
Let $t(x)$ be the number of steps taken by algorithm A on input x. Let $T(n)$ be the worst-case time complexity of algorithm A:

$$T(n) = \max_{x \text{ is an input of size } n} t(x) = \max \{t(x) : x \text{ is an input of size } n\}$$

1. To prove that $T(n)$ is $O(g(n))$, one must show that there is a constant $c > 0$, and an input size $n_0 > 0$, such that for all $n \geq n_0$:

 $$T(n) \leq c \cdot g(n)$$

 \Leftrightarrow max \{t(x) : x is an input of size n\} $\leq c \cdot g(n)$

 \Leftrightarrow For every input x of size n, $t(x) \leq c \cdot g(n)$

 \Leftrightarrow For every input of size n, A takes at most $c \cdot g(n)$ steps

2. To prove that $T(n)$ is $\Omega(g(n))$, one must show that there is a constant $c > 0$, and an input size $n_0 > 0$, such that for all $n \geq n_0$:

 $$T(n) \geq c \cdot g(n)$$

 \Leftrightarrow max \{t(x) : x is an input of size n\} $\geq c \cdot g(n)$

 \Leftrightarrow For some input x of size n, $t(x) \geq c \cdot g(n)$

 \Leftrightarrow For some input of size n, A takes at least $c \cdot g(n)$ steps

In summary:

Let $T(n)$ be the worst-case time complexity of algorithm A.

1. $T(n)$ is $\tilde{O}(g(n))$ iff $\exists c > 0, \exists n_0 > 0$, such that $\forall n \geq n_0$:

 for every input of size n, A takes at most $c \cdot g(n)$ steps.

2. $T(n)$ is $\Omega(g(n))$ iff $\exists c > 0, \exists n_0 > 0$, such that $\forall n \geq n_0$:

 for some input of size n, A takes at least $c \cdot g(n)$ steps.

3. $T(n)$ is $O(g(n))$ iff $T(n)$ is $O(g(n))$ and $T(n)$ is $\Omega(g(n))$.

...
DELETE_MIN(T)

Example:

\[T = \]

```
    11
   / \  
  15  22
  /   /  
 18  13  23
   
 21
```

Delete_MIN(T):

1. Scan roots to find smallest element.
2. Delete element.
3. Merge resulting BQ's.

Carry:

```
    23
   / 
  22 23
   /   
 27  13
   
 14
```

\[T_1 = T - S_3 \]

\[T_2 = S_3 - \{x\} \]

\[T = \text{UNION}(T_1, T_2) \]
Key comparisons
8-5 = 3
Merge heap
8 edges
Total of
5 edges
Example of Binary Tree Merge

Example of Binary Tree Merge
<table>
<thead>
<tr>
<th>ADT</th>
<th>Description</th>
</tr>
</thead>
</table>
| Priority Queue | Set S with keys/kys
| | insert (S, k)
| | max (S)
| | extract max (S) |
| Mergeable Queue | union (S, T) |
| Dictionary | Set |

<table>
<thead>
<tr>
<th>DT</th>
<th></th>
</tr>
</thead>
</table>
| Unordered LL | ins \(\Theta(1) \)
| | ex. max \(\Theta(-) \) |
| Ordered LL | ins \(\Theta(-) \)
| | ex. max \(\Theta(1) \) |
| Heap | ins, ex. max \(\Theta(1/n) \) |
| Binomial Heap | ins \(\Theta(\log n) \)
| | ex. min \(\Theta(\log n) \)
| | union \(\Theta(\log n) \) |
| BST | \(\Theta(n) \) |
| | balanced BST
| | to AVL-tree |
\(BH \in H \) \(BH = \min BH \) \(\max BH = H = \min H \) \(\Rightarrow H = H \)
Data structures

- **ADT**: description of object and ops
- **DS**: specific implementation of ADT

 - e.g. Priority Queues
 - obj: set S of donor w/ keys
 - ops:
 - `insert((s, x))`: \(S \cup \{x\} \)
 - `max(S)`: \(\rightarrow \max(S) \)
 - `extract-max(S)`: \(S \leftarrow S - \{\max(S)\} \)

 - e.g. unsorted linked list
 - ordered \(\nRightarrow \)
 - heap

CBT:

