Computability

A Turing Machine (TM) is a mathematical model of computation.

\[T = (Q, \Sigma, \Gamma, \delta, q_0, \{ \text{start, end} \}) \]

- \(Q \) is a finite set of states
- \(\Sigma \) is a finite alphabet
- \(\Gamma \) is a finite tape alphabet
- \(\delta \) is a transition function
- \(q_0 \) is the initial state
- \(\{ \text{start, end} \} \) are special states

A TM accepts a string \(x \) if it reaches a special state \(\text{accept} \) or \(\text{reject} \) on input \(x \).

Define: \(L(M) \) = \(\{ x \in \Sigma^* \mid M \text{ accepts } x \} \)

We encode tape configurations of a TM with 3 pieces of info:
1. current state
2. symbol scanned
3. tape

The computation of \(M \) on input \(w \) is a series of configs \(C_0, C_1, \ldots \) (where \(C_0 = q_0 \) w)

\(M \) halts iff it reaches a halting config = \{ accepting config \}

Define: \(M \) is a decider iff it halts for all \(w \in \Sigma^* \)

\(M \) is an enumerator if it has a write-only tape (no input) and only points at characters

- \(\text{L ESD iff } 3 M, L = L(M) \)
- \(\text{L ED iff } 3 M, L = L(M) \) \(\forall M \text{ is a decider} \)

Example: \(\text{PAL} = \{ \omega \omega \mid \omega \in \{0,1\}^* \} \subseteq \Sigma \)

Church-Turing Thesis (1936)

Any 'algorithm' can be simulated by a TM.
Def: $P = \{L \mid L \in \text{TM}(\Sigma^*), 3c(\Sigma^*, T_M(m) \in O(m^2), L = \overline{L(M)}\}$

$SD = \{L \mid L \text{ semi}-decidable \}$

$D = \{L \mid L \text{ decidable } \}$

$\overline{SD} = \{L \mid L \not\in SD \land \overline{L \in SD} \}$

Σ^*

Cardinality of power set: all possible languages from fixed finite alphabet Σ^*

$\langle TM, \text{input} \rangle$: encoding of a TM in a language

$A_{TM} = \{\langle M, \omega \rangle \mid M \text{ is TM and } M \text{ accepts } \omega \}$

$All_{TM} = \{\langle M \rangle \mid M \text{ is TM and } L(M) = \Sigma^*\}$

$E_{TM} = \{\langle M \rangle \mid M \text{ is TM and } L(M) = \emptyset\}$

$H_{TM} = \{\langle M \rangle \mid M \text{ halts on } \omega\}$

$Diag = \{\langle M \rangle \in L(M)\}$

Closure:

D is closed under \land, \lor and \neg.

SD is closed under \land, \lor but not \neg.

For example:

$A_{TM} = \{\langle M, w \rangle \mid M \text{ is TM and } M \text{ accepts } w\}$

$All_{TM} = \{\langle M \rangle \mid M \text{ is TM and } L(M) = \Sigma^*\}$

$E_{TM} = \{\langle M \rangle \mid M \text{ is TM and } L(M) = \emptyset\}$

$H_{TM} = \{\langle M \rangle \mid M \text{ halts on } \omega\}$

$Diag = \{\langle M \rangle \in L(M)\}$

Closure:

D is closed under \land, \lor and \neg.

SD is closed under \land, \lor but not \neg.

Further discussion on the properties of these sets and their relationships to computability theory.
$\text{DIAG} = \{ \langle M \rangle \mid M \text{ is a TM } \land \langle M \rangle \notin \chi(M) \}$

Then DIAG is not semi-decidable.

Proof: Suppose $\chi(M_0) = \text{DIAG}$

By contradiction: if M_0 accepts $\langle M_0 \rangle$ then $\langle M_0 \rangle \in \text{DIAG}$.

Corollary: A_{TM} is not decidable.

$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM } \land M \text{ accepts } w \}$

A_{TM} decidable \implies DIAG decidable.

Church-Turing Thesis:

No computer program solves DIAG, A_{TM}.

$\text{HALT}_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ halts on input } w \}$

Then HALT_{TM} is not decidable.

Proof: Assume HALT_{TM} is decidable.

Given $\langle M, w \rangle$, we can determine whether M accepts w.

Algorithm:

1. Run HALT_{TM} on $\langle M, w \rangle$.
2. If M does not halt, accept $\langle M, w \rangle$.
3. If M halts on input w, accept if M accepts w.

Subject of decidable sets is not necessarily decidable.
Recall $A = \{ x \in \Sigma^* \mid x \notin \overline{A} \}$

Then A is decidable iff $A \land \overline{A}$ are semi-dec.

Proof:

\Rightarrow

\subseteq suppose $A \land \overline{A}$ are semi-dec

\Rightarrow let $A = \mathcal{L}(M_1), \overline{A} = \mathcal{L}(M_2)$

so design a decider M_3 as such:

- on input x:
 - run M_1, M_2 on input x
 - accept if M_1 accepts x
 - reject if M_2 rejects x

Corollary $\overline{A_{TM}}$ is not semi-dec

Proof: be $\overline{A_{TM}}$ is dec A is semi-dec.

Def $D = \{ A \subseteq \Sigma^* \mid A$ is decidable $\}$

SD = _______ semi-dec?

![Diagram showing Σ^+ with SD, \overline{SD}, and uncountable sets]

$R(x, y)$ is a relation on strings of pairs

$R: \Sigma^* \times \Sigma^* \rightarrow \{0, 1\}$

$\mathcal{L}_R = \{ <x, y> \mid R(x, y) = 1 \}$

Then $A \in SD$ iff $\exists R(x, y)$ decidable s.t.

$\forall x \in \Sigma^*, x \notin A \Rightarrow \exists y, R(x, y)$

y is a certificate showing $x \in \overline{A}$

E.g. $A_{TM} = \{ \langle M, w \rangle \mid M$ accepts $w \}$

$R(x, y)$: suppose $x = \langle M, w \rangle$
Let \(y = c_0, c_1, \ldots, c_T \) be the computation of \(M \) on input \(w \). \(D \) must be an accepting config of \(M \) on input \(w \). Thus \(R(M, w, D) \) holds iff \(y \) codes an accepting config of \(M \) on input \(w \) (\(R \) is decidable).

