
A Tight Space Bound for Consensus

Leqi Zhu
Department of Computer Science

University of Toronto
Canada

lezhu@cs.toronto.edu

ABSTRACT
Existing n-process randomized wait-free (and obstruction-
free) consensus protocols from registers all use at least n
registers. In 1992, it was proved that such protocols must
use Ω(

√
n) registers. Recently, this was improved to Ω(n)

registers in the anonymous setting, where processes do not
have identifiers. Closing the gap in the general case, how-
ever, remained an open problem. We resolve this problem
by proving that every randomized wait-free (or obstruction-
free) consensus protocol for n processes must use at least
n− 1 registers.

CCS Concepts
• Theory of computation → Concurrency

Keywords
Shared Memory Model, Consensus, Space Complexity

1. INTRODUCTION
Perhaps the most studied problem in the theory of dis-

tributed computing is the consensus problem, which requires
n processes, each with an input value, to agree on a common
output value. An attractive application of the consensus
problem lies in implementing shared objects, such as stacks
or queues. In particular, if there is a wait-free protocol for
consensus, where each process decides in a finite number
of its own steps, regardless of the speed or failure of other
processes, then it is also possible to implement any shared
object in a wait-free manner [Her91].

It is impossible to deterministcally solve wait-free consen-
sus in an asynchronous shared memory system, where pro-
cesses communicate by reading and writing shared memory
locations, called registers [LAA87]. However, it is possible
using randomization [AC08, AH90, AW96, CIL94]. Asymp-
totically tight bounds are known for the total number of
steps taken by all processes [AC08].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

STOC ’16, June 18-21, 2016, Cambridge, MA, USA
c© 2016 ACM. ISBN 978-1-4503-4132-5/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2897518.2897565

On the other hand, tight bounds were not known for the
space complexity of this problem. In 1992, Fich, Herlihy,
and Shavit proved a space lower bound of Ω(

√
n) regis-

ters [FHS98]. All existing protocols use at least n registers
[AH90, AW96]. Closing this gap has been a longstanding
open problem.

Recently, we proved matching upper and lower bounds of
n registers for a restricted class of protocols, where processes
are anonymous (i.e. they have no identifiers) and memory-
less (i.e. they do not use local memory) [Zhu15]. At the same
time, using very interesting, different techniques, Gelashvili
proved a lower bound of Ω(n) registers for protocols with
anonymous processes, without the memoryless assumption
[Gel15]. Since there are anonymous protocols that use n
registers [BRS15, Zhu15], the bound is tight. Thus, the
anonymous case of the problem is resolved to within a con-
stant factor.

The general case of the problem, however, remained open.
There was even evidence suggesting the possibility of a pro-
tocol using O(

√
n) space: Weak leader election is a closely

related, but provably weaker, problem. In this problem,
processes must choose exactly one leader, but each process
only needs to know whether it has been chosen. An inno-
vative protocol for weak leader election, using O(

√
n) regis-

ters, was obtained [GHHW13] a few years ago. Later, the
same authors improved this to O(logn), which is optimal
[GHHW15].

Our contribution.
We resolve the general case of the problem by proving that

any consensus protocol for n processes in an asynchronous
system uses at least n − 1 registers. Our lower bound uses
a more refined notion of valency (introduced in [FLP85])
combined with a covering argument (introduced in [BL93]).
As in [FHS98, Gel15, Zhu15], the bound holds even if the
registers are of unbounded size.

The lower bound shows that consensus is, fundamentally,
a communication problem. In particular, having large reg-
isters cannot compensate for having too few registers. Since
there is a memoryless anonymous protocol that uses n reg-
isters [Zhu15], having identifiers and large amounts of local
memory also cannot compensate for having too few registers.

A nice feature of our proof is that it is simple and uses very
little machinery. This is a bit surprising given the difficulty
of the Ω(

√
n) lower bound and the subtlety of the Ω(n) lower

bound for the anonymous case.

