CSCC43 Introduction to Databases

XML Query Languages

CCCCCC

Outline

m Semistructured data

= |ntroduction to XML

= |ntroduction to DTDs

m XPath — core query language for XML

m XQuery — full-featured query language for XML

CSCC43

Semistructured Data

= An HTML document to be displayed on the Web:
<dt>Name: John Doe
<dd>Id: s111111111
<dd>Address:

<|[I>Number: 123
<||I>Street: Main

</dt>
<dt>Name: Joe Public i/———I:ITML does not distinguish

| between attributes and values

<dd>Id: s222222222 S

=~

</dt>

CSCC43

Why study XML?

= Huge demands for data exchange
across platforms
across enterprises
= Huge demands for data integration
heterogeneous data sources
data sources distributed across different locations

= XML (eXtensible Markup Language) has become
the prime standard for data exchange on the Web
and a uniform data model for integrated data.

A Prd P e < >
RDB &g —— m OO0DB

CSCC43

Why not HTML? An Example

m Amazon publishes a catalog for books on sale
Data source: a relational database

Publishing: HTML pages generated from the
relational database

m Customers want to query the catalog data:

They can only access the published Web pages (and
hence need a parser)

They are only interested in information about books

on Databases -- in SQL.:
select B
from book B
where B.title LIKE “Database%”

CSCC43

<h3> Books </h3> “Databases”

<|i> Database Design for Mere Mortals Michael J.
Hernandez

<i>Mar 13 2003 </i>

 Beginning Database Design: From Novice to
Professional Clare Churcher
 ...

CSCC43 6

What is wrong with HTML?

® A minor format change to the HTML document may
break the parser — and yield wrong answer to the
query
m Why? HTML tags are
= predefined and fixed
= describing display format rather than structure of data

m HTML Is good for presentation (human friendly), but
does not help automatic data extraction by means of
programs (queries)

CSCC43

An XML solution

<books>
<book >
<title>Database Design for Mere Mortals </title>
<author>Michael J. Hernandez</author>
<date>13/03/2003 </date>
</book>
<book id = “B2” >

<title>Beginning Database Design: From Novice to
Professional</title>

<author>Clare Churcher</author>
</book>
</books>

CSCC43

Semistructured Data cont’'d

= To make the previous student list suitable for machine
consumption on the Web, it should have these
characteristics:
= Be object-like

= Be schemaless (not guaranteed to conform exactly to
any schema, but different objects have some
commonality among themselves)

» Be self-describing (some schema-like information, like
attribute names, is part of data itself)

m Data with these characteristics are referred to as
semistructured.

CSCC43

What Is Self-describing Data?

= Non-self-describing (relational, object-oriented):

= Data part:
(#123, [‘Students”, {[*John”, s111111111, [123,”"Main St”]],
["Joe”, s222222222, [321, “Pine St™]] }

1)

® Schema part:

PersonList] ListName: String,
Contents: [Name: String,
ld: String,
Address: [Number: Integer, Street: String] |

CSCC43 10

What is Self-Describing Data? cont’d

= Self-describing:
= Attribute names embedded in the data itself, but are
distinguished from values
= Doesn’'t need schema to figure out what is what (but
schema might be useful nonetheless)

(#12345, [ListName: “Students”,
Contents: {[Name: “John Doe”,
Id: “s111111111",

Address: [Number: 123, Street: “Main St.”] |,

[Name: “Joe Public”,
|d: “s222222222",
Address: [Number: 321, Street: “Pine St.”]] }

1)

CSCC43

11

Overview of XML

_Ike HTML, but any number of different tags can
pe used (up to the document author) — extensible

Unlike HTML, no semantics behind the tags

= For instance, HTML's <table>...</table> means: render
contents as a table; in XML: doesn’t mean anything

special
= Some semantics can be specified using XML Schema
(types); some using stylesheets (browser rendering)

Unlike HTML, Is intolerant to bugs
= Browsers will render buggy HTML pages

= XML processors are not supposed to process buggy
XML documents

CSCC43

Example

,,,,,,,,,

"""""

\

<Title Value=“Student List” />

<Person>y ~ ..

-------- ~ @D::::::::""""""-'-'-'::.:;'.'.'.:',::..........

< / P arson >/ 2::::111::;;;;;_-;_-.-

<Person = (3,, ..

