A Systematic Benchmarking Analysis of Transfer Learning for Medical Image Analysis

Mohammad Reza Hosseinzadeh Taher¹, Fatemeh Haghighi¹, Ruibin Feng², Michael B. Gotway³, and Jianming Liang¹

¹Arizona State University ²Stanford University ³Mayo Clinic

View PDF

Task Initializa	ition Metric	Scratch	ImageNet	ChestX-ray14	CheXpert	lmageNet→ ChestX-ray14	ImageNet→ CheXpert
Fourteen thorax diseases classificat	tion AUC	80.31±0.10	81.70±0.15		81.99±0.08		82.25±0.18
Five thorax diseases classification	AUC	86.60±0.17	87.10±0.36	87.40±0.26		87.09±0.44	
Tuberculosis detection	AUC	89.03±1.82	95.62±0.63	96.32±0.65	97.07±0.95	98.47±0.26	97.33±0.26
Pneumothorax segmentation	Dice	67.54±0.60	67.93±1.45	68.92±0.98	69.30±0.50	69.52±0.38	69.36±0.49
Lung segmentation	Dice	97.55±0.36	98.19±0.13	98.18±0.06	98.25±0.04	98.27±0.03	98.31±0.05

The best methods are **bolded** while the others are highlighted in blue if they achieve equivalent performance compared with the best one (i.e., p > 0.05). When pre-training and target tasks are the same, transfer learning is not applicable, denoted by "-".

Continual pre-training bridges the domain gap between natural and medical images.

Al Pre-trained models on finegrained data are better suited for segmentation tasks, while pre-trained models on coarse-grained data prevail on classification tasks.