2. PRELIMINARIES
In this section, we present concepts that are necessary for

understanding our proof of the lower bound. In Section 2.1,
we discuss the consensus problem and the model of compu-
tation. In Section 2.2, to make the model more concrete,
we describe a simple consensus protocol. Finally, in Sec-
tion 2.3, we present notation and terminology for describing
executions of a protocol.

2.1 Consensus in a Shared Memory System
We consider an asynchronous shared memory system with

n ≥ 2 processes. Each processes has a unique identifier. The
processes run at arbitrary speeds and may fail, at any time,
by crashing. To communicate, they read from and write to
shared memory locations, called registers.

In the consensus problem, each process has a local input
value and they want to collectively decide on a single output
value. A process decides a value by writing it to a special
location in its local memory and then terminating.

A solution to the consensus problem is called a consensus
protocol. Every consensus protocol must satisfy the following
two properties:

• Validity : If a process decides a value, then that value
is the input value of some process.

• Agreement : No two processes decide different values.

A consensus protocol terminates when every non-faulty
process has decided a value. Processes that crash are not
required to decide a value. A protocol is wait-free if every
non-faulty process decides a value after taking a finite num-
ber of steps, regardless of what other processes are doing. A
well-known result is that there is no consensus protocol that
is both deterministic and wait-free [LAA87]. It is possible
to circumvent this by weakening the termination condition.

A consensus protocol is randomized wait-free if every non-
faulty process decides a value with probability approaching
1 after taking a finite number of steps. A consensus protocol
is obstruction-free if every non-faulty process decides a value
after taking a finite number of consecutive steps (i.e. no other
process takes a step in between these steps).

We consider consensus protocols satisfying the following
termination condition, which subsumes randomized wait-
free and obstruction-free: A consensus protocol is nonde-
terministic solo terminating if every process can decide a
value after taking a finite number of consecutive steps. A
more precise definition of this appears in Section 2.3.

2.2 An Example Consensus Protocol
To illustrate the model, we describe, in Figure 1, a simple

binary consensus protocol for n ≥ 2 processes which uses
2n− 1 registers. The input value of each process is assumed
to be either 0 or 1. The protocol is adapted from [Bow11].

Intuitively, a process attempts to fill the registers with its
preference (either 0 or 1) to convince the other processes to
decide its value. Initially, its preference is its input value
and the process writes this value, along with its identifier,
to the first register. Then, it reads all 2n − 1 registers,
one by one. If the process sees that value v appears more
times than value v in the registers, then it sets its preference
to v. Otherwise, it randomly picks v ∈ {0, 1} and sets its
preference to v. Afterwards, it checks whether the registers
all contain its preference and identifier. If this is the case,

then it decides its preference and terminates. Otherwise, it
writes the pair containing its preference and identifier to the
first register that does not contain this pair and repeats.

1: preference ← input
2: write (preference, identifier) to register 1
3: loop
4: a[1..2n− 1] = (⊥, . . . ,⊥)
5: (prefer0, prefer1)← (0, 0)
6: for i = 1..2n− 1 do
7: a[i]← read from register i
8: if a[i] 6= ⊥ then
9: v ← a[i].preference

10: preferv ← preferv + 1

11: if ∃v ∈ {0, 1}: preferv > preferv then
12: preference ← v
13: else
14: preference ← random v ∈ {0, 1}
15: if ∀i ∈ [2n− 1]: a[i] = (preference, identifier) then
16: decision ← preference
17: terminate
18: i← min{i ∈ [2n− 1] : a[i] 6= (preference, identifier)}
19: write (preference, identifier) to register i

Figure 1: A nondeterministic solo terminating bi-
nary consensus protocol for n ≥ 2 processes which
uses 2n− 1 registers.

It can be shown that every process decides a value v after
at most (2n − 1)2 + 2n − 1 consecutive steps and that v
is the input value of some process. Hence, the protocol is
nondeterministic solo terminating and satisfies Validity.

Now, consider the first process to decide a value. It saw
that all 2n − 1 registers contained its preference, v, and
its identifier. Since there are only n − 1 other processes, it
follows that these processes will see that v occurs more times
than v (since 2n− 1− (n− 1) = n > n− 1) when they next
perform the loop in lines 6 and 7. Thus, they will all set
their preferences to v. From that point on, the number of
registers that contain v never increases. It follows that v is
never decided. Hence, the protocol satisfies Agreement.