""""" >jw?§§mmtqr%%. Eﬂ11F"3/

< / P erson >/ T element .

< / P e rS O n L I St> /
1" Eloment (or tag) |

Names

» Elements are nested

m Root element contains all others

CSCC43

JUSWI|9 100Y

13

More Terminology

Parent of Address,

- "“i::::.'.‘.'.'.'.:.'.'.',',',:-_--........; very useful as data,
% <Address> T non-uniform -
0- <Number>21</Number>)
S< <Street>Main St.</Street> - Nested element,
S ~ ~ ~ child of Person
£ </Address> e
s = e o

P Child of Address,

</Ferson> Descendant of Person ___________
0 _
.. Closmg tag:
____________ What is open must be closed
cscc4s T

Ancestor of number

14

Well-formed XML Documents

Must have a root element

Every opening tag must have matching closing tag

Elements must be properly nested
» <foo><bar></foo></bar> Is a no-no

An attribute name can occur at most once in an
opening tag. If it occurs,

= |t must have an explicitly specified value (Boolean
attrs, like in HTML, are not allowed)

= The value must be quoted (with “ or *)

XML processors are not supposed to try and fix ill-
formed documents (unlike HTML browsers)

CSCC43

15

Tree Structure of XML

<bookstore>
<book category="COOKING">
<title lang="en">Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year> Root element:
<price>30.00</price> <hookstores
</book> Parent’[l
<book category="CHILDREN"> | Child |
<title lang="en">Harry Potter</title> *E‘Eﬁg%ﬁ?’ EQEFQSEE izttrg;ﬁ
<author>J K. Rowling</author>
<year>2005</year> | |
<price>29.99</price> Element: Element: Element: Elament:
</book> <titles <author= <Years <prices
<book category="WEB"> Siblings
<title Iang:'.'en">Learn|ng XML</title> Tt ot =T =
<author>Erik T. Ray</author> Everyday Italian Giada De 2005 30.00
<year>2003</year> Laurentis
<price>39.95</price>
</book>
</bookstore>
16

CSCC43

ldentifying and Referencing with Attributes

- An attribute can be declared to have type:

= |D - unigue identifier of an element

= |f attrl & attr2 are both of type ID, then it is illegal to have
<something attrl="abc”> ... <somethingelse attr2="abc”>

within the same document

= IDREF — references a unique element with matching ID
attribute

= |f attrl has type ID and attr2 has type IDREF then we can have:
<something attrl="abc”> ...

<somethingelse attr2="abc”>

= IDREFS — a list of references, If attrl is ID and attr2 is
IDREFS, then we can have

= <something attrl1="abc”>...<somethingelse
attrl="“cde”>...<someotherthing attr2="abc cde”>

CSCC43
17

Document Type Definition (DTD)

= A DTD iIs a grammar specification for an XML
document
= DTDs are optional — don’t need to be specified
= |f specified,
= DTD can be part of the document (at the top), or
= it can be given as a URL
= A document that conforms (i.e., parses) w.r.t. its DTD
IS said to be valid

= XML processors are not required to check validity,
even if DTD is specified

= But they are required to test well-formedness

CSCC43 18

DTDs (cont’d)

= DTD specified as part of a document:

<?xml version="“1.0" ?>
<IDOCTYPE Book [

<Book> </Book>

m DTD specified as a standalone thing

<?xml version=*1.0" 7>
<IDOCTYPE Book “http://csc343.com/book.dtd”>
<Book> </Book>

CSCC43 19

Element’s
= <I[ELEMENT elt-name_ -~ contents
(...contents...)JEMPTY/ANY >
< I ATTL I S-- e t'name attr-ﬂame ----====:=::::::::::::::::Iijfiﬁfjg """" An attr for eIt
CDATA/ID/IDREF/IDREFS ... e —
~ Type of attribute
m |\/|Ff_| E :)/#REQU IRED e
-
| Optional/mandatory |

= Can define other things, like macros (called entities
In the XML jargon)

CSCC43
20

DTD Example

<IDOCTYPE Report |
<IELEMENT Report (Students, Classes, Courses)>
<IELEMENT Students (Student*)>

<IELEMENT Classes (Class*)>
<IELEMENT Courses

<IELEMENT Student
<IELEMENT Name (First,Last)>

atus, CrsTaken*)>

<IELEMENT First (#PCDAT

Empty element, no

<IELEMENT CrsTaken(EMPTY3)