If \(x \) is not of the form \(x = \langle M, w \rangle \) where \(M \) is a TM and \(w \in \Sigma^* \Rightarrow R(x, y) \)
\[
\begin{align*}
& x \in \text{TA}n \iff \exists y : R(xy) = 0 \\
& x \in \langle M, _ \rangle
\end{align*}
\]

The certificate theorem

Let \(A \subseteq \Sigma^* \), \(A \in \text{SD} \) iff \(\exists x \) a decidable relation \(R(x, y) \) s.t. \(x \in A \Leftrightarrow x \in \text{TA} \Rightarrow \exists y : R(x, y) \)

When \(R(x, y) \) holds, we say \(y \) is a certificate that proves \(x \in A \).

1. \(\leq \) proof

Suppose that we have a decidable \(R \) satisfying \(x \in \text{TA} \iff \exists y : R(x, y) \)

We will construct a machine \(M \) such that \(A = L(M) \)

\[
\begin{align*}
\Sigma^* & = \{ w_0, w_1, \ldots \} \\
M \text{ on input } x = & \\
\text{for } i = 0 \text{ to } \infty & \\
\text{if } R(x, y) \text{ holds, then accept} & \\
\text{end for} &
\end{align*}
\]

2. \(\geq \) proof

Suppose \(A = L(M) \), for some TM \(M \). For any input \(x \), let \(C_0, C_1, C_2, \ldots, C_T \) be an accepting computation of \(M \) on \(x \).
Let \(y = \langle C_0, C_1, \ldots, C_t \rangle \) be our cerif.

Let \(R(x, y) \) holds iff \(y \) is an accepting computation of \(M \) on \(x \).

Then \(R \) is decidable remark the cerif. He gives another way of proving that a language is in SD.

\[E_{TM} = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = \emptyset \} \]

Is \(E_{TM} \in SD ? \)

Let \(y = \langle C_0, C_1, \ldots, C_t \rangle \) be a cerif where \(C_0, C_t \) is an accept. comp. of \(M \) on \(x \),

Is \(E_{TM} \notin SD ? \) no use reduction

Reducibility

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } M \text{ accepts } w \} \]

\[\text{Diag} = \{ \langle M \rangle \mid M \text{ and } M \text{ is a TM} \} \]

\[\langle M \rangle \notin \text{Diag} \Rightarrow \langle M \rangle \notin \text{Diag} \]

\[\langle M \rangle \notin \text{Diag} \Rightarrow \langle M \rangle \notin \text{Diag} \]

\[\langle M, \langle M \rangle \rangle \in A_{TM} \]

Computable functions

A function \(f : \Sigma^* \to \Sigma^* \) is comp if \(\exists \text{ a TM } H \) s.t. \(\forall y \in \Sigma^* \), \(H \) halts on input \(y \) and

Many-one reducibility (mapping reduc. in Sipser)

Def. Let \(L_1, L_2 \subseteq \Sigma^* \). We say \(L_1 \) is many-one reducible
to \(L_2 \), \(L_1 \leq_m L_2 \), if \(f \) a comp. func. s.t. \(f(x) \in L_2 \)

\[\forall x \in \Sigma^*, x \in L_1 \implies f(x) \in L_2 \]

Historically, \(A \) and \(\Sigma \) came from the fact it was easier to reverse \(A \) and \(E \) on hypercubes.

Claim \(\text{DIAG} \leq_m A_{TM} \ f(\langle M \rangle) \)

define \(f(\langle M \rangle) = \langle \langle H \rangle, \langle M \rangle \rangle \)

Theorem \(L_1, L_2 \subset \Sigma^* \). Assume \(L_1 \leq_m L_2 \)

1. \(L_1 \leq_m L_2 \)
2. \(L_2 \notin D \implies L_1 \notin D \)
3. \(L_2 \notin D \implies L_1 \notin D \)

To prove -

Proof

1. \(L_1 \leq_m L_2 \implies \exists f : \Sigma^* \to \Sigma^*, x \in L_1 \implies f(x) \in L_2 \)

2. \(L_2 \notin D \implies L_1 \notin D \)

Assume \(L_2 \notin D \). Then call \(M_2 \) a TM s.t. \(L(M_2) = L_2 \) and \(M_2 \) always halts.

Since \(f \) is comp. there is a TM that compiles \(f \).

Define \(M_1 \) a follows:

- on input \(x \), run \(M \) on \(x \) to compute \(f(x) \)
- run \(M_2 \) on \(f(x) \), and accept or reject as \(M_2 \) does.

Clearly \(M_1 \) always halts and \(L(M_1) = L_1 \)

\[\implies L_1 \leq D \]
3. Define $M_1: \text{on } x$, run M to compute $f(x)$.
 - run M_2 on $f(x)$
 - if M_2 accepts, accept
 - rej

(similar to 2 besides M_2 might not halt)

Clearly $A(M_1) = 2$.

Example

$\text{Dia} \leq_m A_{TM}$

- $\text{Dia} \not\in D \Rightarrow \text{Dia} \not\in D \Rightarrow A_{TM} \not\in D$
- $\text{Dia} \not\in SD \Rightarrow \text{Dia} \not\in SD \Rightarrow \text{Dia} \not\in A_{TM}$

Hence (by 3), $A_{TM} \not\in SD$

6. $\text{HB} = \{<M> | M \text{ is a TM and M halts on blank input} \}$

Claim: $\text{HB} \in SD \land \text{HB} \notin D$

Proof: We will show: $A_{TM} \leq_m \text{HB}$

Let $x \in \Sigma^*$, we assume $x = <M, w>$ where M' is a TM.

Define $f(x) = <M'>$ where M' works as follows:

- M' write w on the tape
- Run M on w
- if M halts accept, M' accepts

Therefore, M' loops forever.

