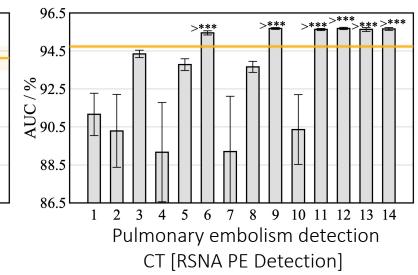
Result II: Top self-supervised ImageNet models outperform supervised ImageNet model

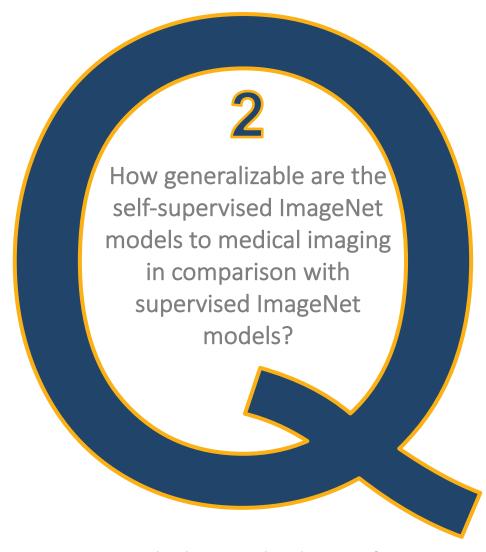












Self-supervised ImageNet models learn holistic features more effectively than supervised ImageNet models.

Domain-adapted models

VS.

Supervised ImageNet models

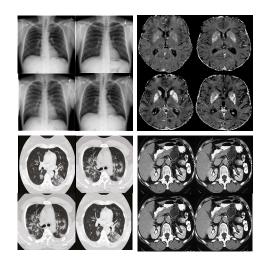
Natural Images

Colorful

Different objects

Lower resolution

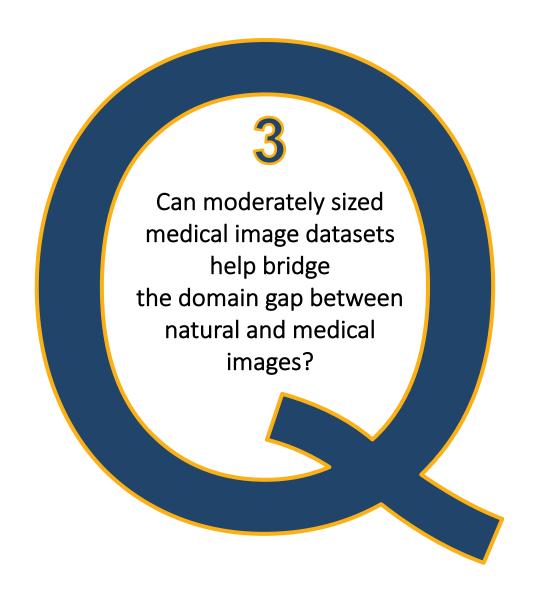
Medical Images



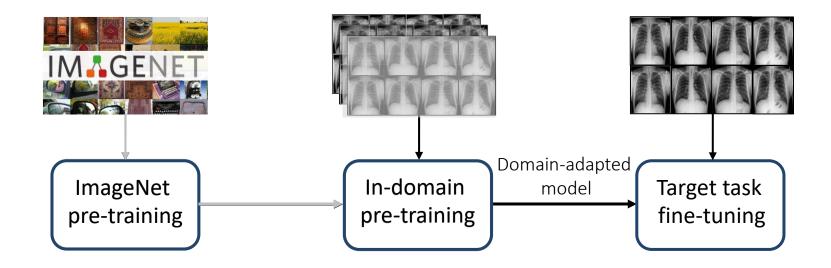
Grayscale

Consistent anatomical structures

Higher resolution



Domain-adaptive Pre-training



Result III: Continual pre-training bridges the domain gap between natural and medical images

Task Initializ	ation Scratch	ImageNet	ChestX-ray14	CheXpert	lmageNet → ChestX-ray14	lmageNet→ CheXpert
14 thorax diseases classification	ation 80.31±0.10	81.70±0.15		81.99±0.08		82.25±0.18
5 thorax diseases classificat	ion 86.60±0.17	87.10±0.36	87.40±0.26		87.09±0.44	
Tuberculosis detection	89.03±1.82	95.62±0.63	96.32±0.65	97.07±0.95	98.47±0.26	
Pneumothorax segmentation	on 67.54±0.60	67.93±1.45	68.92±0.98	69.30±0.50	69.52±0.38	
Lung segmentation	97.55±0.36	98.19±0.13	98.18±0.06	98.25±0.04	98.27±0.03	98.31±0.05

^{*}When pre-training and target tasks are the same, transfer learning is not applicable, denoted by "---".