- **Max-Heap**: CBT, s.t. \(\forall m \in \text{CBT}, \text{value}(m) \geq \text{value}(\text{child}(m)) \)
- **DT**:
 - height of tree is length of longest path from root to leaf
 - heap ops: 1. Get CBT shape right
 - constraints 2. Get near heap right
 - insert: put at: lost pos. then swap \(\text{max} : \text{height} \)
 - `extract-max`: swap last pos with root
 - decrease heap size
 - heapify (swap, compare w/ heaupsize)
ADT

Priority Q
- priority Q
- mergeable priority Q

Ops
- `insert`
- `max`
- `extract-max`
- All above + Union (S, T)

DS
- **Heap (CERS6)**
- **Binomial Heaps**
 - based on bin-forest

CBT

Sk-Trees

Sk-Tree

A Sk-Tree has 2^k nodes and $\binom{k}{d}$ nodes at depth d.

Bimomial Forest

A bimomial forest of size m, (BF_m) is a sequence of BF_k with $m = <b_0, b_1, b_2, ..., b_k>$ nodes

- $BF_{<0,0>} = <$ all Sk-trees s.t. $b_0 = 1>$
- $BF_{<2,1,1,1>} = <$ all Sk-trees s.t. $b_0 = 1, b_1 = 2, b_2 = 3, b_3 = 4, b_4 = 1>$

- A BFM with $m = <b_0, b_1, ..., b_k>$ nodes $BF_m = <$ all Sk-trees s.t. $b_k = 1>$
 - Largest tree in BFM is S_k with $k = \lfloor \log m \rfloor$
 - Let $\alpha(m) = \#$ of 1's in the binary rep of m
 - BFM has $\alpha(m)$ trees
 - BFM has $m - \alpha(m)$ edges

A (min) binomial heap of m elements with keys is a BFM s.t.

- Each node of BFM stores 1 element
- Each Sk-tree of BFM is (min) heap-ordered

Example

- $S_1 → 0$
- $S_2 → 1$
- $S_3 →$
 - $S_4 →$
1. \(S \leftarrow \text{UNION} (S, T) \rightarrow \text{binary add}. \)

2. \(\text{insert} \rightarrow \text{before} \{ x \} \rightarrow S_0; \emptyset \rightarrow \text{UNION} \)

3. \(\text{MIN}(T) \rightarrow \text{look at roots} \quad \Theta (\log n) \)

4. \(\text{Extract-min} / \text{Delete-min} \)

Example: \(|T| = 27 \rightarrow \{ s_4, s_3, s_1, s_0 \} \quad (11011) \)

- 27 - 4 = 23 edges
- \(\text{insert} \{ x \} : \{ 11011 \} \rightarrow 2 \text{ key comp} \rightarrow 2 \text{ new edges} \)
- \(\rightarrow 25 \text{ edges} \) (check: 28 - 3 = 25)

- Bin heap: since based on bin add.
- When \(\text{insertions} > \log n \rightarrow \text{avg. insert is } O(1) \text{ less.} \)

Priority Queues implemented with heaps (and used almost always for that purpose).
ADT	OPS
Dictionary | Insert, Delete, Search

Data Structures
- Balanced BST
 - 2-3 trees
 - Red-black trees
 - AVL trees

\[BF(v) = h_R - h_L \]

AVL tree: BST s.t. for every AVL, \(BF(v) = -1, 0, 1 \)

height of AVL: with \(n \) nodes, have height \(\Theta(\log n) \)

- Can do inserts and deletes while maintaining the balance

\[\text{insert}(T, x) \]
 - inserting as in any BST, \(x = \text{leaf} \)
 - if encountering \(O \), need to go up any more
 - rotate if needed

After Rotation:
1) Relabeled
2) Balance preserved
3) Height same as before (towers)
Rebalancing

Let A be the first node on path to root(t) that becomes unbalanced.

W.l.o.g. $A + 1 \leq 2$ (spn: $A - 1 \geq 2$)

- case (1).1

- case (1).2

Deletion

No bonus

Vehicle on $\,$ Sortling + MS

$236 \, \text{SLOG} \rightarrow 263 \, \text{SLOG} \,$

TCP
Augmenting Data Structures

E.g. Dynamic Order Statistics

- set S of m elements with keys
- ops: insert, delete, search
 - select (k): return the element of rank k
 - rank (v): returns the rank of v

\[S = \{5, 15, 27, 30, 563\} \]
\[\text{select (4)} = 30 \]
\[\text{rank} (15) = 2 \]

\[\text{size (v)} = \text{size (left (s))} + \text{size (right (s))} + 1 \]

Relative Ranking

\[\text{RR (x)} = \text{size (left (x))} + 1 \]

select (k) \(\Rightarrow\) to find kth rank,
if \(k < \text{RR (x)}\), find kth rank of left (x), ok.