Clearly f is computable.

Also: M accepts $w \Rightarrow M'$ halts $\Rightarrow <M'> \in \text{HB}$

$<M, w> \notin A_{TM} \Rightarrow M'$ doesn't halt

$<M', w> \notin \text{HB}$

Corollary: $\text{HB} \in SD$

Proof: Suppose $\text{HB} \in SD$, hence since $\text{HB} \in SD$

we have $\text{HB} \in \text{ED}$, contradict.
Claim \(E_{TM} = \{ \langle M \rangle | M \text{ is a TM and } L(M) = \emptyset \} \)

\(\emptyset \cap E_{TM} \cap SD \cap \overline{SD} \)

Proof. \(\emptyset \) show that: \(\overline{HB} \leq_m E_{TM} \) (or \(\leq_m \))

Define \(f(\langle M \rangle) = \langle M' \rangle \) where:

on input \(x \):
- if \(x \) is not the blank tape, rej.
- if \(x \) is the blank tape, run \(M \)
 on \(x \) and accept if it halts.

Hence: \(\langle M \rangle \in \overline{HB} \Rightarrow M \text{' accepts the blank tape } \)

\(\Rightarrow M' \in E_{TM} \)

\(\Rightarrow f(\langle M \rangle) \in E_{TM} \)

Example \(A_{OB} \) = set of all C programs \(\langle P \rangle \) s.t. \(P \) causes an array out of bound, res.

Recall

\[\text{coSD} = \{ A \subseteq \Sigma^* | A \notin SD \} \]

\[\text{diag} A_{TM} \cap \overline{HB} \cap E_{TM} = D \]

\[\text{diag} \overline{A_{TM}} \cap \overline{HB} \cap E_{TM} \]

Theorem

1. Let \(A, B, C \subseteq \Sigma^* \). \(A \leq_m B \leq_m C \Rightarrow A \leq_m C \)
2. Let \(A \subseteq \Sigma^* \). \(A \notin \text{SD} \land A \notin \overline{A} \Rightarrow A \in \text{D} \)

Example of (1): \(A_{TM} \leq_m \overline{HB} \leq_m \overline{E_{TM}} \)
proof (1)

Assume A ≤_m B via computable f: \Sigma^* \to \Sigma^*

and \lambda \leq_m C

gof is computable:

\forall \text{TMs} \ 	ext{that comp f and g}

\forall x \in A \iff f(x) \in B \iff g(f(x)) \in C

\iff gof(x) \in C

proof (2)

A \leq_m \overline{A} \iff \overline{A} \leq_m A

\forall \text{words of TMs}

A \in ESD \land \overline{A} \leq_m A \iff \overline{A} \in ESD

A \in ESD \land \overline{A} \in ESD \iff A \in E

Define \ T_m = \{ \langle M \rangle | M \ is \ a \ TM \ and \ M \ is \ a \ decider \}

Claim \ \overline{T_{ESD}} \land \overline{T_{ESD}}

proof @ show that \ \overline{HB} \leq_m T_T \iff \overline{HB} \leq_m \overline{T_T}

define: \ f(\langle M \rangle) = \langle M' \rangle \ where

\{ \begin{align*}
\text{if input} & \text{ is blank} \ M' \ rejects \\
\text{if } x & \text{ is blank and } M \ on \ it
\end{align*}

\iff <M> \in NB \iff M \ halts on blank tape

\iff M' \ halts on all inputs

\iff <M'> \in T_T

@ show that \ \overline{HB} \leq_m \overline{T_T}

define: \ f(\langle M \rangle) = \langle M' \rangle \ where \ \{ \begin{align*}
\text{if } M \ halts \ within \ x \ steps, \ M' \ loops \\
\text{if } x \ 	ext{steps, } M' \ loops
\end{align*}

on input x; \ \Rightarrow \ x \text{ steps, } M' \ 	ext{loops} \}

\iff \overline{M} \ halts on blank tape

\iff \overline{M} \ halts on blank tape

\iff \overline{M} \ halts on blank tape
Thus: \(M \) doesn't halt on blank tape \(\Rightarrow M' \) halts on all input
\[\Rightarrow (M') \in T_{TM} \]
\[\Rightarrow \overline{(M')} \notin \overline{T_{TM}} \]
\[\Rightarrow M \text{ halts on blank tape in } T \text{ steps} \]
\[\Rightarrow (M') \text{ doesn't halt} \quad \forall x, |x| \geq 1 \]
\[\Rightarrow M' \text{ is not total} \]
\[\Rightarrow (M') \in \overline{T_{TM}} \]

Define \(\text{All}_{TM} = \{ \langle M \rangle | \forall x, \langle M \rangle \in \overline{T_{TM}} \} \)

Claim: \(\text{All}_{TM} \notin \text{SD} \) \(\land \overline{\text{All}_{TM}} \notin \text{SD} \)

proof: show \(T_{TM} \subseteq \text{All}_{TM} \)

define \(f(\langle M \rangle) = \langle M' \rangle \) where \(M' \) on \(x \)

accepts or rejects

- run \(M \) on \(x \)
 - if \(M \) halts, then \(M' \) accepts
 - otherwise, \(M' \) rejects

then: \(\langle M \rangle \in \overline{T_{TM}} \) \(\Rightarrow \exists \forall x \in \text{input}, M \text{ halt} \)
\[\Rightarrow \overline{\text{All}_{TM}} \]
\[\Rightarrow M' \in \text{All}_{TM} \]

\[\Rightarrow \overline{\text{All}_{TM}} \notin \text{SD} \]

since \(T_{TM} \subseteq \text{All}_{TM} \), we have \(T_{TM} \subseteq \overline{\text{All}_{TM}} \)

since

Define \(\text{EQ}_{TM} = \{ \langle M \rangle | \} \)

\[\text{Define \(\text{EQ}_{TM} = \{ \langle M \rangle | \} \} \]
Chomsky Hierarchy

<table>
<thead>
<tr>
<th>rec. enum.</th>
<th>TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSL</td>
<td>PDA = NPDA</td>
</tr>
<tr>
<td>CFL</td>
<td>FS = NFSA</td>
</tr>
</tbody>
</table>

Finite automaton:

\[M = \{ \Sigma, Q, \delta, q_0, F \} \]

At each step, head moves right one step. \[\delta(q, a) = q' \]

\(M \) accepts \(w \) iff it reaches \(FF \) after scanning last symbol.

\[\text{REG} = \{ L(N) \mid M \text{ is a FSA} \} \]

\(\text{REG} \neq \text{CFL} \)

E.g. PAL \# REG (pumping lemma)

NFSA can be converted to FSA w/ exp run of states.

