
Enabling Subscriber-to-Subscriber Communication in an NBMA DSL Network

M. MacGregor, L. Stewart
Dept. of Computing Science, University of Alberta

Edmonton, Alberta, Canada

Abstract
Residential broadband digital subscriber loop (DSL)
networks are used for many applications, such as surfing
the Web, ICQ and e-mail. One of the more performance-
intensive applications is distributed gaming. Participants
in an online game may subscribe to multiple ISP’s, or
they may share the same ISP. In the case where several
gamers share the same ISP, they will likely all reside in
the same non -broadcast multiple access (NBMA)
network. In this situation, manual configuration of each
subscriber’s machine is often required for them to
communicate. In this paper we detail a met hod that
removes the need for manual intervention, and enables
communications between machines on the same NBMA
network.

Keywords: ARP, proxy ARP

1. INTRODUCTION
In this paper we document a method for enabling
communications between subscribers in differ ent
premises connected by the non-broadcast multiple access
(NBMA) network of an Internet services provider (ISP).
The environment we discuss is typical of those used to
provide high-speed digital subscriber link (DSL) services.
A typical DSL network (see Figure 1) concentrates traffic
from hundreds of subscribers at a DSLAM. The aggregate
traffic is carried over a 45 Mbps DS -3 link from the
DSLAM to an ATM edge switch. The traffic from several
DSLAMs is aggregated at the edge switch and carried
over a 155 Mbps optical OC-3 link to the ISP’s core
switch. The core switch passes all the DSL traffic to a
device which is a combined bridge / router. This last
device is configured to bridge at layer 2 whenever
possible, and only resorts to routing when it must.

This network is called a “non -broadcast” multi-access
(NBMA) network because broadcast traffic originated by
a subscriber is not rebroadcast out the same physical
interface on which it arrives at the ISP. This is the bridge /
router interface labeled “1” in Figure 1. This single
physical interface may carry thousands of subscriber
virtual circuits so that a misbehaving client PC could
flood the network with broadcasts if all broadcasts were
echoed at interface “1”. One consequence of NBMA
behavior is that ARP requests from subscriber machines

are terminated at the ISP. This is problematic for ISP's
whose subscribers want to do such apparently simple
things as running multiplayer games over the network.

Client PCDSL Modem

DSL Access
Multiplexer
(DSLAM)

DSL Access
Multiplexer
(DSLAM)

ATM Core
Switch

ATM Edge
Switch

Bridge /
Router

Internet

. .
 .

Client PCDSL Modem

. .
 .

1 ARP Server

Figure 1. DSL Network

The ISP's network is usually configured at the bridge /
router so that all subscribers are in the same IP subnet.
This allows traffic between subscribers, and traffic
incoming from the Internet to be bridged at layer 2 rather
than routed at layer 3. Bridging is much less costly in
terms of machine resources because the typical filter /
forward / flood decisions can be implemented in terms of
looking for an exact match in a table. In contrast, routing
is based on a much more expensive "longest match"
algorithm. If the subscribers were routed rather than
bridged, then all incoming traffic (e.g. Web browsing)
would have to be routed to each of the potentially
thousands of subscribers. This would be incredibly
wasteful of router cycles as all those subscribers are
actually connected to the same physical interface,
although using different virtual interfaces.

When one subscriber's machine wishes to communicate
with another on the same subnet, it sends out an ARP

request. The ARP request is sent as broadcast traffic, and
in an NBMA network it will be terminated at the ISP. The
target will not hear the ``broadcast'', and the requesting
client will not get an ARP reply.

The ARP broadcast problem could be solved by placing
each subscriber premise in a separate subnet, but this is
not feasible as it would require routing at the ISP. Proxy
ARP, in which the bridge / router would reply with its
own MAC address, is not feasible either because this
would result in all inter -subscriber traffic being routed
because the bridge / router would see a frame with its
MAC address, but an IP address belonging to another
device.

ISP staff could walk each subscriber through the process
of adding static ARP entries for each of their friends'
machines to their PC, but this is very expensive in terms
of support staff time. In fact, the single most critical
factor in an ISP's profitability is its ability to minimize
time on the phone with subscribers. Further, dynamic
address assignment through DHCP is common in these
networks, so subscribers will have to be prepared to
update their static entries whenever a friend's address
changes.

To solve this problem for a particular ISP, we began the
process of developing a server running on a PC attached
to a dedicated interface on the bridge / router. Our focus
was on enabling subscriber-to-subscriber communications
while relying as much as possible on the existing
functionality in the network, and minimizing any manual
configuration. In particular, we wanted to keep the PC out
of the series path of normal communication, and minimize
the functionality embedded in the server.

We describe our work in the following, beginning with a
review of previous work. This is followed by a
description of the tests we performed at the ISP's
premises. After describing our solution we present the
performance of the server in order to address scalability
concerns. The paper concludes with a summary and
suggestions for future work.