2.3 Terminology and Notation
We now describe some common terminology and notation

for describing executions of a fixed consensus protocol Π,
borrowing heavily from [AE14]. We will refer to the protocol
in Figure 1 for examples.

Formally speaking, a consensus protocol specifies a set
of possible states for each process. In each state, there is
at most one next step that the process may take. Each
step is either a read or write of a register. After taking a
step, the process can change state, based on its previous
state, the response it received from its step, and its local
computation. If, from some state, given some response, a
process has multiple possible next states, then the protocol is
nondeterministic. Otherwise, the protocol is deterministic.

To illustrate this, consider the protocol in Figure 1. Lines
2, 7, and 19 denote steps. The rest is local computation.
The protocol is nondeterministic since, from some states, a
process may have two possible next states, even if it receives
the same response. In particular, if the number of 1’s in the
registers is equal to the number of 0’s, then a process may
change its preference to either 0 or 1.

A configuration of Π consists of the state of each process
and the contents of each register. An initial configuration is
determined by the input value of each process. The contents
of the registers are the same in all initial configurations.

A configuration C is indistinguishable from a configura-
tion C′ to a set of processes P if every process in P is in the
same state in C as it is in C′ and each register has the same
contents in C as it does in C′.

A step e by a process p is applicable at a configuration C
of Π if e is the next step of process p given its state in C.
If e is a read from a register r, then e returns the contents
of r in C. Otherwise, if e writes the value v to register r,
then the contents of register r is set to v and e returns an
acknowledgement. If e is applicable at C, then we use Ce
to denote the configuration resulting from p taking step e.

A sequence of steps α = e1, e2, . . . is applicable at a con-
figuration C of Π if e1 is applicable at C and, for each i ≥ 1,
ei+1 is applicable at Ce1 · · · ei. In this case, α is an execu-
tion from C. A configuration C of Π is reachable if there
exists a finite execution from an initial configuration of Π
that results in C.

For a finite execution α from a configuration C of Π, we
use Cα to denote the configuration reached after applying
α to C. Note, if α is empty, then Cα = C. We say an
execution α is P -only, for a set of processes P , if all steps
in α are by processes in P . Note, if configurations C and
C′ are indistinguishable to a set of processes P , then any
P -only execution from C is applicable at C′.

Using this terminology, a consensus protocol Π is non-
determinstic solo terminating if, for every process, p, and
every reachable configuration, C, of Π, there exists a {p}-
only execution α from C such that p has decided a value
(and terminated) in Cα.

3. LOWER BOUND
Let Π be any nondeterministic solo terminating binary

consensus protocol for n ≥ 2 processes. In this section,
we show that Π uses at least n − 1 registers, even if the
registers are of unbounded size. In Section 3.1, we describe
a more refined notion of valency. In Section 3.2, we extend
some traditional ideas of covering arguments, taking into
account our notion of valency. The proof of the main result
is presented in Section 3.3.

3.1 Valency
The notion of the valency of a configuration was intro-

duced by Fischer, Lynch, and Paterson [FLP85]. Informally,
they consider the values that can decided by processes from
a reachable configuration of a binary consensus protocol.
The configuration is bivalent if both 0 and 1 can be decided.
Otherwise, the configuration is univalent.

We refine their notion of valency by considering the values
that specific (non-empty) subsets of the processes can decide
from a reachable configuration. In this view, the notion of
valency is no longer attached to the entire configuration, but
to subsets of processes in the configuration.

Definition 1. Let C be a reachable configuration of Π,
and let P be a non-empty set of processes. P can decide
v ∈ {0, 1} from C if there exists a P -only execution from C
in which v is decided. If P can decide both 0 and 1 from
C, then P is bivalent from C. If P can decide v, but not v,
from C, then P is v-univalent from C.

The following facts are easy consequences of Definition 1.

Proposition 1. Let C be a reachable configuration and
let P be a non-empty set of processes.

