UNIVERSITY OF TORONTO
Faculty of Arts and Science
DECEMBER EXAMINATIONS, 2011
NEW 333F

Duration - 3 hours
Aids Allowed: none
Total marks: 50
No scantron needed

Section 1:
Answer 4 of the following 9 short essay answer questions. Describe and explain each term(s), to which issues it is relevant, how it is relevant, and any relevant critical/insightful response. Each answer is worth 5 marks for a total of 20 marks.

1. Worldview attunement
2. philosophia
3. Sensibility transcendence
4. Having mode
5. Existenz-landscape
6. Chi or ki
7. parasitic programing
8. complexification

Section 2:
Answer 1 of the following 4 long essay answer questions. The answer is worth 30 marks.

1. Critically review and discuss Batchelor’s argument for a culture of awakening.
2. What is philosophia and how is it relevant to understanding the relationship between Buddhism and cognitive science?
3. Explain the cognitive scientific relevance of shamanism to understanding and appropriating Buddhism.
4. Can Buddhism interpreted by cognitive science address the meaning crisis? - as long as cog sci has the same naturalistic imperative as Buddhism -
Flow: chaining of insight - no challenged slightly beyond limit
- fluidity (automation/spontaneity) now low level procedures
- improves implicit learning through fittedness with causal patterns
- transactional
 - clear feedback & right coupling of response - powerlessness - effortlessness to intensity - grace
diagnostic: small error can break down flow

Distinguish correlation from causation - personal level

Fittedness with Dynamic fittedness \(\Rightarrow \) flow

Sacredness:
- mystical exp = flow of transforming = sign of sign of sign
- world view attainment (but now supernatural!!!)

Paranoia: ultimate appropriation of alterity

Historical crisis (reinforced by liberation) \(\Rightarrow \) permanent threats

Secularisation - spirituality with scientific encyclopaedia

Cog Sci - Knowledge
E - Embodiment
E - Emotional
E - Emergence
E - Excellence
- Transferring perspective on situation
 - Improve flexibility in sensibility
 - Sensibility transcendence
 - De-ariseness (flow state)

Flow state: - No feedback clear + tightly coupled
 - Constant re-framing :: adaptive state
 - Automatisms flow spontaneously
 - Uncovering low-level procedures

⇒ Implicit learning (underlying subcon learning process) = intuition
 - Flow = chaining of insight to improve implicit learning

⇒ Correlating patterns (closed causal paths)
Sacredness also comes from mystical / self-hears experience
((meta-meaning, protection) (experience of the numinous) — being connected to beyond yourself (only enabled by self-flow)

E.g. grief makes naïve egocentrism disappear

Bullshit = not care about truth (flashy rhetoric)

Lie = care about the truth

Pseudo-advertising is going to make salient things that are disconnected to self-bullshitting: redirecting your attention to make things salient

Self-transcendence: response to perennial problem that we are always susceptible to self-deception — to overcome ego by appropriating alterity

Aporia: loss of intelligibility by imposing transcendence — leading to incoherence

Adaptiveness is insignificance of self within universe — narrative gap

Meaning Crisis — Historical causes — perennial threats

A) Kid appropriating parent’s perspective — becoming aware of his own — appropriating alterity to improve cognition

B) Lose motivation by performing transcorp. shift: reflective gap

Pure consciousness event: transcorp. shift in cognitive median!

Heads UP: fundamental framing is beyond: no thinking

Heads DOWN: transcorp. involvement — humbles us, we realize ultimate failure

— Lose illusion by performing ophiomans shift: disillusionment gap
Religio ← Caedo → Scienha
 connection → setting
 setting → criterion
 psyche of significance → language 'games'
 sense of fittedness → boundaries of agreement

Credo ← myths
 affect → logos

Neearing Crisiss → Donicide → machinery of religio
 cultural level donicide
 3 gaps in world

Credo is supposed to fit us to the world by providing a
belief/meaning system. Buddhism Credo is perfectly
apt to provide that system regarding our CogSci Scienha.

Wholesome Credo → create proper BMI

If I have a fundamental way (Credo) of fitting
myself to the world, then all other belief systems
will make sense → proper modeling of world ↔ proper actions →

HOME Environment is in adequacy with Behavior

Religion is powerful machine to protect us from horror
 → if I can't make neearing → self-destruction
 or violence
Sacredness is coming from this protection, it brings useful neearing
Cause → Actuality → Possibility

information ⇐ Paraphrased

autopoietic transcendence { prepare anticipate

RR mechanics - Connecting - Religio

- Culturally sharing connections → mythos
- Consciously sensing connections → religio
- Unconsciously making connections → logos

Patterns within patterns = musicality (neta - connelto / organisa)

Religio (and narrative) is indispensable but not metaphysically necessary

Credo = belief system sets boundaries for science

Christianism: Credo → Religio → ambiguity → norm setting

Cerebellum + Neuronal integration bootstraping connectionism?