2. PREVIOUS WORK
The original specification of ARP appears in RFC-826 [1]
``An Ethernet Address Resolution Protocol.'' This RFC
states explicitly that ``hosts do not transmit information
about anyone other than themselves,'' so that the
application outlined here is outside the original
specification for ARP.

The most closely related work is described in RFC-1735
[2], ``NBMA Address Resolution Protocol (NARP),''
which deals with address resolution in NBMA networks.
The focus of RFC -1735 is on resolving addresses
belonging to foreign subnets within the same NBMA
cloud. If the destination belongs to the same subnet, RFC-

1735 specifies that ARP or preconfigured tables are to be
used. NARP is used only to resolve the address for a host
in another subnet. Even in that case, the NBMA ARP
server (NAS) is assumed to reside at an explicitly
configured IP address.

In RFC-1620 [3] the use of Address Resolution servers
for shared media is outlined, but the document goes on to
say that end stations must know the layer 2 address of the
server - there is no intent to serve address resolution via
broadcast.

Finally, RFC-1433 [4] deals with a type of proxy ARP
service in which foreign IP addresses are resolved to layer
2 addresses. Again, this is quite different than the current
problem, in which we are dealing with addresses within
the same subnet.

As there was no existing standardized method for solving
the problem without having to configure each subscriber's
machine(s), we proceeded to experiment with possible
solutions.

3. ISP PREMISE TESTS
The solution we developed was to connect a server to a
physical interface at the ISP's bridge / router distinct from
the interface terminating the subscribers, as indicated in
Figure 1. As a result, the ARP requests are broadcast to
the server. The server then broadcasts an ARP request to
the destination on behalf of the source. Once the
destination replies, the ARP server caches the reply as
well as forwarding it to the original client.

The test environment used to develop this solution
consisted of two clients in separate geographic locations
attached to the same NBMA network by DSL modems.
The PVCs from the modems were terminated on a bridged
virtual interface (BVI) within one router card of the
bridge / router, which was a Cisco 6400. An Ethernet
interface on the router card was used to connect a PC
running the test software to the BVI.

When a client sends out an ARP request, the bridge /
router will broadcast the request out the interface to which
the ARP server is attached because it is on a different
physical interface than the one on which the broadcast
originally arrived.

We first tried to have the PC create the ARP replies itself,
but the 6400 refused to forward frames containing the
containing its own MAC address (the MAC address of the
BVI). We then configured the ARP server to react to an
ARP request by originating a new ARP request for the
destination on behalf of the original client. On receipt of
the reply, the result is cached at the server and also sent
back to the original client.

This is a much better solution than just turning the PC
into a special-purpose router, or finding some way to
coerce an additional router into performing this service.
Once the ARP server has returned the ARP reply to the
original source, subsequent traffic flows via the 6400
without involving the ARP server on the PC. This
removes the PC from the series path of the subsequent
data flow.

Note that the ARP server is performing a service quite
different than simple proxy ARP, in that it is exploring the
subnet and replying on behalf of clients in the local
subnet. The service is actually more like ARP spoofing,
except that the server actually points the requesting client
at the correct destination machine. This solution allows
providers to maintain their current configurations while
removing the need for any manual setup or maintenance
of clients.

4. SCALABILITY
Once we had a working solution to the problem, we
needed to determine how scalable the idea was. Even
though the ARP server was not in the direct data flow of
the DSL service, we wanted some idea of the rate of ARP
requests it could be expected to handle. A simple PC
running Linux might be acceptable in a production
environment because this particular function may not be
sufficiently critical that a highly reliable platform is
required.

Performance tests were run in the Co mmunication
Networks Research Lab at the University of Alberta. The
lab test environment consisted of a PC that hosted the
software, a Wandel & Goltermann DominoFE
internetwork analyzer that generated ARP requests, and a
Cisco 2505 router. The PC was an Intel 400 MHz
Celeron-based machine with 64 MB of SDRAM and five
3Com 3c905B Ethernet interfaces. The operating system
used was RedHat Linux 6.1, kernel 2.2.12. We used three
different test configurations to determine the effects of
network rate and number of interfaces used.

10 Mbps, HDX
In this test, the DominoFE was attached to one port of the
10 Mbps half-duplex Ethernet hub on the Cisco 2505. An
Ethernet interface on the PC was attached to another port
on the hub. The DominoFE generated ARP requests and
sent them to router which then flooded them to the PC.
The software on the PC received the ARP requests and
sent back replies. No ARP lookups, ARP table
maintenance or caching was done by the server; a fixed
MAC address was used in all ARP replies.

For this test, the Ethernet utilization (which was due
solely to ARP traffic) was set at levels between 1% and
10%. For each value of Ethernet utilization, the CPU
utilization was recorded along with the number of ARP

requests processed per second. The duration of each test
was 60 seconds. Table 1 shows the results of this test.