Random initialization

ImageNet

≈ 68.5

66.5

*The most recent large-scale

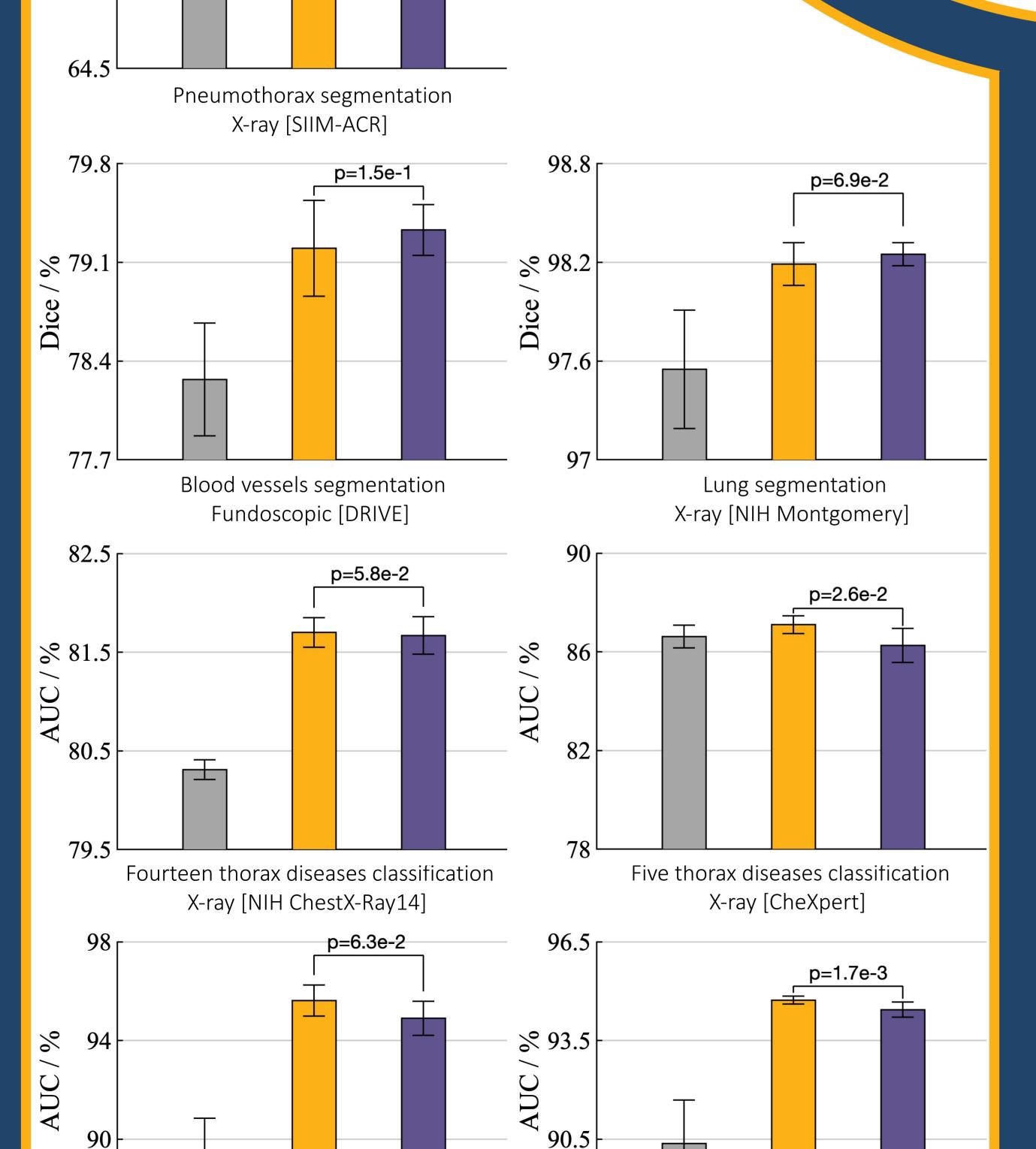
fine-grained datasets

70.5

p=1.9e-1

Tuberculosis detection

X-ray [NIH Shenzhen CXR]



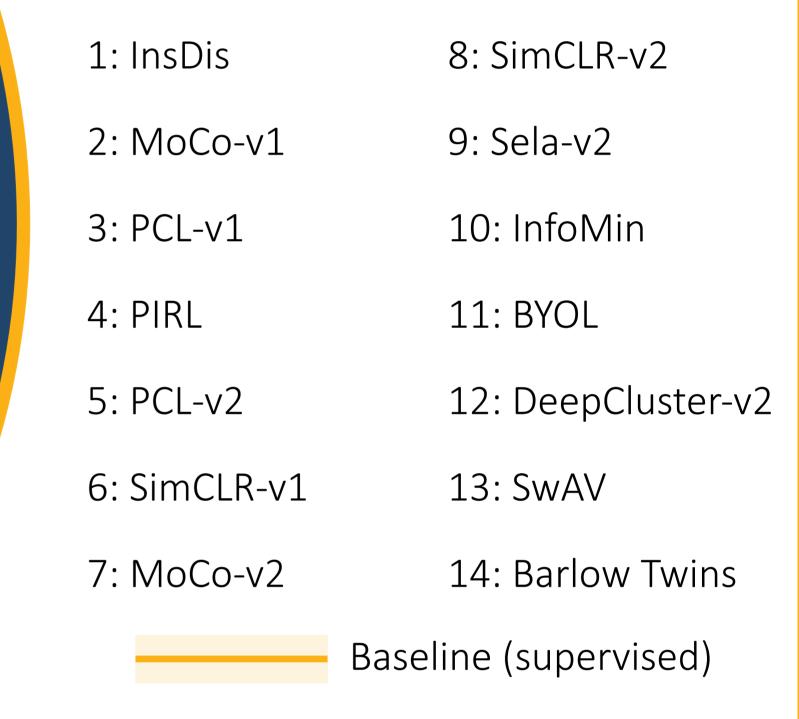
Can medical image datasets help bridge the domain gap between natural and medical images?