<IELEMENT Class (CrsCode, Semester, ClassRoster)>
<IELEMENT Course (CrsName)>

<IATTLIST Report Date CDATA #IMPLIED>
<IATTLIST Student Studld ID #REQUIRED>
<IATTLIST Course CrsCode ID #REQUIRED>

content

<IATTLIST CrsTaken CrsCode IDREF #REQUIRED
Semester CDATA #REQUIRED >
<IATTLIST ClassRoster Members IDREFS #IMPLIED>

> csceas

Same attribute in
: different elements

21

Example: Report Document with
Cross-References

<?xml version=*1.0" ?>
<Report Date="2002-12-12">
<Students>
<Student Studld="s111111111">
<Name><First>John</First><Last>Doe</Last></Name> <Status>U2</Status>
<CrsTaken CrsCode="CS308” Semester="F1997” />
<CrsTaken CrsCode=“MAT123” Semester="F1997” />
</Student>
<Student Studld=“s666666666">
<Name><First>Joe</First><Last>Public</Last></Name> <Status>U3</Status>
<CrsTaken CrsCode="CS308” Semester="F1994" />

<CrsTaken CrsCode=*"MAT123” Semester="“F1997" />

T TP PPR

</Student>-.-.-.-.::::::::::::::::::::::::::::::::::::ZZIIZZIIZZIIIIIIIZZIIII.'.'.'.'.'.'.'.'.': IDREE
<Student Studld=“s987654321">

<Name><First>Bart</First><Last>Simpson</Last></Name> <Status>U4</Status>
<CrsTaken CrsCode=“CS308” Semester="F1994" />
</Student>
</Students>

...... COntinued

CSCC43
22

Report Document (cont’d)

<Classes>

<Class>
<CrsCode>CS308</CrsCode> <Semester>F1994</Semester>
<ClassRoster Members="s666666666 987654321" />

</Class> '"'=====::::;:;;;;;;::

IDREFS
<Class> -

<CrsCode>CS308</CrsCode> <Semester>F1997</Semester>
<ClassRoster Members="s111111111" />

</Class>

<Class>
<CrsCode>MAT123</CrsCode> <Semester>F1997</Semester>
<ClassRoster Members="s111111111 s666666666" />

</Class>

</Classes>
...... continued

CSCC43

23

<Courses> . s
<Course CrsCode = “CS308” >
<CrsName>Market Analysis</CrsName>
</Course>
<Course CrsCode = “MAT123” >
<CrsName>Market Analysis</CrsName>
</Course>
</Courses>
</Report>

CSCC43

24

Limitations of DTDs

Don’t understand namespaces
Very limited assortment of data types (just strings)

Very weak w.r.t. consistency constraints
(ID/IDREF/IDREFS only)

Can't express unordered contents conveniently

All element names are global: can’t have one Name
type for people and another for companies:
<IELEMENT Name (Last, First)>
<IELEMENT Name (#PCDATA)>

both can’t be In the same DTD

CSCC43
25

XML Schema

= Came to rectify some of the problems with DTDs

= Advantages:
= |Integrated with namespaces
= Many built-in types
= User-defined types
= Has local element names
= Powerful key and referential constraints
= Disadvantages:
= Unwieldy — much more complex than DTDs

CSCC43

26

XML Query Languages

= XPath — core query language.
= Very limited, a glorified selection operator.

= Very useful, though: used in XML Schema, XSLT,
XQuery, many other XML standards

m XSLT - a functional style document transformation
language.

= Very powerful, very complicated
= XQuery — W3C standard.
= Very powerful, fairly intuitive, SQL-style

= SQL/XML — attempt to marry SQL and XML, part of
SQL:2003

CSCC43 27

Why Query XML?

= Need to extract parts of XML documents
m Need to transform documents into different forms

= Need to relate — join — parts of the same or
different documents

CSCC43

28

XPath

- Analogous to path expressions in object-oriented
languages (e.g., OQL)

- Extends path expressions with query facility

- XPath views an XML document as a tree

= Root of the tree Is a new node, which doesn’t correspond to
anything in the document

= [nternal nodes are elements

= | eaves are either
= Attributes
= Text nodes
= Comments

= Other things that we didn’t discuss (processing instructions, ...)