\(\Rightarrow\) (since AVL tree), select (k) takes \(O(\log n)\) in WTC.

rank (k) \(\Rightarrow\) determine RR (x) in k-subtree.
in every mode from path x \(\rightarrow\) root, determine RR (x) in y-subtree:

- RR (y') = RR (x) if x \(\rightarrow\) y' (same)
- RR (x) + RR (y) if x \(\rightarrow\) y

\(\Rightarrow\) (\(\Rightarrow\)), rank (k) takes \(O(\log n)\) in WTC.
In order to maintain size info \(\frac{k}{n} \):

1. \(k \) ends up a leaf \(\Rightarrow \) size\((x) = 1 \)
2. add 1 to size\((y)\) for all \(y \) on path \(x \rightarrow \text{root} \)
3. proceed (as usual in AVL) from \(x \rightarrow \text{root} \)
4. updating balance factors and rebalancing

\[\Rightarrow \text{ takes } O(\log n) \]

Average / Expected Complexity

Example: implementing a dictionary with keys \(K \subseteq U \), \(U = \{a, b, \ldots , u-1\} \)

1. \(u \) is small, use a direct access table (e.g., array)
2. \(u \) is very large, use a hash table

 - let \(k \in U \) and \(T \) ("hash table") \(|T| = m \) (i.e., \([0, m-1]\)
 - hash function \(h : U \rightarrow T \)
 \[e \rightarrow h(e) = i, \ i \in [0, m-1] \]

Hashing w/ Chaining:

\[H \rightarrow T \rightarrow \text{LIFO} \]

UC is \(O(n) \) (if \(h() \) leads to many collisions)

Simple Uniform Hashing Assumption (SUHA)

Any key \(k \) is equally likely to hash into any of \(m \) slots \(U \).

Assumption relies on \(h() \) and dist. of \(K \subseteq U \).

\[P(h(k) = i) = \frac{1}{m} \quad (i \in [0, m-1]) \]

Proof:

\[E(m_0 + \ldots + m_{m-1}) = \frac{m^{m-1}}{m} (E(m_i)) \]

By SUHA, \(\forall i, j \), \(E(m_i) = E(m_j) \)

Proof:

\[m \cdot E(m_i) = m \cdot E(m_{i-1}) \]

\(\Rightarrow \) \(m \cdot E(m_i) \leq \alpha \cdot m \) \(\Rightarrow \) \(\alpha \leq 1 \)

Load factor
Worst case Cost of RQS(S) is $\Theta(n^2)$

Analysis of RQS
- 2 keys compared if i is a pivot
- 2 keys can compare at most once
- 2 keys split apart by pivot are never compared

Fix $|S| = n$. Cost of RQS = n key comps.

WC: $C = \Theta(n^2)$
AC: $E(c) =$?

S has n keys: $z_1, z_2, \ldots, z_i, \ldots, z_k, \ldots, z_n$

$e_{ij} = \begin{cases} 1 & \text{if } z_i \text{ comp to } z_j \\ 0 & \text{otherwise} \end{cases}$

$$\Rightarrow E(c) = E\left[\sum_{i,j} e_{ij} \right] = \sum_{i,j} E(e_{ij})$$

$E(e_{ij}) = 1 \times p(e_{ij}) + 0 \times p(e_{ij}^c) = p(e_{ij})$

$$E(c) = \sum_{i,j} p(e_{ij}) = \sum_{i=1}^{n} \sum_{j=1}^{n} p(e_{ij})$$

Consider $Z_{ij} \subseteq Z$ (sorted S), $|Z_{ij}| = j-i+1$

- Initially $Z_{ij} \subseteq Z = S$
- RQS keeps selecting pivots
 - as long as new aren't in Z_{ij}, Z_{ij} remains
 - at some pt, $RQS(S)$ must select a pivot within Z_{ij}
- Case 1: $z_i < p(z_j) \Rightarrow z_i$ is never comp to z_j
- Case 2: $p \in (Z_i \cup Z_j) \Rightarrow \text{pick f that is} \frac{2}{j-i+1}$