(i) P can decide some value from C.

(ii) If P can decide v ∈ {0, 1} from C, then any superset
of P can decide v from C.

(iii) If P is v-univalent from C, then every non-empty sub-
set of P is v-univalent from C.

(iv) If ϕ is an execution from C in which v ∈ {0, 1} is
decided, then P is v-univalent from Cϕ.

A standard part of a valency argument is to show that
there is an initial bivalent configuration. In the next propo-
sition, this is stated a bit more carefully using our notion of
valency.

Proposition 2. There is an initial configuration I of Π
and processes p0 and p1 such that, for each v ∈ {0, 1}, {pv}
is v-univalent from I, hence, {p0, p1} is bivalent from I.

Proof. For v ∈ {0, 1}, let Iv be the initial configuration
where every process starts with v. By the Validity property
of consensus, every process is v-univalent from Iv. Consider
an initial configuration I where process p0 starts with input 0
and process p1 starts with input 1. The rest of the processes
may start with any input. Since no processes have taken
steps, for each v ∈ {0, 1}, I is indistinguishable from Iv to
pv. Thus, {pv} is v-univalent from I.

The fact that a set of processes P is bivalent from a config-
uration C is not very helpful on its own. Indeed, the P -only
executions which decide 0 (or 1) may be very complex and
involve many processes. It is possible that the exclusion of
any particular process in P may suddenly make the remain-
ing processes univalent from C. Our next lemma shows that
this problem can be avoided, so we can do induction argu-
ments on |P |. It is one of the reasons why we introduced a
notion of valency defined for subsets of processes.

C Cψ
ψ′

by P

Cψ′ Cψ′δ
δ

by q ∈ Q1 by P

Q1
Q1 ∩ Q2

Q2 Q1
Q1 ∩ Q2

Q2 Q1
Q1 ∩ Q2

Q2
P

only
v

0, 1only
v

only
v

only
v

only
v

only
v

only
v

only
v

only
v

Figure 2: Diagram of configurations for Lemma 1.

Lemma 1. Let C be a reachable configuration of Π and
let P be a set of processes with |P | ≥ 3. If P is bivalent
from C, then there exists a P -only execution ϕ from C and
a process z ∈ P such that P − {z} is bivalent from Cϕ.

Proof. Pick any two processes z1, z2 ∈ P . Let Q1 =
P − {z1} and Q2 = P − {z2}. Since |P | ≥ 3, |Q1|+ |Q2| =
2|P | − 2 > |P | so Q1 ∩Q2 6= ∅ and Q1 ∪Q2 = P .

By Proposition 1(i), Q1 ∩ Q2 can decide v ∈ {0, 1} from
C. Hence, by Proposition 1(ii), both Q1 and Q2 can decide
v from C. If Qi can decide v from C, then we are done with
z = zi and ϕ being the empty execution. So, assume Q1

and Q2 are both v-univalent from C.

Since P is bivalent from C, there is a P -only execution
ψ from C in which v is decided. By Proposition 1(iv), Q1

and Q2 are both v-univalent from Cψ. Let ψ′ be the longest
prefix of ψ such that Q1 and Q2 are both v-univalent from C.
Then ψ′ 6= ψ. Consider the next step δ in ψ after ψ′. Since
Q1 ∪ Q2 = P , we may assume, without loss of generality,
that δ is a step by a process in Q1. This is illustrated in
Figure 2.

Since Q1 is v-univalent from Cψ′, Q1 is v-univalent from
Cψ′δ. Thus, Q2 is not v-univalent from Cψ′δ, so Q2 can
decide v from Cψ′δ. On the other hand, Proposition 1(iii)
implies that Q1 ∩ Q2 is v-univalent from Cψ′δ. Thus, by
Proposition 1(ii), Q2 can decide v from Cψ′δ. Therefore,
the claim is true with ϕ = ψ′δ and z = z2.

3.2 Covering
The first covering argument is due to Burns and Lynch

[BL93]. Since then, covering arguments have become the
main tool for proving space lower bounds in shared memory
systems.