CSCC43 29

XPath Document Tree

Root of XML tree

—_
——_——
—_
-
—_

Root of XML document
Root el

Comment Students Comment

/
Student -__

Name /,'
/ \ Status e \
First Last CrsTaken CrsTaken
John Doe Ua CrsCode @ Semester CrsCode @ Semester
Attribute Comment Root
Legend: Text Element

CSCC43
30

Document Corresponding to the Tree

= A fragment of the report document from earlier
<?xml version="1.0" ?>
<l-- Some comment -->
<Students>
<Student Studld=“111111111" >
<Name><First>John</First><Last>Doe</Last></Name>
<Status>U2</Status>
<CrsTaken CrsCode="CS308” Semester="F1997” />
<CrsTaken CrsCode="MAT123” Semester="F1997” />
</Student>
<Student Studld=“987654321" >
<Name><First>Bart</First><Last>Simpson</Last></Name>
<Status>U4</Status>

<CrsTaken CrsCode=“CS308” Semester=“F1994" />
</Student>
</Students>
<l-- Some other comment -->

CSCC43 31

Terminology

= Parent/child nodes, as usual
= Child nodes (that are of interest to us) are of
types:
= {ext,
= element,
= attribute.

= Ancestor/descendant nodes — as usual In
trees

CSCC43

32

XPath Basics

An XPath expression takes a document tree as
iInput and returns a multi-set of nodes of the tree

= Expressions that start with / are absolute path
expressions
=/
= /Students/Student
= /Student

CSCC43

33

XPath Basics

= An XPath expression takes a document tree as input
and returns a multi-set of nodes of the tree

= Expressions that start with / are absolute path
expressions

= [— returns root node of XPath tree

= /Students/Student — returns all Student-elements that

are children of Students elements, which in turn must
be children of the root

= /Student — returns empty set (no such children at root)

CSCC43 34

XPath Basics cont’d

= Current (or context node) — exists during the
evaluation of XPath expressions (and in other XML
guery languages)

" — denotes the current node;
= —denotes the parent

» foo/bar

» [foolbar

» ..Jabc/cde

= Expressions that don’t start with / are relative (to the
current node)

CSCC43
35

XPath Basics cont’d

Current (or context node) — exists during the
evaluation of XPath expressions (and in other XML
guery languages)

. — denotes the current node:

.. — denotes the parent

» foo/bar — returns all bar-elements that are children of
foo nodes, which in turn are children of the current node

» . [foolbar — same

» ..Jabc/cde — all cde e-children of abc e-children of the
parent of the current node

Expressions that don’t start with / are relative (to the
current node)

CSCC43
36

Attributes, Text, etc.

@/"Zﬂ‘:ﬁf&f"]
® /Students/Student/@Studentid

= /Students/Student/Name/Last/text()

m XPath provides means to select other document
components as well

CSCC43

37

Attributes, Text, etc.

@/"Zﬂ‘:ﬁf&f"]
= /Students/Student/@Studtld — returns all Studentid

a-children of Student, which are e-children of
Students, which are children of the root

= /Students/Student/Name/Last/text() — returns all t-
children of Last e-children of ...

m XPath provides means to select other document
components as well

CSCC43 38

Overall Idea and Semantics

= An XPath eXpreSSIOﬂ IS: This is called full syntax.

We used abbreviated syntax before.

|OcatIOnStep1I|ocat|onStep2[Full syntax is better for describing
" Location step: iy ‘meaning Abbreviated synax s better o

AXis: nodeSeIector[predlcate]
= Navigation axis:

= child, parent — have seen

= ancestor, descendant, ancestor-or-self, descendant-or-self —
will see later

= some other

= Node selector: node name or wildcard; e.g.,
= /child::Student (we used ./Student, which is an abbreviation)
= /child::* —any e-child (abbreviation: ./*)
= Predicate: a selection condition; e.g.,
Students/Student[CourseTaken/@CrsCode = “CSC343"]

CSCC43
39

XPath Semantics

= The meaning of the expression
locationStepl/locationStep2/... is the set of all
document nodes obtained as follows:

= Find all nodes reachable by locationStepl from the current
node

= For each node N In the result, find all nodes reachable from
N by locationStep2; take the union of all these nodes

= For each node in the result, find all nodes reachable by
locationStep3, etc.