$$\Rightarrow E(c) = \sum_{i=1}^{n} \sum_{j=i+1}^{n} \frac{2}{j-i+1} = \sum_{i=1}^{n} \sum_{j=i}^{n} \frac{2}{j+1}$$

$$= \sum_{i=1}^{n} \sum_{k=1}^{n-i} \frac{2}{k+1} \leq 2 \sum_{i=1}^{n} \sum_{k=1}^{n} \frac{1}{k}$$

$$= 2 \times \sum_{i=1}^{n} \frac{1}{i} \times \sum_{k=1}^{n} \frac{1}{k}$$

$$\Rightarrow E(c) \leq 2mH_m \land H_m \in O(\log n)$$

$E(c) \in O(n \log n)$
Hashing ch4d

SUHA: \(V \subseteq j \in \{0, 1, \ldots, m - 1\}, Pr[h(k) = j] = \frac{1}{m} \)

1. \(k \notin T \): \(E = \alpha \)
2. \(k \in T \): \(E \propto \frac{1}{2} \)

D Assumed that \(Pr[k = k_i] = \frac{1}{m} \)

"It is equally likely to be any of the \(m \) keys inserted in \(T \)."

\(\Rightarrow \) Expected cost: \(E = \frac{1}{m} \sum \frac{m-1}{m}^i \frac{1}{m^{i+1}} \), \(\Rightarrow \) if \(k \) was \(i \)th key to be inserted, expected # comp: \(\frac{1}{m} \sum \frac{1}{m^{i+1}} \) \(\Rightarrow \) expected # comp of search(k) = \(\frac{1}{m} \sum \frac{1}{m^{i+1}} \) \(= N \) - connecting factor from \(\binom{i}{2} \)

E.g. \(m = 2000 \)
- \(p = 0.1 \) is prime
- \(\alpha' \leq 3 \)
- \(m \geq \frac{2000}{3} \)
- \(m > 666 \Rightarrow m = 701 \)

D Probabilistic algorithm
- Assumes inputs is random - no input follows some 'nice' dist., e.g., hashing - SUHA

D Randomized algorithm
- Uses non-determinism

\(\text{Randomized Quick sort (recursive guy)} \)

Input: set of \(n \) distinct keys
Output: sorted keys
\(RQS(S) \). If \(S = \emptyset \), then return.
- If \(|S| = 1 \), then output \(k \) and return.
- If \(|S| \geq 2 \), then select pivot \(p \) at random.
- By comparing \(p \) with every other key in \(S \), split \(S \) into \(S_L = \{ s \in S \mid s < p \} \), \(S_R = \{ s \in S \mid s \geq p \} \).
- \(RQS(S_L) \), output \(p \), \(RQS(S_R) \)
Disjoint Sets

- In disjoint elements, initially each is in its own set: \(S_1 = \{ 1 \}, S_2 = \{ 2 \}, \ldots, S_m = \{ m \} \)
- Each set has a representative
 \(S_x = \{ x \} \) set rep. by \(x \)
- Operations:
 + \text{UNION}(S_x, S_y) \): Replaces sets \(S_x \) and \(S_y \) by \(S = S_x \cup S_y \)
 + \text{FIND}(x) \): Finds \(S \) s.t. \(x \in S \)
 \[\text{replaces } \text{rep} \text{ to } \text{set rep} \text{ of } S \]

- At most \(m-1 \) \text{UNIONS} possible
- \(\sigma = \text{seq of } m-1 \text{ UNIONS} \)
 Mixed w/ \(m \geq m \) finds
 - How to minimize the cost of executing \(\sigma \) seqs?
 - Implement: linked list where head is the rep of the set
 - Cost of \text{UNION} \(: O(1) \) \(\times m \)
 - Cost of \text{FIND} \(: O(1) \) \(\times m \)

- Augmented linked list
 - Cost: \(O(m) \) \(\times m \)
 - \(O(m^2) \)
 - Weighted \text{UNION} rule
 - Analysis in Tutorial

- Forest DT
 - Cost: \(O(1) \)
 - Cost: \(O(1) \)
 - How to reduce?