The main idea is the following: Suppose there is a set of
processes R that are about to write to a set of registers V .
Then any process z /∈ R which needs the other processes
to see its actions must perform a write to a register not in
V . Otherwise, as observed in [BL93], the processes in R can
“obliterate” the information that z writes (to registers in V)
by performing their writes all at once. The next definition
formally captures these notions.

Definition 2. Let C be a reachable configuration of Π. A
process covers a register r in C if it is poised to perform
a write to r in C. If every process in a set of processes R
covers a register in C, then R is a set of covering processes
in C and a block write by R is an execution in which each
process in R performs its write (and nothing else).

Note that, if every process in R covers a different regis-
ter, then the order of the writes does not matter, since the
resulting configurations are indistinguishable. For technical
reasons, we consider R = ∅ a valid set of covering processes,
even though R covers no registers. In this case, the block
write by R is the empty execution.

Given a set of covering processes R in a configuration C, it
is tempting to think that any process z /∈ R must write to a
register not covered by R before it can decide a value. If this
were true, then we could inductively obtain a configuration
in which n different registers are covered. Unfortunately,
this is not true. For example, if the set of all processes is
v-univalent from C, then z does not have to write anything.
It can simply decide v and terminate. The next lemma gives
us a way to guarantee that a process will write to a register
that is not covered. A similar result appears in all existing
space lower bounds for consensus [FHS98, Gel15, Zhu15].

Lemma 2. Let C be a reachable configuration of Π, let P
be a set of processes, let R ⊆ P be a set of covering processes
in C, and let β be a block write by R. If P is bivalent from
Cβ, then, for every z /∈ P , every deciding {z}-only execution
from C contains a write to a register not covered by R in C.

Proof. Let ζ be any {z}-only execution from C in which
some value v ∈ {0, 1} is decided. By Proposition 1(iv), P is
v-univalent from Cζ. Since β is performed by processes in P ,
it follows that P is v-univalent from Cζβ. If all writes in ζ

are to registers covered by R, then Cζβ is indistinguishable
from Cβ to P . This is impossible since P is bivalent from
Cβ and v-univalent from Cζβ.

A block write by a set of covering processes R ⊆ P can
change P from being bivalent to being univalent. The next
lemma shows that, as long as the set of remaining processes,
P − R, is bivalent, it is possible to ensure that P remains
bivalent after the block write by R. The main configurations
in the proof are illustrated in Figure 3.

C Cψ
ϕ

by Q

Cϕ Cϕδ
δ

by q ∈ Q by Q

R R R R

only
v

v only
v

v

β by R β by R β by R β by R

Figure 3: Diagram of configurations for Lemma 3.

Lemma 3. Let C be a reachable configuration of Π, let
P be a set of processes, let R ⊆ P be a non-empty set of
covering processes in C, and let β be a block write by R. If
Q = P − R is bivalent from C, then there exists a Q-only
execution ϕ from C and a process q ∈ Q such that R ∪ {q}
is bivalent from Cϕβ.

Proof. Since R 6= ∅, by Proposition 1(i), there exists
v ∈ {0, 1} such that R can decide v from Cβ. Since Q is
bivalent from C, there is a Q-only execution ψ from C which
decides v. By Proposition 1(iv), R is v-univalent from Cψ.
Since β is a block write by R, R is v-univalent from Cψβ.
Note that, since processes in R take no steps in ψ, their
block write, β, is applicable at Cϕ, for any prefix ϕ of ψ.
Let ϕ be the longest prefix of ψ such that R can decide v
from Cϕβ. Then ϕ 6= ψ. Let δ be the next step in ψ after
ϕ, which is by some process q ∈ Q.

If δ is a read or a write to a register covered by R, then
Cϕδβ is indistinguishable from Cϕβ to R and, hence, R
can decide v from Cϕδβ. This is impossible since R is v-
univalent from Cϕδβ. So δ must be a write to a register not
covered by R and, hence, not written to in β. Thus, Cϕβδ is
indistinguishable from Cϕδβ to R, so R is v-univalent from
Cϕβδ. Since R can decide v from Cϕβ and R can decide v
from Cϕβδ, R ∪ {q} is bivalent from Cϕβ.