= The value of the path expression on a document is the set
of all document nodes found after processing the last
location step in the expression

CSCC43 40

Overall Idea of the Semantics cont’d
= |ocationStepl/locationStep2/... means:
= Find all nodes specified by locationStepl
= For each such node N:

= skind all nodes specified by locationStep2
using N as the current node

= Take union

= For each node returned by locationStep2 do the
same

= |ocationStep = axis::node[predicate]
= Find all nodes specified by axis::node
= Select only those that satisfy predicate

CSCC43 41

More on Navigation Primitives

= 2nd CrsTaken child of 15t Student child of Students:
/Students/Student[1]/CrsTaken|2]

= All last CourseTaken elements within each Student
element:

/Students/Student/CrsTaken[last()]

CSCC43
42

Wildcards

m \Wildcards are useful when the exact structure of
document I1s not known

= Descendant-or-self axis, // : allows to descend
down any number of levels (including O)
= //CrsTaken - all CrsTaken nodes under the root

= Students//(@Name — all Name attribute nodes under

the elements Students, who are children of the current
node

m The * wildcard:

= * — any element: Student/*/text()
= @* — any attribute: Students//@*

CSCC43
43

XPath Queries (selection predicates)

= Recall: Location step = Axis::nodeSelector[predicate]
= Predicate:

= XPath expression = const | built-in function | XPath
expression

= XPath expression
= Dbullt-in predicate
= a Boolean combination thereof

= Axis::nodeSelector|predicate] — Axis::nodeSelector
but contains only the nodes that satisfy predicate

= Built-in predicate: special predicates for string
matching, set manipulation, etc.

= Built-in function: large assortment of functions for
string manipulation, aggregation, etc.

44

XPath Queries — Examples

m Students who have taken CSC343:
[/Student[CrsTaken/@CrsCode="CSC343"]
Trueif . "“CSC343” e //Student/CrsTaken/@CrsCode
= Complex example:
[/Student[Status="“U3” and starts-with(.//Last, “A”)

and contains(concat(.//@CrsCode,™),“ESE")
and not(.//Last = ./[First)]

= Aggregation: sum(), count()
[/Student[sum(.//@Grade) div count(./@Grade) > 3.5]

CSCC43 45

Xpath Queries cont’d

m Testing whether a subnode exists:
= /[Student[CrsTaken/@Grade]

= students who have a grade (for some course)
= /[Student[Name/First or CrsTaken/@Semester

or Status/text() = “U4”]

— students who have either a first name or have taken a
course In some semester or have status U4

= Union operator, | :

/[ICrsTaken[@Semester=“F2001"] |
//IClass[Semester=“F1990"]

= union lets us define heterogeneous collections of
nodes

CSCC43
46

XQuery — XML Query Language

m |ntegrates XPath with earlier proposed query
languages: XQL, XML-QL

m SQL-style, not functional-style

m 2007: XQuery 1.0

CSCC43

47

XQuery Basics: FLOWR Expression

s General structure:

FOR variable declarations | XQuery |
il variable declarations . BXpression)
WHERE condition >~

ORDER BY list

RETURN document D

CSCC43 48

XQuery Basics: FLOWR Expression

" Example: . comment
(Students WhO to Ok M AT 123) .
FOR $t IN doc(“transcript.xml”)//Transcript = ™.
WHERE $t/CrsTaken/@CrsCode = “MAT123” > ™ |
. This documenton
RETURN $t/Student u next slides
= Result:

<Student Studid=“111111111" Name=“John Doe” />
<Student Studld=“123454321" Name="Joe Blow” />

CSCC43

49

transcript.xml

<Transcripts>

<Transcript>
<Student Studld=“111111111" Name="John Doe” />
<CrsTaken CrsCode=“CS308” Semester="F1997” Grade="B” />
<CrsTaken CrsCode="MAT123” Semester="F1997” Grade="B” />
<CrsTaken CrsCode="EE101” Semester="F1997” Grade="A" />
<CrsTaken CrsCode="CS305” Semester="F1995” Grade="A" />

</Transcript>

<Transcript>
<Student Studld=“987654321" Name="Bart Simpson” />
<CrsTaken CrsCode=“CS305” Semester="F1995" Grade="C” />
<CrsTaken CrsCode="CS308” Semester="F1994” Grade="B” />
</Transcript>

CSCC43 50

transcript.xml (cont’d)