- Weighted \text{UNION} [by size]

- Lemma: With \text{UNION} rule (by size)
 - Any tree of height \(h \)
 - \text{consolidated during execution of seq} \(\sigma \)
 - Has at least \(2h \) nodes, i.e. \(m \geq 2h \)
Thus, by Lemma 2k, \(||f||_2 \leq 2^{k+1} \), and hence

\[
\|\mathbf{W}\|_2 \leq 2^{k+1} \|\mathbf{W}\|_F^n = 2^{(k+1)n} \|\mathbf{W}\|_F
\]

will be small.

Proof

Consider the following note: the norm of a matrix is the largest sum of absolute values of its entries.

By the triangle inequality, we have

\[
\|\mathbf{A}\|_2 \leq \|\mathbf{A}\|_F^n = \sum_{i,j} |a_{ij}|^n = \sum_{i,j} |a_{ij}| = \|\mathbf{A}\|_2
\]

for any matrix \(\mathbf{A} \).
Dynamic Table

(2) Expansion: if $\alpha(T) = 1$ and insert occurs, size(new T) = $2\times$ size(T)

(b) Contraction: if $\alpha(T) = \frac{1}{2}$ and delete

\[\alpha(T) = \frac{1}{2} \]

\[T \quad \rightarrow \quad \text{new } T \]

\[T \quad \rightarrow \quad \text{new } T \]

Example

- Each insert is charged 3
 - 1 $\$$ actual cost
 - 2 $\$$ credit

- Each delete 2 $\$$

- If α occurs, then at least $\frac{m}{2}$ inserts occurred.
 - These generated a total of $\left(\frac{m}{2}\right) \times 2$ $\$$ = m $\$$ of credit.

- $\frac{m}{2}$ deletes occurred.
 - $\left(\frac{m}{2}\right) \times 1$ $\$$ = $\frac{m}{2}$ $\$$

- Cost: const
Graphs \(G = (V, E) \), \(|V| = n \), \(|E| = m \)

Adjacency list

\[
\begin{array}{c|c|c|c}
\text{Vertex} & \text{Edges} & \text{Degree} \\
\hline
0 & 2 & 1 \\
1 & 3 & 2 \\
2 & 3 & 2 \\
3 & 0 & 0 \\
4 & 0 & 0 \\
5 & 0 & 0 \\
6 & 0 & 0 \\
\hline
\end{array}
\]

- Adjacency list

\(O(m + n) \)

\(O(m) \)

DFS

1. Start \(s \in V \), explore all neighbours
2. Colour \((v) \) = white if \(v \) is undiscovered
3. Grey if \(v \) was disc. but not explored
4. Black if \(v \) was disc and expl.
5. Length of disc. path \(: d[v] \)
6. \(P[v] = u \) if \(u \) disc. \(v \)
7. \(d[v] = d[u] + 1 \)

- DFS tree is graph induced by all edges \((u,v)\) s.t. \(P[v] = u \)

BFS

\(d[v] \) = disc. \(v \)

BFS alg

- Initialization

 - colour [s] = grey, \(d[s] = 0 \), \(P[s] = Nil \)

 - \(V \setminus \{s\} \), colour \([v] \) = white, \(d[v] = \infty \), \(P[v] = Nil \)

 - \(Q \) = empty, \(ENQ(Q, s) \)

- Code

 - While \(Q \neq \emptyset \)

 - \(u \leftarrow DEQ(Q) \)

 - For each \((u,v) \in E\)

 - If colour \((v) = \) white then

 - Colour \((v) = \) grey

 - \(P[v] = u \)

 - \(d[v] = d[u] + 1 \)

 - \(ENQ(Q, v) \)

- \(\text{LCV complexity: } O(m+n) \)

- Let \(d(s,v) = \) length of shortest path starting from \(s \) to \(v \),

\(\Rightarrow d(s,v) \leq d[v] \)
The complexity of BFS (graph - dic.) is \(O(\text{m+n}) \)

Let \(\delta(s, u) \leq d[u] \)

If \(u \) enters \(Q \) before \(v \) during BFS \((s) \), then \(d[u] \leq d[v] \)

Proof: Suppose \(\neg \delta \) for contradiction that \(\neg \delta \).

Let \(v \) be the 1st node that enters \(Q \) s.t. \(d[u] > d[v] \) for some \(u \).

\(u \) and \(v \) entered \(Q \) during exploration of some nodes \(u' \) and \(v' \) resp.