3.3 Main Result
We are now ready to prove the main technical lemma. We

begin with a high level outline. Intuitively, this lemma says
that, whenever we have a configuration C from which a set
of processes P is bivalent, we can reach a nice configuration
D from which a pair of processes in P is bivalent and the
remaining processes form a set of well spread covering pro-
cesses in D (i.e., every process covers a different register).

Combined with Lemma 3, this allows us to construct an in-
finite sequence of nice configurations D0, D1, D2, . . . , where
Di+1 is reachable from Di by an execution that contains a
block write by a set of well spread covering processes in Di.
There are only finitely many registers, so by the pigeonhole
principle, there are two distinct configurations Di and Dj

where the covering processes in Di and Dj cover the same
set of registers, V .

Now, suppose that we have a process z /∈ P . Consider
any solo execution by z starting from immediately before
the block write to V between Di and Di+1. By Lemma 2,
z writes to a register not in V . If we stop z immediately
before its first write to a register not in V , then, after the
block write, the processes in P can’t detect that z took any
steps. Thus, they can perform the same sequence of steps as
they did to reach Dj . The resulting configuration is a nice
bivalent configuration with a larger set of well spread cov-
ering processes (which includes z). This suggests that can
we use Lemma 1 to do induction on |P | to get successively
larger sets of well spread covering processes.

We now proceed with the formal proof. The construction
is illustrated in Figure 4.

C D D0

Di D′
i+1

Di

γ η α0

· · · Di+1 · · ·
αi

· · ·
ϕi βi ψi

Dj

ζ′

by Qi by P − {z}by {z} by Ri

· · ·

α

αi+1αi−1 αj−1

C D D0 Di

γ η α0

· · · D′
i+1 · · ·α′i

Cα

αi+1αi−1 αj−1

Figure 4: Diagram of configurations in Lemma 4.

Lemma 4. Let C be a reachable configuration of Π, and
let P be a set processes with |P | ≥ 2. If P is bivalent from
C, then there exists a P -only execution α from C and a pair
of processes Q ⊆ P such that Q is bivalent from Cα and
every process in P −Q covers a different register in Cα.

Proof. By induction on |P |. The base case is when |P | =
2 and the claim is satisfied with an empty execution α. Now,
suppose that |P | ≥ 3 and the claim holds for |P | − 1. By
Lemma 1, there is a P -only execution γ from C and z ∈ P
such that P − {z} is bivalent from D = Cγ.

We construct a sequence of configurations (Di)i≥0 reach-
able from D by (P − {z})-only executions such that, for
i ≥ 0, there is a pair of processes Qi ⊆ P − {z} that is
bivalent from Di and every process in Ri = (P − {z})−Qi

covers a different register. Furthermore, Di+1 is reachable
from Di by a (P − {z})-only execution αi that contains a
block write βi by Ri.

Constructing D0: Since P − {z} is bivalent from D and
|P − {z}| = |P | − 1, by the induction hypothesis, there is a
(P − {z})-only execution η from D and a pair of processes
Q0 ⊆ P − {z} such that Q0 is bivalent from D0 = Dη and
every process in R0 = (P − {z}) − Q0 covers a different
register in D0.

Constructing Di+1: If Ri = ∅, then let Di+1 = Di and
let αi+1 be empty. Otherwise, let βi be a block write by
Ri. Since Ri 6= ∅, by Lemma 3, there is a Qi-only execution
ϕi from Di and a process q ∈ Qi such that Ri ∪ {q} is
bivalent from Diϕiβi. Hence, by Proposition 1(ii), P − {z}
is bivalent from Diϕiβi. By the induction hypothesis, there
is a (P − {z})-only execution ψi from Diϕiβi and a pair of
processes Qi+1 ⊆ P − {z} such that Qi+1 is bivalent from
Di+1 = Diϕiβiψi and every process in Ri+1 = (P − {z})−
Qi+1 covers a different register in Di+1. Let αi = ϕiβiψi.