Cortex up? Cerebellum
RSA + MM

being aware of
recursive nature
of thought processing

co-occurring attention

cognitive processing

importance of visualisation

gestalt

meta-processing

RR

CS

CT

CP

Dynamic
Recursive
Field

Recursive
Field

Metra-recursion of RR nexi

Recursive
Modeling

Recursive
RR

Pattern Track

Events

Propositional

CT

Taking role =

simultaneously

Predict world

+ Prepare

DPD adds an extra layer
of projection of yourself

-> bidirectional
is now working

through bidirec
Mechanics of D2 - Consider a scenario involving the following:

1. Cognitive mapping
 - Specifically, cognitive mapping is a technique for visualizing the mental models of individuals or groups.
 - It helps in understanding the underlying assumptions, beliefs, and perceptions that influence decision-making processes.

2. Structuring and Prioritizing
 - This involves breaking down complex problems into smaller, more manageable components.
 - Prioritization helps in deciding which components are most critical to focus on first.

3. Efficiency
 - Efficiency in decision-making is crucial for optimizing resources and outcomes.
 - Tools like decision trees or cost-benefit analyses can be used to enhance efficiency.

4. Resiliency
 - Resiliency refers to the ability of a system to recover from disturbances and adapt to changes.
 - This is achieved by maintaining multiple paths of recovery and ensuring that the system can learn from failures.

5. Internal Economics
 - Internal economics involves understanding the financial and resource implications of decisions.
 - It is essential to consider the trade-offs and long-term impacts of different options.

6. External Interactions
 - External interactions involve the relationship between the system and its environment.
 - This includes factors such as market conditions, regulations, and external stakeholders.

7. Decision-Making
 - Decision-making is a critical aspect of any system, especially in complex environments.
 - Effective decision-making relies on clear objectives, sound information, and robust processes.

8. Algorithm
 - Algorithms are systematic procedures for solving problems or performing calculations.
 - They can be applied to automate decision-making processes, enhancing efficiency and accuracy.

9. Procedural Ability
 - Procedural ability refers to the ability to follow established procedures and protocols.
 - This is crucial in ensuring consistency and reliability in decision-making processes.

10. External Economics
 - External economics involves the financial and resource implications of decisions beyond the system's boundaries.
 - It is important to consider the broader economic context when making decisions.

11. System Design
 - System design involves the planning and creation of a system to achieve a specific purpose.
 - It includes considering the system's components, interactions, and overall architecture.

12. Data Collection
 - Data collection is the process of gathering information that is relevant to the decision-making process.
 - Effective data collection ensures that decisions are based on accurate and up-to-date information.

13. Analysis
 - Analysis involves the examination and interpretation of data to extract meaningful insights.
 - This is crucial for making informed decisions.

14. Decision
 - Decision refers to the act of making a choice among alternative options.
 - Good decisions are based on thorough analysis and consideration of all relevant factors.

15. Problem
 - Problem refers to a situation or issue that requires a solution.
 - Identifying the root cause of a problem is essential before attempting to solve it.

16. Resource Allocation
 - Resource allocation involves distributing available resources efficiently to achieve the desired outcomes.
 - Effective resource allocation is crucial for maximizing the system's performance.

17. Performance
 - Performance refers to the ability of a system to achieve its intended outcomes.
 - Measuring and monitoring performance helps in identifying areas for improvement.

18. Feedback
 - Feedback involves the process of gathering and interpreting information about the system's performance.
 - Regular feedback helps in making continuous improvements and adjustments.

19. Adaptation
 - Adaptation involves the system's ability to adjust to changes in its environment.
 - Adaptation is crucial for maintaining performance and achieving goals.

20. Learning
 - Learning involves the process of gaining knowledge and developing skills through experience.
 - Continuous learning helps in improving decision-making processes and system performance.

21. Growth
 - Growth refers to the expansion or development of a system over time.
 - Strategic growth planning is essential for ensuring that the system remains relevant and competitive.

22. Expansion
 - Expansion involves increasing the size or scope of a system.
 - Effective expansion planning ensures that the system can handle increased demand and maintain performance.

23. Development
 - Development involves the process of improving or enhancing a system's capabilities.
 - Development efforts should focus on addressing identified weaknesses and increasing efficiency.

24. Innovation
 - Innovation refers to the process of introducing new ideas or methods.
 - Innovation is crucial for staying ahead of competitors and meeting evolving market demands.