[Box: REG is closed under \(U \), \(\cap \), -]

Pushdown automaton:

\[M = \{ \Sigma, Q, S, F \} \]

\[\delta(q, a, b) = (q', \text{pop} or \text{pop}) \]

CFL = \(\{ L(M) \mid M \text{ is a PDA} \} \)

DCFL \(\neq \) CFL \(\land \) DCFL = \(\{ L(M) \mid M \text{ is a DPDA} \} \)

DCFL is closed under \(- \) but not \(U, \cap \)

Proof: take opposite DPDA

\[\neg \neg \neg : L_{ab} \cap L_{\neg ab} \in \text{DCFL} \]

\[L_{\neg ab} \cap L_{\neg ab} = L_{\neg ab} \cap \neg L_{ab} \in \text{CFL} \]

U: De Morgan \(w \) - and \(\neg \)
All\(\text{CFG} = \{ \langle G \rangle \mid G \text{ is a CFG and } L(G) = \Sigma^* \} \)

Claim: All\(\text{CFG} \not\in \text{SD} \)

Proof: show \(\text{HP} \leq_m \text{All\(\text{CFG} \)} \)

- Given a TM \(M \), construct a CFG \(G \) s.t. \(M \) halts on a blank tape iff \(L(G) \not= \Sigma^* \)
- Idea: design \(G \) s.t. \(L(G) \) is the set of all strings which do not code a halting of \(M \) on a blank tape.

Let \(C_1, \ldots, C_t \) be a halting comp. \(\psi \), where \(C_i = x \# y \# \# \#
\)

\(L_1 = 1 \# \) and last config one ok (REG)

\(L_2 = \text{even} \) trans: one ok (DCFL)

\(L_3 = \text{odd} \) trans: \(\Sigma^* \) (DCFL)

\(L_1 \cap L_2 \cap L_3 = \begin{cases} \emptyset & \text{if } M \text{ loops} \\ \{ \text{halting comp} \} & \text{if } M \text{ halts} \end{cases} \)

\(L_1 \cup L_2 \cup L_3 \) is \(\Sigma^* \) (DCFL)

Most of the line, when a model of computer accepting lang is closed under its unary be we can easily charge accept. Set of sets \(S, \{ S \} > 2 \) states. Russel: consider a set with...
All CFG

Given a TM \(M \), find a CFG \(G \) s.t. \(M \) doesn't halt on a blank tape iff \(L(G) = \Sigma^* \)

Find \(\epsilon' \) over \(\Sigma' = \Sigma \cup \{\#\} \)
Use ASCII codes for \(\epsilon' \)s in \(\Sigma' \)

\[\text{comp} = \{ L_1 \cap L_2 \cap L_3 \} \text{ s.t.} \]
\[L_1 \cap L_2 \cap L_3 = \{ \emptyset \text{ if } M \text{ doesn't halt} \}
\]
\[\text{or } \{ \Sigma \} \text{ if } \epsilon \]

With ASCII codes, \(\text{comp} \leq \Sigma^* \)

Comprehensibility redux

Decidability relies on our model of (universal) comp: TM

Church-Turing Thesis -

Undecidable pts

Diophantine equations

Axiomatizing arithmetic - Gödel's incompleteness

Use fact that \(\overline{\text{HB-ESD}} \)

\(\psi(x) \) asserts \(x \) codes a halt. comp

Give a TM ... \(\psi(x) \) assert codes a halt. comp

Use \(\overline{\psi(x)} \)

If every have such statement has a finite proof then \(\overline{\text{HB-ESD}} \)

Entscheidungs pb

Church & Turing

S. Cook

Google for spelling
WCTime complexity: Let M be a TM decider.

\[T_M(n) = \max \{t_M(x) \mid x \in \{0,1\}^n\} \]

Def
\[\text{TIME}(1(n)) = \{A \subseteq \Sigma^* \mid \exists N \text{ a TM with } L(N) = A \text{ and } T_M(n) \leq O(1(n))\} \]

Def
\[P = \bigcup_k \text{TIME}(1^n) \]

E.g. $\text{SQ} = \{\langle a^n \rangle \mid a \in \{0,1\}, a^2 \text{ in binary}\}$

$\text{SQ} \in P \rightarrow$ Newlow's method: $x_{m+1} = \frac{1}{2}(x_m + \frac{a}{x_m})$

Def $\text{NP} = \{\langle x, y \rangle \mid \exists R(x, y) \text{ poly} p(n)$

E.g. $\text{HAMPATH} = \{\langle G, s, t \rangle \mid G \text{ is an undirected graph with a Hamiltonian Path from } s \text{ to } t\}$

$\text{CLIQUE} = \{\langle G, k \rangle \mid$

Def $\langle G, k \rangle$ is k-colourable if there is a function $c: V \rightarrow \{1, \ldots, k\}$ s.t. if $(u, v) \in E$, then $c(u) \neq c(v)$.
Every NP-complete problem A has an associated search problem A-search.

