Deterministic abortable (DA) obj

- wait free
- linearizable

Like ordinary obj except ops that experience contention (i.e., are concurrent with other operations) may return "abort" (L) without having any effect on the object.

- Regular obj cannot be impl. with registers - need better synced primitives, so weaken.

- Background

Obstruction free objects

Weakening of wait-free obj

\[
\text{def obstruction-free} = \text{op that eventually executes solo (no contention) terminates and returns normal response}
\]

Fact Any obstruction-free obj shared by
\[n\] procs can be impl. using only registers -
exercise give an obs-free impl. of consensus for \[2\] procs using only registers -
"Pausable" objects

- Every op invoked by connect process eventually
 returns chld to caller.
- Op that encounters no conflict then returns
 "normal" response.
- An operation that encounters conflict can:
 (a) return normal response
 (b) —— I and have no effect
 (c) —— "pause" in which case it may or may
 not have taken effect.
- At this point, caller must resume until (a)
 or (b).

Fact 1: A linearizable pausable Obj shared by n
 procs can be impl. using only registers.

Fact 2: If pause is not an option, then 3 Obj.
 that can't be impl. using only registers.

Specifically, abortable consensus (without pause) for 2 procs cannot be impl. using only

Wait-free consensus for 2 procs using a "DAC" Obj. for 2
 procs. D = 2-DAC objects
 X = registers
proof \[p_0 : \text{propose}(v) / \quad p_1 : \text{propose}(v) \]
\[
\begin{align*}
&d_0 := D.\text{prop}(v) \\
&\text{if } d_0 = 1 \text{ then return } d_0 \\
&\text{else } d_0
\end{align*}
\]
\[
\begin{align*}
&x_i := v \\
&\text{repeat } d_i := D.\text{prop} \\
&\text{until } d_i \neq 1 \\
&\text{return } d_i
\end{align*}
\]

- Now det abortable objects
 - Same as pausable but
 (a) return normal resp.
 (b) return \(\bot \) in which case it may or may
 not have taken effect

- Query abortable objects
 - Try to find all facts of aborted op-

- Back to DA objects -
 - \(\bot \) means did not take effect-

- Every def every req has a type:

\[
T = (\text{OP, RES, } q, m, \delta)
\]

- do not allow 2 proc's to access same port
- ops response states ports means, finc.

\[
\delta : Q \times \text{OP} \times \text{RES} \rightarrow Q \times \text{RES}
\]

\[
(q, op, i) \mapsto (q', res)
\]

DA counterpart of \(T \):
\[\tau_{\text{da}} = \{ \text{op}, \text{res}, \text{us}, \text{ss}, \text{a}, \text{m}, s^d_{\text{da}} \} \]

\(\tau_{\text{da}} \) becomes

\[\tau_{\text{op}} \]

\[\tau_{\text{us}} \]

\[\tau_{\text{res}} \]

\[\tau_{\text{ss}} \]

\[\tau_{\text{a}} \]

\[\tau_{\text{m}} \]

\[\tau_{s^d_{\text{da}}} \]

\[\tau_{\text{a}} \]

\[\tau_{\text{m}} \]

\[\tau_{\text{ss}} \]

\[\tau_{\text{res}} \]

\[\tau_{\text{us}} \]

\[\tau_{\text{op}} \]

def \(n \)-DAC : \(n \)-ported DA counterpart of \(n \)-consensus

Non-triviality

1. An op. can return \(1 \) only if it is concurrent \(\perp \) another op.

2. An op. that is intercepted by the crash \(\perp \) of the invoker can cause only a finite number of concurrent ops to abort.

DAC hierarchy

\[\text{100-DAC} \]

\[\text{...} \]

\[\text{3-DAC} \]

\[\text{2-DAC} \]

\[\text{1-DAC} \]

\[\text{resister} \]
level of a \(T^m \) in DAC hierarchy = max \(m \) for which \(T^m \) & registers can incl. m-DAC

\[\text{fact: } \text{DAC: } T^m \& S^m \Rightarrow \text{registers } \Rightarrow 2\text{DAC} \]
\[T^m \& S^m \Rightarrow \text{registers } \Rightarrow 3\text{-DAC} \]

proof Suppose \(T^m \& S^m \Rightarrow 3\text{-DAC} \)

Then \(T^m \& S^m \Rightarrow 3\text{-DAC} \)
\[\Rightarrow 2\text{-DAC} \Rightarrow 3\text{-DAC} \]
\[\Rightarrow 2\text{-DAC} \Rightarrow 3\text{-DAC} \]

Conjecture If \(T \) is an ordinary type at level \(m \) of the Consensus hierarchy, then \(T^m \) is at level \(m \) of the DAC-hierarchy.