\(d[u] = d[u'] + 1 \)
\(d[v] = d[v'] + 1 \)
\(\neg \delta \)

Since \(u \) entered \(Q \) before \(v \), \(u' \) was exp. before \(v' \), \(u' \) entered \(Q \) before \(v' \) entered \(Q \).

By def., \(d[u'] \leq d[u'] + 1 \)
\(d[u'] \leq d[u'] + 1 \)

Theorem: After BFS \((s) \), \(\forall u \in V \), \(d[u] \leq \delta(s, u) \)

Proof: Suppose for contradiction, \(\exists x \in V \), \(d[x] > \delta(s, x) \)

Let \(v \) be closest node from \(s \) s.t. \(d[v] > \delta(s, u) \).

Consider a shortest path \(s \) to \(v \)

\(\delta(s, v) = \delta(s, u) + 1 \)

Since \(u \) is closer than \(v \) to \(s \), it must be that \(d[u] = d[u] + 1 \)

- Consider the colour of \(u \); just before \(u \) is expl.
 - (a) \(u \) is white: \(u \) expl before \(v \)
 - (b) \(u \) is black: \(u \) was expl. before \(v, v \) expl. \(Q \) before \(u \)

By \(\Delta \) \(\Rightarrow d[u] \leq d[u] \)
(c) \(V \) is grey/gray, some \(w \) disc. \(v \) bef. \(u \) is expl.

\[\text{w expl. bef u expl.} \]
\[\Rightarrow \text{w enters } Q \text{ bef } u \text{ enters } Q \]
\[\Rightarrow d[w] \leq d[w] \]
\[d[u] \leq d[u] + 1 \]
\[\Rightarrow d[v] = d[u] + 1 \]

Depth-first Search

Same as in BFS: colours, \(P[v] = u \) iff \(u \) disc. \(v \)

DFS

Different from BFS: global var \(f \) for time (counter)

\[d[u] \text{: time when } u \text{ was disc} \]
\[f[u] \text{: } u \text{'s expl. was compl.} \]

alg. DFS

\[\text{DFS}(G) \]

\[\text{[For each } u \in V \text{]} \]
\[\text{colour}[u] \leftarrow w; \quad d[u] \leftarrow \infty; \quad f[u] \leftarrow \infty; \quad P[u] \leftarrow \text{NIL} \]
\[\text{time} \leftarrow 0 \]
\[\text{[For each } v \in V \text{]} \]
\[\text{if colour}[v] = w, \text{then DFS-explore}(G, v) \]

DFS-explore

\[\text{colour}[u] \leftarrow \text{grey} \]
\[\text{time} \leftarrow \text{time} + 1; \quad d[u] \leftarrow \text{time} \]
\[\text{[For each edge } (u, v) \in E \text{]} \]
\[\text{if colour}[v] = \text{white then} \]
\[P[u] \leftarrow u \]
\[\text{DFS-explore}(G, v) \]
\[\text{colour}[u] \leftarrow \text{black} \]
\[\text{time} \leftarrow \text{time} + 1; \quad f[u] \leftarrow \text{time} \]

\[\Rightarrow \text{DFS forest} \]
Claim 1: \(r \) is a desc. of \(u \) in BFS forest iff
\[d[u] < d[r] < f[r] < f[u] \]

Claim 2: For any 2 nodes, \(u \) and \(r \), we cannot have
\[d[u] < d[r] < f[r] < f[u] \]
overlapping dist. intervals are imp.

Claim 3: If \((u, v) \in E\), then \(d[v] < f[v] \)

Application of BFS: use to find # comp. (and answer)
- No cycles \(\Rightarrow |E| = |V| - #\text{ comp.} \)

GBM - o

SD Hypercube

\[\sum_{i=1}^{n} s_i = n \]
\[s_i \geq 0 \]
\[\sum_{i=1}^{n} s_i = 2^n - 1 \]
A DFS of a directed graph G classifies its edges as follows:

1. True edge: iff u is parent of v in DFS of G
2. Back edge: iff u is an ancestor of v otherwise
3. Cross edge: iff u is a descendant of v

Claim: $(u,v) \in E$ is of type

- 0 or 1 iff $d[u] < d[v] < f[v] < f[u]$
- 3 iff $d[v] < f[v] < d[u] < f[u]$

Application of DFS

- White Path Theorem (CLRS 27.3)

 $\forall \in A $ DFS of G, v becomes a descendant of u iff

 at the same time $d[v] > f[u]$ (the DFS disc. u). There is a path from u to v in G that consists entirely of white nodes.
Proof

1. Suppose v is a descendant of u in the DFS at $d[v]$: not yet discovered so they are all white.

2. Suppose at the line $d[w]$, suppose for contra, that v does not have a descendant of u. Let w be the closest such node to w in that path. Then $w = u$ or w is descendant of u.

