
Task                                        Initialization Metric Scratch ImageNet ChestX-ray14 CheXpert ImageNetà ChestX-ray14 ImageNetà CheXpert
Fourteen thorax diseases classification AUC 80.31±0.10 81.70±0.15 --- 81.99±0.08 --- 82.25±0.18
Five thorax diseases classification AUC 86.60±0.17 87.10±0.36 87.40±0.26 --- 87.09±0.44 ---
Tuberculosis detection AUC 89.03±1.82 95.62±0.63 96.32±0.65 97.07±0.95 98.47±0.26 97.33±0.26
Pneumothorax segmentation Dice 67.54±0.60 67.93±1.45 68.92±0.98 69.30±0.50 69.52±0.38 69.36±0.49
Lung segmentation Dice 97.55±0.36 98.19±0.13 98.18±0.06 98.25±0.04 98.27±0.03 98.31±0.05
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The best methods are bolded while the others are highlighted in blue if they achieve equivalent performance compared with the best one (i.e., p > 0.05).
When pre-training and target tasks are the same, transfer learning is not applicable, denoted by “-”.

Continual pre-training bridges the domain gap between natural and medical images.

Pre-trained models on fine-
grained data are better suited 
for segmentation tasks, while 
pre-trained models on 
coarse-grained data prevail
on classification tasks.
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Benchmarking newly-developed 
pre-training techniques for 

medical image analysis

Can medical image datasets help 
bridge the domain gap between 

natural and medical images?

What advantages can 
supervised iNat2021 

models offer for 
medical imaging in 
comparison with 

supervised ImageNet 
models?

How generalizable are 
the self-supervised 

ImageNet models to 
medical imaging in 
comparison with 

supervised ImageNet 
models?

models learn holistic features
more effectively than supervised

ImageNet models.

Self-supervised ImageNet

Random initialization

ImageNet

iNat2021*

*The most recent large-scale
fine-grained datasets