Benchmarking newly-developed pre-training techniques for medical image analysis

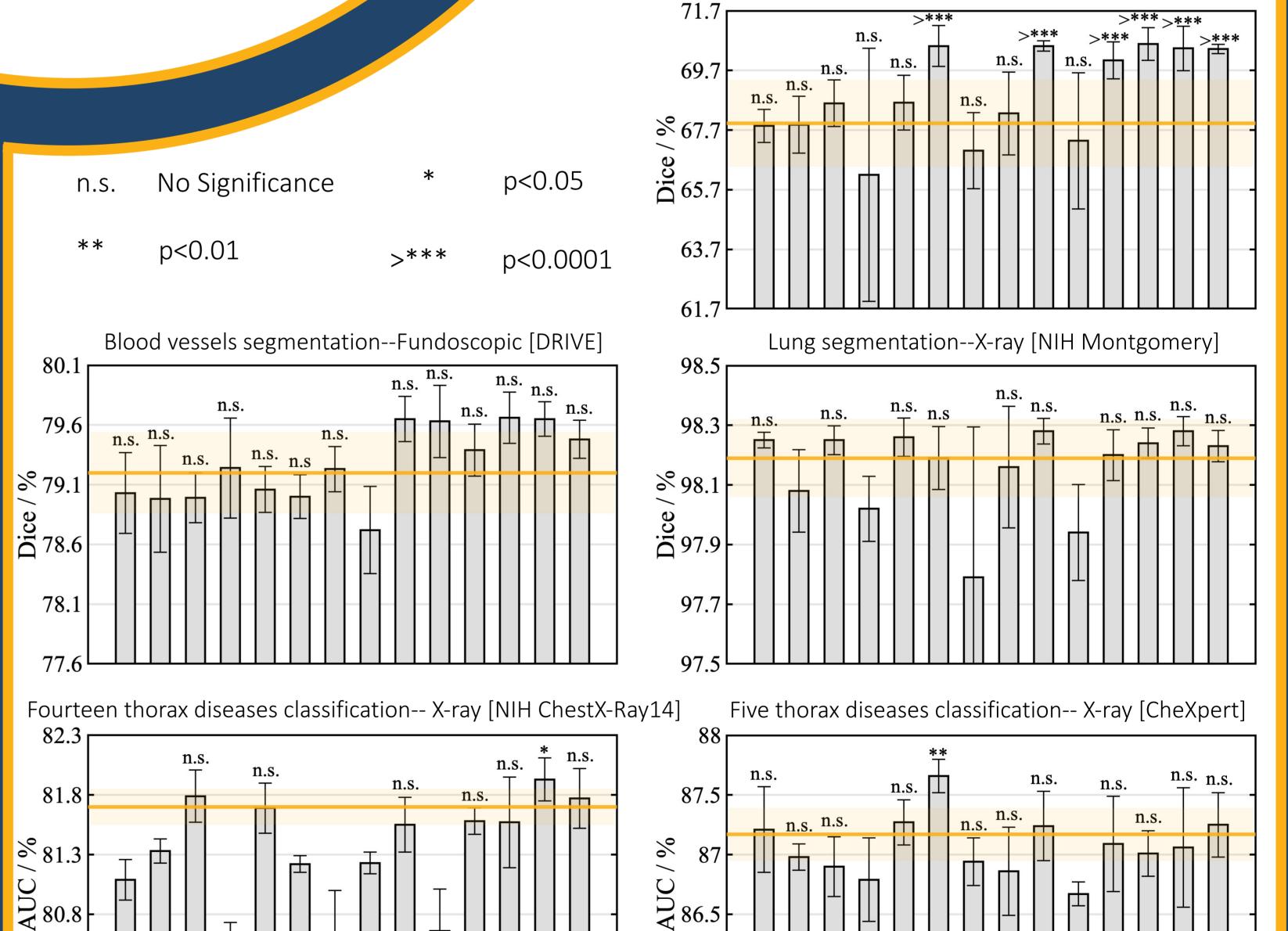
What advantages can supervised iNat2021 models offer for medical imaging in comparison with supervised ImageNet models?

How generalizable are the self-supervised ImageNet models to medical imaging in comparison with supervised ImageNet models?

A2 Self-supervised ImageNet models learn holistic features more effectively than supervised ImageNet models.



Pneumothorax segmentation--X-ray [SIIM-ACR]



This research has been supported partially by ASU and Mayo Clinic through a Seed Grant and an Innovation Grant, and partially by the NIH under Award Number R01HL128785.

94.5

Pulmonary embolism detection

CT [RSNA PE Detection]

Pulmonary embolism detection--CT [RSNA PE Detection]