 - $d[w] < d[z] \Rightarrow z$ is white at line $d[w]$.
 - $d[z] < f[u] \Rightarrow y \in S$.
 - $f[u] \leq f[w] \Rightarrow$ because $w = u$ or w desc. of u.

 \[\Rightarrow d[w] < d[z] < f[z] < f[u] \]

 \[\Rightarrow z \text{ is disc during exp. interval (d[w], f[u])} \]

 \[\Rightarrow z \text{ is a descendant of } u \]

 \[\Rightarrow \text{ contra!} \]

Thus, v is a descendant of u.

Theorem (CLRS 22.11)

For any directed graph G, the DFS of G has a back edge:

- A directed G, A DFS of G:
 - G has a cycle \iff DFS of G has a back edge.

Proof

1. Suppose DFS of G finds a back edge (v, u) then \Rightarrow G has a cycle.

2. Suppose G has a cycle C.

 - Let u be the first node in C DFS discovers.
 - Let v be the guy before u in C.
 - By WPT, v is a desc. of u in the DFS \Rightarrow backedge by def.
Problem Complexity

Let P be a pb. e.g. P: "sorting n #"

(a) Alg complexity: given specific alg A, to solve P (e.g. heapsort...)
what is the cost of solving P using A.

(b) pp complexity: what is the cost of solving P.

intuitively: by the best possible alg.

Decision Tree Model:

This can be used to model comparison-based alg's that work by doing
comparisons only. \(\Rightarrow \) height of tree is \(\log n \).

For each permutation \(\pi \) of \(n \); any decision tree for sorting \(n \) has
at least 1 leaf corresponding to the inverse permutation \(\pi^{-1} \) that
solves input \(\pi \). \(\Rightarrow \) the tree has at least \(n! \) leaves.

Theorem: Every comparison-based sorting alg A for sorting \(n \) requires at least
\(\Omega(n \log n) \) comparisons in the WC.

Proof:

Let \(A \) be any comp-based alg for sorting \(n \); \(\bar{A} \) be the
decision tree for \(A \).

\(\text{let } h = \text{height}(\bar{A}) \)
\(\text{note in WC, } \bar{A} \text{ takes } h \text{ comps!} \)

claim: \(h \geq \log n \)

proof of claim:

- \(\bar{A} \) has at least \(n! \) leaves (one for each permutation of \(n \))
- \(\bar{A} \) is a binary tree of height \(h \), so it has almost \(2^h \) leaves
\(\Rightarrow 2^h \geq n! \) \(\Rightarrow h \geq \log(n!) \) which is \(\Omega(n \log n) \).

Adversary Approach

\(\text{e.g. } P = \text{"Find lonely man & wire of sets S of } n \text{ distinct elements"} \)

Naive alg: scan S twice
\[n - 1 \text{ comps } \]
\[n - 2 \text{ comps } \]
\[\text{total: } 2n - 3 \text{ comps.} \]
Butler alg.

Divide S into \(\frac{n}{2} \) pairs

- to find max, min of each pair: \(\frac{n}{2} \)
- scan \(\frac{n}{2} \) times to find max: \(\frac{n}{2} - 1 \) total: \(\frac{3n}{2} - 2 \) comps.
- or scan \(\frac{n}{2} \) times to find min: \(\frac{n}{2} - 1 \)

Theorem: Every comp-based alg for min-max \(S \) takes at least \(\frac{3n}{2} - 2 \) comps in WC.

Proof of p.c.

Starting from initial state \([n, 0, 0, 0, 0] \)

1. The alg must create \(n - 2 \) "M"s.
 To create each "M", it needs to do 1 comp in +
 \(\Rightarrow \) alg needs to do at least \(n - 2 \) comps of type #
 to create \(n - 2 \) "M"s

2. The alg must also create
 \(n - 2 \rightarrow W \) or \(L \) that becomes M
 \(W \rightarrow \) W that remains W until the end
 \(L \rightarrow \) L

\(\Rightarrow \) alg must create at least \(n - 2 \) "L" or "W"
\(\Rightarrow \) alg needs at least \(\frac{3n}{2} - 2 \) comps to create them.
Minimum Spanning Tree

A tree is a connected undirected graph with no cycles.