25. Effectiveness
 - Effectiveness refers to the degree to which a system achieves its intended outcomes.
 - Measuring and improving effectiveness is essential for ensuring that the system delivers value.

26. Efficiency
 - Efficiency refers to the ability to achieve desired outcomes with minimal waste.
 - Increasing efficiency can lead to cost savings and improved performance.

27. Adaptability
 - Adaptability involves the system's ability to respond to changes in its environment.
 - High adaptability is crucial for systems that operate in dynamic environments.

28. Flexibility
 - Flexibility refers to the ability of a system to change or adapt easily.
 - Flexible systems can be modified or reconfigured to meet changing needs or requirements.

29. Sustainability
 - Sustainability involves the system's ability to maintain performance and adapt over the long term.
 - Sustainable systems are designed to be resilient and adaptable in the face of future challenges.

30. Longevity
 - Longevity refers to the system's expected lifespan or duration of operation.
 - Planning for longevity involves considering factors such as maintenance, replacement, and decommissioning.

31. Maturity
 - Maturity refers to the level of development or advancement of a system.
 - Maturity levels can range from immature to mature, with each level representing a different stage of development.

32. Readiness
 - Readiness refers to the system's preparedness to perform its intended functions.
 - Ensuring readiness involves addressing any potential barriers or limitations that may prevent successful operation.

33. Capability
 - Capability refers to the system's ability to perform specific functions or tasks.
 - Identifying and developing capabilities is essential for meeting the system's intended objectives.

34. Competence
 - Competence refers to the ability to perform tasks or functions proficiently.
 - Competent systems are those that are capable of achieving desired outcomes with high quality and efficiency.

35. Competitiveness
 - Competitiveness refers to the system's ability to compete effectively in its market or environment.
 - Competitive systems are designed to outperform or at least match the performance of leading competitors.

36. Value
 - Value refers to the system's contribution to achieving desired outcomes.
 - Valuable systems provide significant benefits to their users or stakeholders.

37. Profitability
 - Profitability refers to the system's ability to generate profits or return on investment.
 - Profitable systems are those that contribute to the financial success of the organization or entity that operates them.

38. Return on Investment
 - Return on Investment (ROI) is a measure of the profitability of an investment relative to its cost.
 - A high ROI indicates that the investment is generating significant returns.

39. Risk Management
 - Risk Management involves identifying, evaluating, and prioritizing risks to make informed decisions.
 - Effective risk management helps in mitigating potential negative outcomes and maximizing opportunities.

40. Risk Identification
 - Risk Identification is the process of recognizing and understanding potential risks that could impact the system or project.
 - Identifying risks is crucial for developing strategies to mitigate or manage them.

41. Risk Analysis
 - Risk Analysis involves evaluating the likelihood and impact of potential risks to determine their overall significance.
 - Risk analysis helps in prioritizing risk mitigation strategies.

42. Risk Mitigation
 - Risk Mitigation involves implementing strategies to reduce the likelihood or impact of risks.
 - Effective risk mitigation can include insurance, contingency planning, or other preventive measures.

43. Risk Acceptance
 - Risk Acceptance involves making a decision to proceed with a project or activity despite known risks.
 - Risk acceptance is a strategy when the benefits outweigh the risks or when other mitigation strategies are not feasible.

44. Risk Transfer
 - Risk Transfer involves shifting the responsibility for potential losses to another party, such as through insurance or other agreements.
 - Risk transfer can help in reducing financial exposure and managing risk.

45. Risk Avoidance
 - Risk Avoidance involves taking actions to prevent the occurrence of potential risks.
 - Risk avoidance is a strategy when the risk is deemed unacceptable or when the cost of risk mitigation is prohibitive.

46. Risk Communication
 - Risk Communication involves the process of sharing information about risks with stakeholders.
 - Effective risk communication is crucial for building trust and ensuring informed decision-making.

47. Risk Reporting
 - Risk Reporting involves documenting and communicating the status of risks to relevant parties.
 - Regular risk reporting helps in maintaining awareness and tracking the effectiveness of risk mitigation strategies.

48. Risk Review
 - Risk Review involves periodically assessing the status of risks and their mitigation efforts.
 - Risk reviews are essential for adapting to changing circumstances and ensuring that risk management strategies remain effective.

49. Risk Monitoring
 - Risk Monitoring involves continuously observing the environment and systems for changes that could impact risks.
 - Risk monitoring helps in identifying new risks and assessing the effectiveness of existing risk management strategies.

50. Risk Evaluation
 - Risk Evaluation involves assessing the likelihood and impact of risks to determine their overall significance.
 - Risk evaluation helps in prioritizing risk mitigation strategies.