Result III: Continual pre-training bridges the domain gap between natural and medical images

Task	Initialization	Scratch	ImageNet	ChestX-ray14	CheXpert	ImageNet→ ChestX-ray14	ImageNet→ CheXpert
14 thorax diseases	classification	80.31±0.10	81.70±0.15		81.99±0.08		82.25±0.18
5 thorax diseases c	lassification	86.60±0.17	87.10±0.36	87.40±0.26		87.09±0.44	
Tuberculosis detect	tion	89.03±1.82	95.62±0.63	96.32±0.65	97.07±0.95	98.47±0.26	97.33±0.26
Pneumothorax segmentation		67.54±0.60	67.93±1.45	68.92±0.98	69.30±0.50	69.52±0.38	69.36±0.49
Lung segmentation		97.55±0.36	98.19±0.13	98.18±0.06	98.25±0.04	98.27±0.03	98.31±0.05

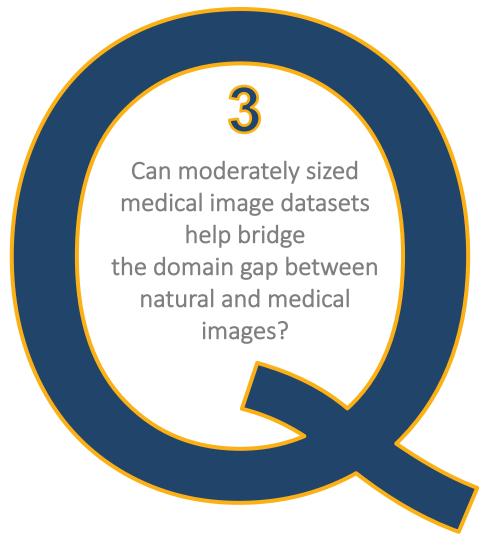
^{*}When pre-training and target tasks are the same, transfer learning is not applicable, denoted by "---".

Result III: Continual pre-training bridges the domain gap between natural and medical images

Task	Initialization	Scratch	ImageNet	ChestX-ray14	CheXpert	ImageNet→ ChestX-ray14	ImageNet→ CheXpert
14 thorax disease	es classification	80.31±0.10	81.70±0.15		81.99±0.08		82.25±0.18
5 thorax diseases classification		86.60±0.17	87.10±0.36	87.40±0.26		87.09±0.44	
Tuberculosis detection		89.03±1.82	95.62±0.63	96.32±0.65	97.07±0.95	98.47±0.26	97.33±0.26
Pneumothorax segmentation		67.54±0.60	67.93±1.45	68.92±0.98	69.30±0.50	69.52±0.38	69.36±0.49
Lung segmentati	on	97.55±0.36	98.19±0.13	98.18±0.06	98.25±0.04	98.27±0.03	98.31±0.05

^{*}When pre-training and target tasks are the same, transfer learning is not applicable, denoted by "---".

^{*}The best methods are bolded while the others are highlighted in blue if they achieve equivalent performance compared with the best one (i.e., p > 0.05).



Continual pre-training bridges the domain gap between natural and medical images.

Benchmarking Transfer Learning for Medical Imaging

- What truly matters for the segmentation tasks is fine-grained representation
- Self-supervised ImageNet models learn holistic features more effectively than supervised ImageNet models
- Ontinual pre-training can bridge the domain gap between natural and medical images

A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis

Try it for yourself

Code, data, and models are available online

github.com/JLiangLab/BenchmarkTransferLearning

References

For figures in slide 2, credit to:

- 1. Wang, X., et al.; ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2097-2106.
- 2. Esteva, A., et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).
- 3. Papadopoulos, A., et al. An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images. Sci Rep 11, 14326 (2021).

For figures in slide 6, credit to:

- 1. Zhao, Q., et al; Pneumothorax Detection and Localization in X-Ray Images Given Richer Annotation Information. SIIM Conference on Machine Intelligence in Medical Imaging. 2018.
- 2. Zhan, T. et al. Brain Tumor Segmentation in Multi-modality MRIs Using Multiple Classifier System and Spatial Constraint. 2015 3rd International Conference on Computer, Information and Application (2015): 18-21.
- 3. Santini, G.; Al in Medical Imaging: The Kidney Tumor Segmentation Challenge. 2019
- 4. Tavakoli, M., et al. Unsupervised automated retinal vessel segmentation based on Radon line detector and morphological reconstruction. IET Image Processing 15 (7), pp. 1484-1498, 2021.