disproof via

Def. Sticky register: \(R \)

Initially \(\Delta \), read but write once

idea DA-stick reg.
FLP impossibility \implies FD model

- FD model step
 - receive a msg
 - query FD
 - send a msg
- NR alg. \(k < \frac{2}{3} \)
 - coordination at round \(n \) is \(\text{P}_{\text{mod} m} \) majority
 - decide iff all received msg from connected same

- Too general:
 e.g. if \(T \) has initial val. 0 then set \(T \)
 else set \(\emptyset \)

- Not general enough:
 e.g. Heartbeat FD

- Failure Pattern:
 \(T \) : processes; \(N = \text{real line} \)
 \(F : N \rightarrow \mathcal{P}(T) \)
 \(F(k) = \{ p | p \in T \text{ crashed at time } k \} \)

- Failure History (with range \(R \)) \(R \subseteq \mathcal{P}(N) \)
 \(H : T \times N \rightarrow R \)
 \(H(k) = \text{value set by } p \text{'s FD module at } k \)
FD D : failure pattern \rightarrow set of FD instances.

$D(F) = \text{set of possible beh of } D \text{ when Fail}(F)$ is true.

Redefinition:

1. $S: \forall E \in S(F) \exists p \forall q \exists t, p \cdot \text{connect}(F) \land \forall q \in \text{connect}(F) \land \forall \chi \geq t \land q \in N(p)$

2. There p other properly.

Redef. step:

- Formally: (p, m, d)

Redef. schedule:

- seq of steps.

Redef. run of Alg A using FD D.

$PA = (F, V, I, S, T)$ seq of lines.

$\text{FD hist, initial config.}
\text{FD hist. initial config.}$

$P \in D(F)$

$\text{props} \forall F \in T, \text{if } p \text{ ceased at } v, \text{ then } k$.

Environment def:

$E = \text{set of failure pat.}$

Alg A solve P using FD D in env E.
Least FD to solve P in env \(E \).

Def: \(\text{FD} \geq \text{FD}' \text{ in } E \) if \(\text{FD} \) provides at least as much info as \(\text{FD}' \text{ in } E \).

\(\exists \) an alg. that uses \(\text{FD} \) to simulate \(\text{FD}' \text{ in } E \).

\(\text{e.g. } \text{FD} \geq \text{HB} \) (change set of proc into \#)

leader FD \(\Omega \).

Quorum FD \(\Sigma \).

each public quorum: set of proc.

reqs: (1) only 2 quorums (at any times and any processes) must intersect.

(2) eventually quorum of connected process must contain only connected.

Least FD to solve consensus in env. \(E \).

FD \(\Sigma \) s.t. (1) alg. that uses \(\Sigma \) to solve consensus.

(2) \(\forall \text{FD} \) that uses \(\Sigma \) to solve can be used to solve consensus.

Leader quorum \((\Omega, \Sigma) \).

\(\forall E \), the weakest FD to solve consensus is

MR \(\Rightarrow (\Omega, \Sigma) \) (Least FD that can be used to solve consensus).

For (1): modify MR

(2): \(\forall E \forall \text{FD} \) that can be used to solve consensus

(a) \(D \geq \Sigma \) \(\Omega \)

(b) \(D \geq \Sigma \) \(\Sigma \)
Exercise: implement F in a system if $F < \frac{3}{4}$.

Proof of (b)

1. Any FD solving consensus in E can be transformed to D_n in E.

2. Let Σ be any alg solving consensus in E.

Two interacting components:

1. DAG building
2. Extraction component (of Σ)

\[(p, d, t) \rightarrow (p, d, z) \]

\[(q, e, t) \]

Fair if connected

1. G_p monotonically increases $\Rightarrow G_p \succeq \text{init graph}$

2. If $(q, d, k) \rightarrow (q', d', k')$ in G_p then q took kth sample and q' took k'th sample and said k'th

3. If p is connected to r contains a "fair" path (i.e., connect p to r and only many samples as the path)

Simulated schedules of A:

Run $R = (F, H, -, -, -)$ of DAG b-ldy
Fix a path in G_p.

- $g: (p_1, d_1, k_1) \rightarrow (p_2, d_2, k_2) \rightarrow (p_3, d_3, k_3)$

Note: no need to be consecutive k_i, even for same process ($s \rightarrow s'$).

- Fix initial config I of A.
- Let S^r: set of schedules of A that are:
 - applicable to I
 - compatible with g

$$S = \{ (p_1, m_1, d_1), (p_2, m_2, d_2) \}$$

Singleton schedules of A

Consider $R = (F, H, \emptyset)$

g: path in some DAC
I: init config of A

- If S is comp w/ g and applicable to I then $\exists T$, s.t. (F, H, I, ST) is a run of A.