Let $A \in NP$, so $x \in A \Rightarrow \exists y \left(|y| \leq p(|x|) \text{ and } R(x, y) \right)$

A-search

- instance: $x \in \Sigma^*$
- output: $y \in \Sigma^*$ s.t. $|y| \leq p(|x|) \land R(x, y)$ or 'no' if no such y exists

Let P_1, P_2 be problems (search or decision)

$P_1 \leq P_2$ iff 3 polytime alg which solves P_1 which can ask questions to an 'oracle' which solves P_2 (do not count time required by P_2)

Theorem: $A \in NP$-complete then A-search $\leq A$

e.g. $HAMPATH$-search $\leq HAMPATH$

Here's the reducing algorithm:

input: $<G, s, t>$
oracle: boolean procedure $HP(H)$ which solves $HAMPATH$
alg: if $HP(G) = 0$ then output 'no'$
for $i = 1 \ldots m$
if $HP(H - e_i) \land e_i \not\in G$
then $H \leftarrow H - e_i$
Connectness: invariant G has a HAMPATH from s to t using every edge in $E_{HAMP}(G)$

Def $A \leq_p B$ (Karp reducible)

If \exists polytime func $f : \Sigma^* \to \Sigma^*$ s.t. $x \in A \iff f(x) \in B$

Note 1: $A \leq_p B \implies A \leq_{\text{m}} B$

$A \leq_p B \implies A \leq_{\text{p}} B$

Def $A \in \text{NP-hard}$ iff $\exists B \in \text{NP}, B \leq_p A$

Def $A \in \text{NPC}$ iff $A \in \text{NP} \land A$ is NP-hard

Lemma 1: $A \leq_p B \land B \in \text{P} \implies A \in \text{P}$

$A \leq_{\text{m}} B \land B \in \text{D} \implies A \in \text{D}$

FP a class of polytime computable functions

Corollary: $A \in \text{NPC} \land A \in \text{P} \implies P = \text{NP}$

---missed lecture---
\(A \text{ is } \text{NP-land} \iff B \leq_p A \land B \in \text{ENP} \)

\(A \in \text{NPC} \iff A \text{ is } \text{NP-land} \land A \in \text{ENP} \)

\text{Cook-Levin's Theorem:} \quad \text{SAT} \in \text{NP}

\(\text{SAT} = \{ \langle \varphi \rangle \mid \varphi \text{ is boolean formula. SAT} \} \)

\text{Lemma:} \quad A \in \text{NPH} \land A \leq_p B \implies B \in \text{NPH}

"A is hard and A is reducible to B, so B must be hard."

\text{Proof:} \quad \leq_p \text{ is transitive}

\(\text{Def:} \quad \text{CNF} = \{ \langle \varphi \rangle \mid \varphi \text{ is in CNF} \} \)

\(k \text{CNF} = \{ \langle \varphi \rangle \mid \varphi \text{ is in CNF, } s.t. \text{ each clause has at most } k \} \)

\(\neg k \text{SAT} = \{ \langle \varphi \rangle \mid \varphi \text{ is in } k \text{CNF } \land \varphi \text{ is SAT} \} \)

Then \(3 \text{SAT} \in \text{NPC} \)

show \(\text{SAT} \leq_p 3 \text{SAT} \)

\text{Proof: Idea:} \quad \text{introduce a new literal (negate some variables)}

for every sub-formula of \(\varphi\)

\(\text{such that for every such } \alpha: \quad \alpha = (H \lor V \land \neg A)\), construct a

\(D_\alpha \equiv x_\alpha \leftrightarrow (x_H \lor x_V \land \neg A)\)

... Then define \(\varphi' = D_\alpha \land D_B \ldots\)

\(\text{Proof:} \quad \text{show } \varphi \leftrightarrow \varphi' \)

\(\text{sup } \forall \text{ sat } \varphi', \text{ for every this form } \forall \text{ sat}

\alpha = x_\alpha \land \neg \varphi \equiv \varphi \text{ under } \gamma \)

\(\Rightarrow \text{sup } \forall \text{ sat } \varphi' \quad \text{then there is an extension } \gamma' \text{ s.t. } \gamma' \text{ sat } \varphi'\)
\[\text{IND-SET} = \{ \langle G, k \rangle \mid G \text{ is undirected with IS of size } k \} \]

\[\text{Def: } V' \subseteq V \text{ is IS of } G = (V, E) \iff u, v \in V' \Rightarrow (u, v) \notin E \]

\[\text{In ISENPC} \]

- Show \(3\text{SAT} \leq_m \text{IND-SET} \) (Cook 1971)

Proof. Assume \(\Phi \) has exactly 3 literals per clause \(\forall \Phi \in \text{CNF} \)

\[\Phi = \bigwedge C_1 \wedge \ldots \wedge C_m, C_i = (l_{i,1} \lor l_{i,2} \lor l_{i,3}) \]

\[\forall \phi \in \Phi, \phi \text{ contains exactly 3 literals} \]

\[V_\Phi = \{ \langle i, j \rangle \mid 1 \leq i \leq m, 1 \leq j \leq 3 \} \]

\[\overline{t_{ij}} \text{ occurrences of literals in } \Phi \]

\[|V_\Phi| = 3m \]

Let \(k_{\Phi} = m \)

\[E_1 = \{ \langle i, j \rangle, \langle i, k \rangle \mid 1 \leq i < m, 1 \leq j, k \leq 3 \} \]

\[E_2 = \{ \langle i, j \rangle, \langle k, i \rangle \mid 1 \leq i, j, k \leq 3 \} \]

\[E_\Phi = E_1 \cup E_2 \]

\[G_\Phi = (V_\Phi, E_\Phi) \text{ has an } \text{IS} \text{ of size } m \text{ iff } \Phi \text{ is SAT} \]

\(\Rightarrow \) if \(\Phi \) SAT

\(\Leftarrow \)

- Suppose \(G_\Phi \) has an IS \(V' \) of size \(m \). Then \(V' \) must have exactly 1 literal per clause.