- A tree is undirected acyclic connected graph.
- Spanning tree of G (undirected, connected) = tree $T = (V, E')$, s.t. $E \subseteq E'$
- Spanning forest is pieces of spanning tree: $F = \bigcup T_i$ s.t. $V_i \subseteq V$, $E_i \subseteq E$, $V_i \cap V_j = \emptyset$

A Minimum Spanning Tree of G is s.t. $\sum w(e)$ is minimized.

- Number of spanning trees in a clique size m is m^{m-2}.

Kruskal's MST Alg

- Sort edges alpha by weight and build forest of trees

Given a connected undirected weighted graph $G = (V, E)$

Code:

1. Build MinHeap (E) # linear time
2. $Forest \leftarrow \{s_1, ..., s_m\}$ # MakeSet (V)
3. $MST\text{-edges} \leftarrow \emptyset$
4. While $(|MST\text{-edges}|) < m-1$, do
 1. $(u, v) \leftarrow \text{Extract-Min} (E)$
 2. $Tu \leftarrow \text{Find}(u)$; $Tv \leftarrow \text{Find}(v)$
 3.
 - If $Tu \neq Tv$, then
 - $\text{Union}(Tu, Tv)$
 - $MST\text{-edges} \leftarrow MST\text{-edges} U \{u, v\}$
 - End

 End

Loop invariant: $MST\text{-edges}$ are contained in some MST of G.

End
Traveling Salesman Problem

- **G** is completely connected w/ non-negative edge weights.
- Tour of **G**: visit every node exactly once.
- TSP tour of **G**: min-cost tour.
- TSP: to find a TSP tour of **G**.
- No brute force: exponential time $\to O(m!)$, bounded by $O(2^m)$.
- Polyhedral alg: $O(mk)$.
- TSP is NP-complete.

DTSP: assume that weights satisfy the triangle inequality.

- $\forall u, v, w: c(u, v) \leq c(u, w) + c(w, v)$
- DTSP is NP-complete.

Core lemma:

Let TSP be any opt tour of **G**.
Let MST be any MST of **G**.

Then $\text{cost}(\text{MST}) \leq \text{cost}(\text{TSP})$.

Proof:

Let v, w, z be any edge from some cycle C.

$\forall v, w, z: c(v, w) + c(w, z) \leq c(v, z)$

By triangle inequality, cycle C.

Approach alg for DTSP with

1. Find MST of **G**
2. Do a full walk on it
3. Transform it into a tour C^*

$\text{cost}(\text{MST}) \leq \text{cost}(\text{TSP})$ gives a cycle that processes every edge exactly twice.
Time Complexity

Worst case asymptotic analysis

- $O(f(n))$:
- $\exists c, m_0 \geq 0 : f(n) \leq c \cdot g(n)$
- $\exists c, m_0 \geq 0 : f(n) \leq c \cdot g(n)$
- $\forall c, m_0, m > m_0 : f(n) \leq c \cdot g(n)$

- $f \in O(m) \implies f \not\in o(f(n)) \implies f \in O(f(n)) \implies \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$

Tine complexity class: $TIME(t(m)) = \{ L | L \text{ is decidable by some } O(t(m)) \text{ TM} \}$

- \forall single tape TM is polynomially equivalent to multitape TM
- \forall multitape TM, $T \in O(t(n)) \implies \exists$ single tape TM', $T \in O(t^2(n))$ equivalent

Non-deterministic TM has runtime $t(n) = \max$ length of branch of computation

- constrained to being a decider (arbitrarily?)
- \forall TM, $T \in O(t(n)) \implies \exists$ TM', $T \in O(2O(t(n)))$ equivalent to TM

- every (strictly) polynomially bounded function $f(n) \in O(n^{log_{m}n}) \implies TIME(t(m)) \subset REG$

- $P = \bigcup_{k} TIME(n^k)$
- invariant for models of comp "measurable"
- most problems in reality aren't very poly big

- $NP = \bigcup_{k} NTIME(n^k)$
- $NP = \{ L | L \text{ has a polytime verifier} \}$
- $NP \subseteq P$?

- $PATH \in P$, $COPRIME = RELPRIME \in P$