<Transcript>
<Student Studld=“123454321" Name="Joe Blow” />
<CrsTaken CrsCode="CS315” Semester=“S1997” Grade="A" />
<CrsTaken CrsCode=“CS305” Semester="51996" Grade="A" />

<CrsTaken CrsCode="MAT123” Semester=“"S1996” Grade="C” />
</Transcript>
<Transcript>

<Student Studld=“023456789” Name="Homer Simpson” />

<CrsTaken CrsCode="EE101” Semester=“F1995” Grade="B” />

<CrsTaken CrsCode=“CS305” Semester="S51996" Grade="A" />
</Transcript>

</Transcripts>

CSCC43 51

XQuery Basics (cont’d)

= Previous query doesn’t produce a well-formed XML
document; the following does:

<StudentList> " Query |
{ _inside XML |

FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123"
RETURN $t/Student

}
</StudentList>

CSCC43 52

Document Restructuring with XQuery

m Reconstruct lists of students taking each class using

the Transcript records:

FOR $c IN doc(“transcript.xml”)//CrsTaken
ORDER BY $c/@CrsCode
RETURN

<ClassRoster >

FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken[@CrsCode = $c/@CrsCode and
@Semester = $c/@Semester]
. ORDER BY $t/student/@studid
EgETURN $t/Student

..........

T Query inside
\ T RETURN

</ClassRoster>

CSCC43
53

Document Restructuring (cont’d)

= Output elements have the form:

<ClassRoster CrsCode=“CS305” Semester=“F1995” >
<Student Studld=“111111111" Name=“John Doe” />
<Student Studld="987654321" Name="Bart Simpson” />

</ClassRoster>

= Problem: the above element will be output twice:

= once when $c¢ is bound to
<CrsTaken CrsCode="CS305” Semester="F1995” Grade="A" />

"""""""

= and once when $c is bound to P erwoas

Note: grades are different — distinct-values() won't
ehbminate transcript records that refer to same classl,

Document Restructuring cont’d

= Solution: instead of
for $c in doc(“transcript.xml”)//CrsTaken
Use e

~ Documenton

for $¢ in doc(“classes.xml’)//Class T e .. hextslide

where classes.xml lists course offerings (course

code/semester) explicitly (no need to extract them from
transcript records).

Then $c is bound to each class exactly once, so each
class roster will be output exactly once

CSCC43
55

http://uoft.edu/classes.xml

<Classes>
<Class CrsCode="CS308” Semester=“F1997" >
<CrsName>SE</CrsName> <Instructor>Adrian Jones</Instructor>
</Class>
<Class CrsCode="EE101” Semester=“F1995" >
<CrsName>Circuits</CrsName> <Instructor>David Jones</Instructor>
</Class>
<Class CrsCode="CS305” Semester=“F1995”" >
<CrsName>Databases</CrsName> <Instructor>Mary Doe</Instructor>
</Class>
<Class CrsCode="CS315" Semester=“S1997” >
<CrsName>TP</CrsName> <Instructor>John Smyth</Instructor>
</Class>
<Class CrsCode="MAR123” Semester=“F1997" >
<CrsName>Algebra</CrsName> <Instructor>Ann White</Instructor>
</Class>
</Classes>

CSCC43

56

Dasument Restructuring (Cont e ¢iasses with
no students. Reformulation that avoids this:

FOR $c IN doc(“classes.xml”)//Class ~ Test that classes
WHERE doc(“transcripts.xml”)//CrsTaken[@CrsCode = $c/@Crs@&uEmPy
...................... A @ S ESter:$C/@Sem este r]
ORDER BY $c/@CrsCode
RETURN

<ClassRoster CrsCode = “{$c/@CrsCode}”
Semester = “{$c/@Semester}”> {
FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken[@CrsCode = $c/@CrsCode and
@Semester = $c/@ Semester]
ORDER BY $t/Student/@ Studld
RETURN $t/Student
}

</ClassRoster>

CSCC43
S7

XQuery Semantics

m So far the discussion was informal

= XQuery semantics defines what the expected result
of a query Is

= Defined analogously to the semantics of SQL

CSCC43 58

XQuery Semantics cont’'d

= Step 1: Produce a list of bindings for variables

= The FOR clause binds each variable to a list of nodes
specified by an XQuery expression.