- If g is fair then $\exists S$, that is compatible w/ g & applicable to I and $\exists T$, (F, H, I, S, T) is an admissible run of A.
Sch (C, I) = set of schedules compat. w/ some path \(C \) and appl. to \(I \).

- \(p \) maintains variable \(u_p \) "recent" sample taken by \(p \).
- \(p \) keeps building its DAC until all inputs = 0
 nodes \(u_p \) and taken \(\mathcal{S}_0 \) contains \(S_0 \) such that \(p \) decides in \(S_0 (I) \).
- and all inputs = 1
 \(\mathcal{S}_1 \) contains \(S_1 (I) \)
- When this happens, \(p \) computes new query

\[\Sigma - \text{out} _r = \text{participants} (S_0) \cup \text{part.} (S_1) \]

\[\text{im} = \text{most recent sample of } p \]

proof of prop of quorum
- eventually achieve quorum, holding abort.

construct a 3rd run from 2 possible runs, then we don't have consensus!

No guys in common!
A solves consensus using O in E

- show \(N \subseteq E \)

Organise initial configs \(I_0 \rightarrow I_m \) (2 processes) in tree

- \(T_G \) Simulational Tree \(T_G \)
 - empty schedule
 - nodes: scheds in
 - \(Sch(G_b, I_b) \)
 - edges: \(s \rightarrow s' \)
 - \(s' = S_{\exists \langle p, m, d \rangle} \)

- \(F_G \) Simulation Forest \(F_G \)
 - \(G \rightarrow \infty \)
 - \(G \rightarrow \infty \)

- connect \(p, q \)

- \(G_p \rightarrow G_q \)

- \(G \) limit DAE

Tagging nodes in \(T_G \)

- \(\hat{v} v \) tag node \(v \) in \(T_G \) with \(0, 1, \overline{0}, \overline{1} \)

Fact 1: \(F_G \) contains a tree w/ bounded root or \(3 \), \(0 \leq i \leq m \)

Such: root of \(T_{G_i-1} \) is 0-val & root of \(T_{G_i} \) is 1-val.
Fact 2: If root of T^1_G is 0-val & root of T^2_G is 1-val then p_i is connect.

proof: by contradiction, p_i changes the decision.

Fact 3: If a tree has a bival root then it has a bival root s.t. $3p, 3m, S \cdot (p, m, d)$ is a node and a node of the form $S \cdot E \cdot (p, m, -)$ is arrival.

proof: by contradiction. slow break consensus.

Fact 4: If a tree has a bival root then it has a fork or a hook:

- fork: $(p, m, d) \rightarrow (p, m, d')$ (FD influencing decision)
- hook: (p, m, d)

proof:

Fact 5: The deciding process of a hook/fork is connect.

proof: Fork $pmd \rightarrow pmd'$
hook: case 1: \(p = p' \) (same as fork)

\((p, m, d) \)

\((p, m, i) \rightarrow \) 0 1-val

\((p, m, i) \rightarrow \) 0 0-val

- o Rule for picking connect \(p \) from \(F_0 \).

Let \(i \) be min \(\Theta_i \) s.t., s.t. either (a) \(T_0^i \) is bval.

or (b) \(T_0^i \) is 0-val and \(T_0^i \) is 1-val. If (b), then

pick \(p_i \) is connect (by fact 2). If (a), then choose smallest

hook on fork (in some encoding of graphs) and pick the

deciding process (by fact 3).

- o Applying rule to \(p \) cases:

Each \(p \) based on its DAG \(G_p \) constructs its own

simulation forest.

Fact 6: \(\forall p \forall S \in F_0, \exists k, A \text{ connect } p, \forall k \geq k, F_p(k)

contains \(S \) & connect bags for \(S \).

—— Have to use fact 6, be \(\exists k \), \(G_p(k) = G_q(k) \) for \(\forall p, q \)

is not have, since it is possible for 2 connect

processes one constantly exchanging messages—

So now, just wait for fact 6, then that all bags have been applied (s.t. all connect have same fork/look) —

FLP \rightarrow Lema 1: 3-lived init config

A solving

- If it violates lemma 1 then consensus w/o D
- Locate connect

2 then hook

The guy who takes step (decides) is connect!

How to extract Σ when A solves non-unif consensus?

- How to bag? cannot know connect.
- Just bag iff in subtree has self deciding bag

History: $p \rightarrow p$ good hypo

How to extract Σ

- Cannot use same agents before, but can extract Σ^0 (where intersection property holds for connect)

Weakest FD to solve NU consensus: (Ω, Σ^0).

--- End of class ---

1. Cover Welsh
2. Present set-hindlessness (k-set agreement)
3. Ω_1