- Choose \(\Gamma \) to make all these literals \(1 \).

\[\text{CLIQUE} = \{ \langle G, k \rangle \mid G \text{ has clique of size } k \} \]

\[\text{In CLIQUE-ENPC} \]

Proof. CLIQUE-ENP since given a \(\langle G, k \rangle \) check that \(|V'| = k \) in polytime

\(2 \) show \(\text{IND-SET} \leq_m \text{CLIQUE} \)
Suppose \(V' \subseteq V \). Then \(V' \) is an \(\mathbf{IS} \) of \(G \) if and only if \(V' \) is a \text{CLIQUE} in the complement of \(G \), i.e., \(\overline{G} \).

\[
\overline{G} = \{ (V, \overline{E}) \mid (u, v) \in \overline{E} \iff u \neq v, (u, v) \notin E \}
\]

VERTEX-COVER = \(\{\langle G, k \rangle \mid G \) is an undirected graph with a vertex cover of size \(k \} \)

\(V' \subseteq V \) is a VC for \(G \) if and only if \(\forall (u, v) \in E \exists u \in V' \forall v \in V' \)

Then **VERTEX-COVER \(\leq \text{p} \) SAT**

show **IND-SET \(\leq \text{p} \) VERTEX-COVER**

Let \(\forall u \in V' \forall v \notin V' \)

HAMPATH = \(\{\langle G, s, t \rangle \mid G \) is a directed graph with a hamiltonian path from \(s \) to \(t \} \)

Then **HAMPATH \(\leq \text{p} \) SAT**

proof sipser

Claim **HAMPATH \(\leq \text{p} \) HAMPATH**

IDEA for each \(u \in V \) \(u \sim u \)

Back to **Cook–Levin**

SAT \(\leq \text{p} \) SAT

\(\forall L \in \mathbf{NP}, L \leq \text{p} \) SAT

proof

Assume \(A \in \mathbf{NP} \)

Given \(x \in \Sigma^* \), find \(y \) in polytime s.t. \(x \in A \iff y \in \text{SAT} \)

By def, \(A \in \mathbf{NP} \) \(\Rightarrow \) 3 polytime rela. \(R(x, y) \land \text{poly } p(n) \)

\(x \in A \iff \exists y \ (|y| \leq p(|x|) \land R(x, y)) \)
Let M a TM which accepts $R(x, y)$ in time $T(n)$, $n = \log y$.

Input to M is x, y, assume wlog that $\log y = \rho(12x)$.

$x \notin A$ iff $3y_1 y_2 \ldots y_{\rho(\log x)}$ s.t. comp $C_0 \ldots C_{\rho(\log x)}$ of M (with c_0)

and $C_{\rho(\log x)}$ is an accept state with $T(m) = c_{\infty}$ (for some c, k).

Variables in Ψ_{∞} are such that describe Ω_{∞}:

- state set $Q = \{q_0 \ldots q_{\rho(\log x)}\}$ for each C_t
- head pos for each t
- tape contents for each t

\[\Psi_{\infty} = \Psi_1 \wedge \Psi_2 \wedge \Psi_3 \wedge \Psi_4 \wedge \ldots \wedge \Psi_7 \]

Define:

\[\text{Unique} (P_1, \ldots, P_k) = \text{exactly 1 of } P_1, \ldots, P_k \text{ is true} \]

\[\text{Unique}(P_1, \ldots, P_k) \equiv \bigwedge_{i \neq j} \overline{(P_i \lor P_j)} \]

\[\Psi_1 = \bigwedge_{t=0}^T \text{Unique}(q_{0t}, \ldots, q_{tt}) \]

\[\Psi_2 = \bigwedge_{t=0}^T \text{Unique}(h_{0t}, \ldots, h_{tt}) \]

\[\Psi_3 = \bigwedge_{t=0}^T \text{Unique}(z_{jt}, u_{jt}, b_{jt}) \]

E.g., initial config:

$0110b y_1 \ldots y_{\rho(\log x)} \Rightarrow \Psi_4 = q_{00} \wedge z_{00} \wedge u_{10} \wedge u_{20} \wedge z_{30} \wedge u_{40} \wedge z_{50} \wedge \ldots$
\[\psi_5 \equiv q_f \text{ - end i wan accept state} \]

\[\psi_6 \equiv \bigwedge_{i=0}^{T-1} \bigwedge_{j=0}^{T-1} \left(\Gamma_{i,j} \rightarrow (2i+1, b_{i,j}) \wedge (2j+1, \Gamma_{i,j+1}) \right) \]

- all tape symbols are unchanged except
the scanned square -

\[\psi_f - \psi_i - \text{transition function changes} \]

\[\delta(q_{s,f}, 1) = (q_{s,f}, 0, R) \]

\[q_{s,f+1} \equiv 2 \cdot i + \Gamma_{i,j+1} \]

Self-reducibility

\[\text{AENPC } \Rightarrow \text{ A-search } 5 \text{ A } = \{ x \mid \exists y, |y| \leq \rho(|x|), V_A(x, y) = \text{yes} \} \]

poly alg

\[C \in \mathbb{E} \]

while \(V_A(x, C) = \text{"no"} \)

if \(C \) is a prefix of a certif

\[C \subseteq C \]

else \(C \subseteq C_0 \)

renew C

Theorem

\[3 \text{COLOR} = \{ (G) \mid G \text{ is 3colorable} \} \]

show \(3 \text{SAT } \equiv \ 3 \text{COLOR} \)

\[x, y, z \rightarrow U - F \]

\[x \sim \bar{x} \]

\[y \sim \bar{y} \]

\[z \sim \bar{z} \]
Space Complexity

Let M be a TM, $x \in \mathbb{Z}^+$, $S_M(x)$: number of tape squares scanned in the computation of M on x.

$$S_M(x) = \max\{S_M(x') \mid |x'| = n\}$$

$$\text{SPACE}(f(n)) = \text{DSPACE}(f(n)) = \{A \in \Sigma^* \mid S_M(A) \in O(f(n))\}$$

Def $\text{PSPACE} = \bigcup_k \text{DSPACE}(n^k)$

Thm $\text{DTIME}(f) \subseteq \text{DSPACE}(f)$ proof obvious

$\Rightarrow P \subseteq \text{PSPACE}$

Thm $\text{NP} \subseteq \text{PSPACE}$

Proof: $A \in \text{NP}$ iff $x \in A \iff \exists y, 1^y \leq p(m) \land R(x, y)$

Since $1^y \leq p(m)$, we can use brute force to find y.