The expression can be:
= An XPath expression
= An XQuery query
= A function that returns a list of nodes
= End result of a FOR clause:
= Ordered list of tuples of document nodes

= Each tuple is a binding for the variables in the FOR
clause

CSCC43 59

XQuery Semantics cont’d

Example (bindings):
= | et FOR declare $A and $B
= Bind $A to document nodes {v,w}; $B to {x,y,z}
= Then FOR clause produces the following list of
bindings for $A and $B:
= $A/v, $B/X
= $AN, $Bly
= $A/v, $B/z
= $A/w, $B/x
= $A/w, $Bly
= $A/w, $B/z

CSCC43

60

XQuery Semantics cont’d

= Step 2: filter the bindings via the WHERE clause

= Use each tuple binding to substitute its components for
variables;

= retain those bindings that make WHERE true
= Example:
WHERE $A/CrsTaken/@CrsCode = $B/Class/@CrsCode
= Binding:
= $A/w, where w = <CrsTaken CrsCode="CS308" .../>
= $B/X, where x = <Class CrsCode=“CS308" ... />

= Then w/CrsTaken/@CrsCode = x/Class/@CrsCode,
so the WHERE condition is satisfied & binding retained

CSCC43
61

XQuery Semantics cont’d

= Step 3: Construct result

= For each retained tuple of bindings, instantiate the
RETURN clause

= This creates a fragment of the output document
= Do this for each retained tuple of bindings in sequence

CSCC43 62

Grouping and Aggregation

= Does not use separate grouping operator

m Uses bullt-in aggregate functions count, avg, sum,
etc. (some borrowed from XPath)

CSCC43

63

Aggregation Example

= Produce a list of students along with the number of

courses each student took:
FOR $t IN fn:doc(“transcripts.xml”)//Transcript,
$s IN $t/Student
LET $c := $t/CrsTaken

RETURN
<StudentSummary Studld = “{$s/@Studld}’ Name = “{$s/@Name}"
TotalCourses = {fn:count(fn:distinct-values($c))} />

= The grouping effect is achieved because $c is bound
to a new set of nodes for each binding of $t

CSCC43 64

Quantification in XQuery

= XQuery supports explicit guantification. SOME (3)
and EVERY (V)

= Example:
FOR $t IN fn:doc(“transcript.xml”)//Transcript
WHERE SOME $ct IN $t/CrsTaken
SATISFIES $ct/@CrsCode = “MAT123”
RETURN $t/Student

“Almost” equivalent to:

FOR $t IN fn:doc(“transcript.xml”)//Transcript,
$ct IN $t/CrsTaken

WHERE $ct/@CrsCode = “MAT123”

RETURN $t/Student

=\ Ot equivalent, If students can take same course twige!

Implicit Quantification

= Note: in SQL, variables that occur in FROM, but not
SELECT are implicitly quantified with 3

= |n XQuery, variables that occur in FOR, but not
RETURN are similar to those in SQL. However:

= |n XQuery variables are bound to document nodes

= |n SQL a variable can be bound to the same value
only once; identical tuples are not output twice (in
theory)

= This Is why the two queries In the previous slide are
not equivalent

CSCC43 66

Quantification cont’'d

m Retrieve all classes (from classes.xml) where each
student took MAT123

= Hard to do in SQL (before SQL-99) because of the
lack of explicit quantification
FOR $c IN fn:doc(classes.xml)//Class
LET $g :={ (: Transcript records that correspond to class $c :)
FOR $t IN fn:doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/@Semester = $c/@Semester
AND $t/CrsTaken/@CrsCode = $c/@CrsCode
RETURN $t

}
WHERE EVERY $tr IN $g SATISFIES

NOT fn:empty($tr[CrsTaken/@CrsCode="MAT123"])
RETURN $c ORDER BY $c/@CrsCode

CSCC43 67

XQuery Functions: Example

..........

DECLARE FUNCTION countNodes($e AS element()) AS integer

{ _
RETURN XOuer
IF empty($e/*) THEN 0 R expreszion
ELSE T
sum(FOR $n IN $e/*RETURN countNodes($n)) + cqunt($e/*)
} R

....
e,

count, empty)

S Builtein
qunctions sum,

CSCC43 68

User-defined Functions

m Can define functions, even recursive ones

= Functions can be called from within an XQuery
expression

= Body of function is an XQuery expression

m Result of expression is returned

= Result can be a primitive data type (integer, string), an
element, a list of elements, a list of arbitrary document
nodes, ...

CSCC43
69