Ethernet
Utilization, %

ARP requests /
sec

CPU
utilization, %

1 126 1
2 250 1
3 373 2
4 498 2
5 622 2

10 1241 5
Table 1. Results of testing with 10Mbps HDX

interface

The ARP l oads used during this test are quite high.
Virtually all network operating systems implement MAC
address caching so there will not be an excessive amount
of ARP traffic. For example, if clients typically hold one
ARP entry (e.g. for gaming), and they age that entry out
after 60 seconds, then a load of 100 ARPs/sec represents
the load that would result from 6000 concurrently active
clients in a single subnet.

Our results show that the software can handle over 1200
ARPs/sec using a simple 10 Mbps HDX link. Using the
rough guide of 100 ARPs/sec for 6000 clients, this would
be sufficient to support 72,000 subscribers.

100 Mbps, FDX, One Interface
The second test involved only the DominoFE and the PC.
In this configuration, ARP requests generated by the
DominoFE were sent directly over a 100 Mbps full duplex
Ethernet link to an interface on the PC. The software sent
all ARP replies back out the interface on which they
arrived.

In this test, Ethernet utilization was started at 10% and
was increased until it reached 20%. Again, the CPU
utilization of the software and the number of ARP
requests processed per second were recorded. The
duration of each test was 60 seconds. Table 2 contains the
results of the second test. The data indicates that the
software can comfo rtably handle a load of 10,000
ARPs/sec on a 100 Mbps full-duplex link. Using the same
rough guide as above, this would be sufficient to support
600,000 subscribers.

Ethernet
Utilization, %

ARP requests /
sec

CPU
utilization, %

10 12,376 51
15 17,808 82
17 18,298 99
20 16,816 99

Table 2. Results of testing with 100Mbps FDX
interface

At loads over 15,000 ARPs/sec, some losses were noted.
That is, the number of ARP requests recorded did not
equal the number of replies. We suspect that NIC buffer
overruns were destroying some of the traffic.

100 Mbps, FDX, Two Interfaces
The third configuration was an extension of the second:
instead of sending ARP replies out the receiving interface,
the software sent them out a second 100 Mbps interface.
Ethernet utilization was increased from 10% to 25%, and
the number of ARP requests processed per second and the
CPU utilization were recorded. Each test lasted 60
seconds.

Ethernet
Utilization, %

ARP requests /
sec

CPU
utilization, %

10 12,378 26
12 14,989 28
15 18,707 35
17 21,129 45
20 24,935 74
25 13,920 99

Table 3. Results of testing with two 100Mbps
FDX interfaces

By adding a second interface for outbound traffic, we
hoped to increase the rate at which responses could be
generated (see Table 3). Our results show that the
software operated well up to about 25,000 ARPs/sec. This
demonstrates conclusively that a simple PC should be
able to service even an extremely large DSL NBMA
subnet of over 1,000,000 subscribers.

5. SUMMARY AND FUTURE WORK
NBMA environments limit broadcast traffic. While this is
desirable because it decreases bandwidth consumption, it
stops protocols such as ARP from working. We created an
application to re-enable ARP and tested its performance
on a Linux-based PC. The results show that the software
can handle 1200 ARPs/sec over a simple 10 Mbps HDX
link, 10,000 ARPs/sec on a 100 Mbps FDX link, and
25,000 ARPs/sec on a 100 Mbps FDX link using separate
interfaces for receive and transmit. This final value
represents the load that might be gen erated by over
1,000,000 concurrently active clients, so that the use of a
simple PC is not a significant limit in a production
environment.

Overall, this is a good solution to the requirement for
subscriber-to-subscriber communication in a typical
NBMA D SL network. The server generates an ARP
request on behalf of the original client in order to discover
the IP-MAC mapping needed, and then distributes this
information in an ARP reply. It also caches and ages the
result for future use. There is a minimal a mount of
functionality supplied by the server, and it is out of the

series path of the normal communication between
subscribers.

In the future, we propose to implement this application
within the Linux kernel in order to improve performance.
This could be done either as a kernel module, similar to
kHTTPd and kNFSd, or as a straight modification to the
ARP code. This application has also suggested a new
form of bridging that we call ``active bridging'' that is
useful in this type of NBMA environment, where Layer 3
information can be used to give direction to Layer 2
operation. The use of active bridging in NBMA
environments will also be explored further.

References
1. D.C. Plummer, “RFC-826: Ethernet Address

Resolution Protocol”, November, 1982.

2. J. Heinanen and R. Govindan, “RFC-1735: NBMA

Address Resolution Protocol (NARP)”, December,
1994.

3. B. Braden, J. Postel and Y. Rekhter, “RFC-1620:

Internet architecture extensions for shared media”,
May, 1994.

4. J. Garrett, J. Hagan and J. Wong, “RFC-1433:

Directed ARP”, March, 1993.