Since there are only finitely many registers, there exists
0 ≤ i < j such that Ri covers the same set of registers in Di

as Rj does in Dj . We now insert steps of z so that no process
in P − {z} can detect them. Since Π is a nondeterministic
solo terminating protocol, there is a {z}-only execution ζ
from Diϕi that decides a value v ∈ {0, 1}. By Lemma 2, ζ
contains a write to a register not covered by Ri in Di. Let ζ′

be the longest prefix of ζ containing only writes to registers
covered by Ri in Di. It follows that, in Diϕiζ

′, z is poised
to write to a register not covered by Ri in Di and, hence,
Rj in Dj .
Diϕiζ

′βi is indistinguishable from Diϕiβi to P − {z}, so
the (P − {z})-only execution ψiαi+1 · · ·αj−1 is applicable
at Diϕiζ

′βi. Let α = γηα0 · · ·αi−1ϕiζ
′βiψiαi+1 · · ·αj−1.

Every process in P − {z} is in the same state in Cα as
it is in Dj . In particular, Qj ⊆ P − {z} is bivalent from
Dj and, hence, from Cα, and every process in Rj = (P −
{z}) − Qj covers a different register in Dj and, hence, Cα.
Moreover, since z takes no steps after Diϕζ

′, in Cα, z covers
a register not covered by Ri in Di and, hence, Rj in Dj or
Cα. Therefore, every process in Rj ∪ {z} = P − Qj covers
a different register in Cα.

The lower bound follows immediately from Lemma 4.

Theorem 1. Let S be an asynchronous shared memory
system with n ≥ 2 processes. Then every nondeterministic
solo terminating binary consensus protocol Π designed for S
uses at least n− 1 registers.

Proof. By Proposition 2, there is an initial configuration
I of Π with processes p0 and p1 such that {pv} is v-univalent
from I and, hence, {p0, p1} is bivalent from I. In the case
when n = 2, if no process ever writes to a register, then p0
can decide 0 and p1 would not be able to tell the difference.
Hence it can decide 1, which violates Agreement. Now, sup-
pose n ≥ 3. By Lemma 4, starting from I, it is possible to
reach a configuration C′ from which a pair of processes, Q,
is bivalent and the remaining n − 2 processes, R, all cover
different registers. By Lemma 3, there is a Q-only execution
α from C′ and a process q ∈ Q such that R∪{q} is bivalent
from Cαβ, where β is the block write by R. Let z ∈ Q−{q}.
By Lemma 2, z writes to a register not covered by R in its
solo terminating execution from Cα. Hence, Π uses at least
|R|+ 1 = n− 1 registers.

4. CONCLUSION AND FUTURE WORK
We have shown that any nondeterministic solo terminat-

ing binary consensus protocol for n processes uses at least
n−1 registers. The best known randomized and obstruction-
free consensus protocols use n registers. We conjecture that
the true space complexity is n (we have proved this for n ≤ 3
in the general case and for n ≤ 4 in the anonymous case).

Another interesting avenue is to see if our techniques can
be used to prove an Ω(n − k) space lower bound for k-set
agreement. This problem is a generalization of the consensus
problem which allows up to k different values to be decided.
In particular, consensus is another name for 1-set agreement.
The best existing protocols for k-set agreement use n−k+1
registers [BRS15].

Finally, the Ω(
√
n) lower bound in [FHS98] actually holds

for historyless base objects, such as swap objects. It is not
clear how to modify our lower bound to work in this case.
The difficulty is that, when a process performs swap, it sees
the value it overwrote. Thus, it might be able to detect
whether some other process has performed a swap on this
object since it last accessed this object.

5. ACKNOWLEDGEMENTS
I would like to thank my advisor, Professor Faith Ellen.

She was the one who sparked my interest in this problem and
her energy, patience, and insights in discussing this problem
and reading many drafts of this work have proven invalu-
able to me. I would also like to thank Rati Gelashvili, Mika
Göös, and the anonymous reviewers for their helpful com-
ments. This work was supported by the Natural Sciences
and Engineering Research Council of Canada.