51. Risk Model
 - Risk Model refers to a mathematical or analytical representation of the relationship between risk factors and potential outcomes.
 - Risk models can be used to predict the probability of various outcomes and inform decision-making.

52. Risk Propagation
 - Risk Propagation refers to the process by which risks can spread through interconnected systems or processes.
 - Understanding risk propagation is crucial for identifying potential cascading effects.

53. Risk Transfer
 - Risk Transfer involves shifting the responsibility for potential losses to another party, such as through insurance or other agreements.
 - Risk transfer can help in reducing financial exposure and managing risk.

54. Risk Avoidance
 - Risk Avoidance involves taking actions to prevent the occurrence of potential risks.
 - Risk avoidance is a strategy when the risk is deemed unacceptable or when the cost of risk mitigation is prohibitive.

55. Risk Acceptance
 - Risk Acceptance involves making a decision to proceed with a project or activity despite known risks.
 - Risk acceptance is a strategy when the benefits outweigh the risks or when other mitigation strategies are not feasible.

56. Risk Communication
 - Risk Communication involves the process of sharing information about risks with stakeholders.
 - Effective risk communication is crucial for building trust and ensuring informed decision-making.

57. Risk Reporting
 - Risk Reporting involves documenting and communicating the status of risks to relevant parties.
 - Regular risk reporting helps in maintaining awareness and tracking the effectiveness of risk mitigation strategies.

58. Risk Review
 - Risk Review involves periodically assessing the status of risks and their mitigation efforts.
 - Risk reviews are essential for adapting to changing circumstances and ensuring that risk management strategies remain effective.

59. Risk Monitoring
 - Risk Monitoring involves continuously observing the environment and systems for changes that could impact risks.
 - Risk monitoring helps in identifying new risks and assessing the effectiveness of existing risk management strategies.

60. Risk Evaluation
 - Risk Evaluation involves assessing the likelihood and impact of risks to determine their overall significance.
 - Risk evaluation helps in prioritizing risk mitigation strategies.

61. Risk Model
 - Risk Model refers to a mathematical or analytical representation of the relationship between risk factors and potential outcomes.
 - Risk models can be used to predict the probability of various outcomes and inform decision-making.

62. Risk Propagation
 - Risk Propagation refers to the process by which risks can spread through interconnected systems or processes.
 - Understanding risk propagation is crucial for identifying potential cascading effects.
Applying RR to future (caring for oneself)
- D input, control means
- prediction preparation - D anticipation

Another nest for RR in zone

self

Mind.

Body

Environment

Salience landscape

Affordance landscape (presence)

Perspective modeling oneself

Perspective

Knowing (taking notes)
Shifting perspectives

Reciprocal power to move
Nexus of causal and influential aptness

Intelligibility conceptual fitness
E.g. solar system arrow analogy has realness to it

Significance landscape

Null, void
Grabbing of attention towards
Attentional dynamic of affordance
Anticipation assurance

Tracking of systematicity - intelligibility
Depth = confluency of intelligibility
and recip. power (multi-aptness
of causal - influential connections)

Anticipation
Dimensions of RR - self-organizing networks of RR - Decoding signals
 - Information = Reduction of uncertainty
 - 4D constraint on possibilities

Finding relevance in signal interpretation, an evolutionary account: mistaking noise for signal is better than mistaking signal for noise!

- Co-relevance
 - Recognizing patterns = completing patterns (rehearsal)
 - Generating signals

- Transcendence
 - Transcending env., aching, giving meaning

- Alienation
 - Losing correlation with paths
 - Losing meaning of interest
 - Disconnection

- Absurdity
 - Conflation
 - Confusion

- Facts (causal)
 - Conditions on possibility
 - Propositional facts vs. theories

- Events (actual)
 - Consequences vs. procedure

Applying 3D in RR to signals: coreference is distinguishing a pattern from background
GPS framework so dog fails (combinatorial explosion) because simplistic assumption on formula.* [link with polynomial time reductions]

Good pb formula* is combinatorially explosive pb!

\[RR + Env = Enact\ion \]

RR causes cognitive processes to be rational

Recall that the main idea behind RR is that it arises as the brain adapts to its environment. It is because things in the world have a particular "logical" way of happening/existing (ontology) that the primal function of the brain with respect to experiencing inducing the mind has become (by adaptation, Darwinian not. select.) the dynamic process of RR. It's inductive function/structure is hence an adaptation of the way life-everyday characteristic of the things behave.

Why RR cannot be theorized:
- Impover it is a fundamental phenomenon on which everything else is realized.
- Scientific statement depends on its understanding that cannot be explained by a scientific statement.
- Best statement implies finding relevance of a which is what we try to explain.

We want a mechanism for RR = realization in a contextually related num.