$\Rightarrow \text{NP} \subseteq \text{PSPACE}$
Space Complexity

TQBF

- quantified Bool. form.

QBF \(\phi \) is a sentence if \& only if it has no free vars.

TQBF = \{ \phi \mid \phi \text{ is a true QBF sentence} \}

Claim SAT \leq_p TQBF

given sat \(\psi(x_1, \ldots, x_m) \), construct \(\psi' = 3x_1 \ldots x_m, \phi(x_1 \ldots x_m) \)

Then TQBF is PSPACE-complete.

Def Truth of a QBF (in prenex form)

\[\psi(x_1 \ldots x_m) = Q_1 x_1 \ldots Q_m x_m, \phi(x_1 \ldots x_m) \]

Induc

Base: \(n = 0 \), \(\psi(\emptyset) = \psi(\text{wwf}(0, 1, \lambda, v)) \)

I. step: case 1: \(Q_1 = 3 \)

\[\implies \psi = Q_2 \cdot Q_{m+1} x_{m+1} \cdot \phi(0, x_2 \ldots x_m) \]

\[\lor \psi(1, x_2 \ldots x_m) \]

, case 2: \(Q_1 = A \)

\[\implies \psi = \ldots \land \ldots \]

Since we can build such an alg. that will eliminate quantifiers every time, we only need linear space with brute force (EXPTIME)

\[\implies \text{TQBF} \in \text{L, PSPACE} \]
Show $\text{TQBF} \in \text{PSPACE}$ hand:

Let AEPSPACE, $A = \mathcal{L}(M)$

Now x has a comp using space $O(n^k)$

given $x \in \Sigma^*$, we must construct in poly-time

a QBF sentence q_x s.t. M accepts x iff q_x is true.

$\text{Def } L = \text{DSPACE}(\log n)$; $\text{NL} = \text{NPSpace}(\log n)$

Path in NL

proof: How imp $\langle c, s, t \rangle$

it guesses $s = v_1, v_2, \ldots, v_k = t$

checks $(v_i, v_{i+1}) \in E$, $1 \leq i < k$

Note: we may assume a log-space TM has finitely many symbols

No certificate theorem for NL

Since you would get a certificate for all

of NP. —Cook
Claim \(\text{PATH} \in \text{NL} \)-complete under \(\leq_L \)

\(\text{L} = \text{NL} \iff \text{PATH} \in \text{L} \)

Claim \(\text{L} \subseteq \text{P} \)

Let \(M \) be a logspace TM. \(\text{conf} \text{ of } M \) on \(\langle x \rangle \), \(|x| = n \)

\[\text{conf} = \langle j, q, u \rangle \]

leads to \(c = \langle j, q, u \rangle \) on work tape

\[0 \leq j \leq n+1 \implies 3 \cdot O(m^k) \text{ possible configurations} \]

Def Logspace reductions

\[\text{FL} = \{ f : 2^k \rightarrow 2^k \mid f \text{ comp in } O(\log) \text{ space} \} \]

note model has extra W-only output

\[f \in \text{FL} \implies |f(x)| = O(1) \text{ for some } k \]

Because \(M \) must halt in time \(O(n^k) \)

E.g.

\[f_+ (x, y) = x + y \quad f_\times (x, y) = x \cdot y \]

Def \(A \leq_L B \iff \exists f \in \text{FL} x \in A \iff f(x) \in B \quad (\forall x \in 2^k) \)

Claim \(A \leq_L B \implies A \leq_p B \quad \text{be } \text{FL} \subseteq \text{P} \)

Claim \(\leq_L \) is transitive \(\text{be } \text{FL is closed under composition} \)

Proof \(f \circ f \in \text{FL} \quad f \circ f \in \text{FL} \)

Side note: probabilistic TM

\(\text{BPP} = \text{P} \text{ for } \text{pTM} \)

\(\text{BPNP} = \text{NP} \text{ for } \text{pTM} \) (hard to think about?) probdist

\(\text{BPNP} = \text{AM} \) def Arthur-Merlin protocol \(\text{DTM w/ random tape} \)
Savitch's theorem

- D. Cook, 1st PhD student, 1970

\[\text{NL} \leq \text{DSPACE} \left(\log^2 n \right) \]

Suffices to show \(\text{PATH} \in \text{DSPACE} \left(\log^2 n \right) \)

(since \(\text{PATH} \) is \(\text{NL} \)-complete, i.e. \(\text{AENL} \Rightarrow \text{A} \subseteq \text{PATH} \))

Lemma: \(\text{A} \subseteq \text{B} \subseteq \text{DSPACE} \left(\log^2 n \right) \Rightarrow \text{A} \in \text{DSPACE} \left(\log^2 n \right) \)

Proof:

Fact: if \(G \) is an undirected graph, \(G \) has a path of length at most \(2l \) from \(u \) to \(v \)

iff \(3 \in \text{EN} \), \(G \) has \(2 \) paths from \(u \) to \(w \) and \(w \) to \(v \), each of length \(\leq l \).

Idea: use \(D \& \text{FC} \), \(\text{W} = \log \text{n} \)

Alg.

Boîl procedure \(\text{Path} \left(G, u, v, l \right) \)

holds iff \(G \) has \(\text{Path} \left(u, v, \leq 2l \right) \)

if \(l = 0 \)

and \(u = v \), then \(\text{ACCEPT} \)

else for \(w \in \text{V} \)

if \(\text{Path} \left(G, u, w, l-1 \right) \) and

\(\text{Path} \left(G, w, v, l-1 \right) \) then \(\text{ACCEPT} \)

end for

\(\text{REJECT} \)

Space analysis: nesting depth \(: l \)

- space per call \(: O \left(\log \left(V^l \right) \right) \)

- total space \(: O \left(l \cdot \log^2 V \right) \)

\(\Rightarrow \) To solve \(\text{PATH} \), call \(\text{Path} \left(G, s, t, \lceil \log_2 m \rceil \right) \)
Def. $f(n)$ is space constructible iff $1^{\leq f(n)} \in \text{space } O(f(n))$.