6. REFERENCES
[AC08] Hagit Attiya and Keren Censor. Tight bounds

for asynchronous randomized consensus. J.
ACM, 55(5), 2008.

[AE14] Hagit Attiya and Faith Ellen. Impossibility
Results for Distributed Computing. Morgan &
Claypool Publishers, 2014.

[AH90] James Aspnes and Maurice Herlihy. Fast
randomized consensus using shared memory. J.
Algorithms, 11(3):441–461, 1990.

[AW96] James Aspnes and Orli Waarts. Randomized
consensus in expected o(n log2 n) operations
per processor. SIAM J. Comput.,
25(5):1024–1044, 1996.

[BL93] James E. Burns and Nancy A. Lynch. Bounds
on shared memory for mutual exclusion. Inf.
Comput., 107(2):171–184, 1993.

[Bow11] Jack R. Bowman. Obstruction-free snapshot,
obstruction-free consensus, and fetch-and-add
modulo k. Technical Report TR2011-681,
Dartmouth College, Computer Science,
Hanover, NH, June 2011.

[BRS15] Zohir Bouzid, Michel Raynal, and Pierre
Sutra. Brief Announcement: Anonymous
Obstruction-free (n, k)-Set Agreement with
n–k+1 Atomic Read/Write Registers. In
Proceedings of 29th International Symposium
on Distributed Computing (DISC 2015),
volume 9363 of LNCS, pages 668–669.
Springer, 2015.

[CIL94] Benny Chor, Amos Israeli, and Ming Li.
Wait-free consensus using asynchronous
hardware. SIAM J. Comput., 23(4):701–712,
1994.

[EFR08] Faith Ellen, Panagiota Fatourou, and Eric
Ruppert. The space complexity of unbounded
timestamps. Distributed Computing,
21(2):103–115, 2008.

[FHS98] Faith Ellen Fich, Maurice Herlihy, and Nir

Shavit. On the space complexity of randomized
synchronization. J. ACM, 45(5):843–862, 1998.
A preliminary version appeared in PODC ’93.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike
Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM,
32(2):374–382, 1985.

[Gel15] Rati Gelashvili. On the optimal space
complexity of consensus for anonymous
processes. In Proceedings of 29th International
Symposium on Distributed Computing (DISC
2015), volume 9363 of LNCS, pages 452–466.
Springer, 2015.

[GHHW13] George Giakkoupis, Maryam Helmi, Lisa
Higham, and Philipp Woelfel. An O(

√
n) space

bound for obstruction-free leader election. In
Proceedings of 27th International Symposium
on Distributed Computing (DISC 2013),
volume 8205 of LNCS, pages 46–60. Springer,
2013.

[GHHW15] George Giakkoupis, Maryam Helmi, Lisa
Higham, and Philipp Woelfel. Test-and-set in
optimal space. In Proceedings of the
Forty-Seventh Annual ACM on Symposium on
Theory of Computing (STOC 2015), pages
615–623, 2015.

[GR05] Rachid Guerraoui and Eric Ruppert. What can
be implemented anonymously? In Proceedings
of 19th International Symposium on
Distributed Computing (DISC 2005), volume
3724 of LNCS, pages 244–259. Springer, 2005.

[Her91] Maurice Herlihy. Wait-free synchronization.
ACM Trans. Program. Lang. Syst.,
13(1):124–149, 1991.

[HHPW14] Maryam Helmi, Lisa Higham, Eduardo
Pacheco, and Philipp Woelfel. The space
complexity of long-lived and one-shot
timestamp implementations. J. ACM,
61(1):7:1–7:25, 2014.

[LAA87] Michael C. Loui and Hosame H. Abu-Amara.
Memory requirements for agreement among
unreliable asynchronous processes. Advances in
Computing Research, 4:163–183, 1987.

[Zhu15] Leqi Zhu. Brief Announcement: Tight Space
Bounds for Memoryless Anonymous
Consensus. In Proceedings of 29th
International Symposium on Distributed
Computing (DISC 2015), volume 9363 of

LNCS, pages 665–666. Springer, 2015.