- $f(n)$ can be written in unary/binary.
- If $f(n)$ is space constructible, then $f(n)$ can be written in space $O(f(n))$.
 - $(n)_{\text{bin}} \in O(\log n)$

General Savitch

$f(n)$ is space constructible ($\exists f(n) \geq \log_2 n$) \implies NSPACE($f(n)$) \subseteq DSPACE($f^2(n)$)

1st method: Assume $A \in \text{NSPACE}(f(n))$.

- Let $A = \mathcal{L}(M)$, M is a nondet $O(f(n))$ TM.
- Use the configuration graph for M on x.

2nd method: Padding argument:
 - def: $\text{pad}(w, 1) = \{w \# 1 \mid \exists z \geq 2$ s.t. $\text{pad}(A, f) = \{\text{pad}(w, f(|w|) \mid w \in A\}$

Assume $f(n)$ is sp. cons. $A \in \text{NSPACE}(\log n)$.

- $B = \text{pad}(A, 2f(n)) \in \text{NL}$
- By special Savitch, $B \in \text{DSPACE}(\log^2 n)$

Thus: $A \in \text{DSPACE}(f(n)^2)$
Recursion Theorem

\[\exists q : \Sigma^* \rightarrow \Sigma^* \quad \text{such that outputs } w \]

Q: on \(w \), print \(\langle P_w \rangle \) where \(P_w : \text{on } x, \text{reset } x, \text{halt} \)

\[\text{SELF: } \begin{array}{c}
\begin{array}{c}
A \\
B \rightarrow \top
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{SELF = } \quad \begin{array}{c}
\text{utilizes } A \text{ points to } \langle B \rangle \text{ and } \langle A \rangle \\
\text{B computes } q(\langle B \rangle) = \langle A \rangle \\
\text{paradox}
\end{array}
\end{array} \]

Build a \(T \) that can compute \(w \) as its description (avoiding selfref)

\[\begin{array}{c}
\text{R: } \begin{array}{c}
\begin{array}{c}
A \\
B \rightarrow T
\end{array}
\end{array}
\end{array} \]

\[\begin{array}{c}
\text{R: } \text{print } x
\end{array} \]

\[\begin{array}{c}
\text{B: } \text{compute } q(\langle B \rangle) = \langle A \rangle \\
\text{paradox}
\end{array} \]

Space Hierarchy

For any space cons. \(f : \mathbb{N} \rightarrow \mathbb{N} \), \(\exists A \) decidable in \(O(f(n)) \) space but not decidable in \(o(f(n)) \) space

Proof Idea:

- Build \(D \) using diagonalization
- \(D \) on input \(\langle M \rangle \): \(D \) runs \(M \) on \(\langle M \rangle \) within bound
 - If \(M \) halts within \(f(n) \), do the opposite of \(M \)
 - If \(M \) uses none space, do not halt
Technical issues

1. \(M \) runs in \(o(f(n)) \) space may use none than \(f(n) \) space for small \(n \) when asymptotic bad kicks-in -
 - accept \(\langle M \rangle 1^k \) as input

2. \(M \) might loop forever
 - if it runs in \(o(f(n)) \) space, it will use at most \(2^o(f(n)) \) time - keep a counter

D) on \(w \): if \(w \neq \langle M \rangle 1^k \) for some \(M, k \)
 - let \(n = |w| \), since \(f(n) \) is space cons.
 - mark off \(f(n) \) space. If later stops
 - simulate \(M \) on \(w \) w/ tape-compress reject
 - iff \(M \) accepts on counter > 2 \(f(n) \)
 - else accept.

Corollary ① (if space cons. \(\forall g \in o(f) \implies DSPACE(g) \neq DSPACE(f) \))

② \(\forall \varepsilon_1, \varepsilon_2, 0 \leq \varepsilon_1, \varepsilon_2 \implies DSPACE(m^{\varepsilon_1}) \neq DSPACE(m^{\varepsilon_2}) \)

③ \(NC \neq PSPACE \)
 - proof by Savitch. \(NC \subseteq DSPACE(\log^2 n) \)
 - By SETH, \(DSPACE(\log^2 n) \neq DSPACE(n) \)

④ \(PSPACE \neq EXPSPACE \)
Question 3

We show that \(\text{SET-PARTITION} \) is NP-complete.

1. Given a certificate for \(<S_1, \ldots, S_m, k> \in \text{SET-PARTITION}\), a subset \(S \subseteq \{1, \ldots, m\} \) of size \(k \) such that the sets \(S_i \) corresponding to elements \(i \in S \) are pairwise disjoint. Clearly, we can verify in polynomial each \(|C| \times (|C| - 1)\) pair for empty intersection, and that \(|C| = k\). Hence \(\text{SET-PARTITION} \in \text{NP} \).

2. show \(\text{IND-SET} \leq^P_m \text{SET-PARTITION} \)

Given a graph \(G = (V, E) \), we build \(n = |V| \) sets \(S_i \) (\(1 \leq i \leq m \)), such that each corresponds to a node in \(G \), and contains every edge incident to that node.

Thus, \(G \) will have an independent set of size \(k \) iff we have \(k \) nodes (each corresponding to an \(S_i \)) such that no two nodes share an edge (every \(S_i \) pair is disjoint).

By (1) and (2), \(\text{SET-PARTITION} \) is NP-complete.
Question 4

We show $\mu \text{HAMPATH} \leq^p \mu \text{HAMCYCLE}$.

Given a graph $G = (V, E)$ and $s, t \in V$, we construct a graph $G' = (V', E')$ where $V' = V \cup \{v\}$ ($v \notin V$ is an extra node) and $E' = E \cup \{v, s\} \cup \{v, t\}$.

Hence, if G has a Hamiltonian path from $s \rightarrow t$, then the new graph G' has a Hamiltonian cycle from $s \rightarrow v \rightarrow s$.

The converse holds since v is only connected to s and t, hence every Hamiltonian cycle has to include (s,v) and (v,t), thus there must be a Hamiltonian path from $s \rightarrow t$.

10/10 Correct.