
 1CSCC43

CSCC43 Introduction to Databases

XML Query Languages XML Query Languages

 2CSCC43

Outline

Semistructured data
Introduction to XML
Introduction to DTDs
XPath – core query language for XML
XQuery – full-featured query language for XML

 3CSCC43

Semistructured Data

An HTML document to be displayed on the Web:
<dt>Name: John Doe
 <dd>Id: s111111111
 <dd>Address:

 Number: 123
 Street: Main

</dt>
<dt>Name: Joe Public
 <dd>Id: s222222222
 … … … …
</dt>

HTML does not distinguish
between attributes and values

 4CSCC43

Why study XML?
Huge demands for data exchange
• across platforms
• across enterprises

Huge demands for data integration
• heterogeneous data sources
• data sources distributed across different locations

XML (eXtensible Markup Language) has become
the prime standard for data exchange on the Web
and a uniform data model for integrated data.

RDB OODB

 5CSCC43

Why not HTML? An Example
 Amazon publishes a catalog for books on sale

• Data source: a relational database
• Publishing: HTML pages generated from the

relational database
Customers want to query the catalog data:
• They can only access the published Web pages (and

hence need a parser)
• They are only interested in information about books

on Databases -- in SQL:
select B

 from book B
 where B.title LIKE “Database%”

 6CSCC43

What is wrong with HTML?
<h3> Books </h3> “Databases”

 Database Design for Mere Mortals Michael J.

Hernandez

 <i>Mar 13 2003 </i>
 Beginning Database Design: From Novice to

Professional Clare Churcher
 …

 7CSCC43

What is wrong with HTML?
 A minor format change to the HTML document may

break the parser – and yield wrong answer to the
query
 Why? HTML tags are

predefined and fixed
describing display format rather than structure of data

 HTML is good for presentation (human friendly), but
does not help automatic data extraction by means of
programs (queries)

 8CSCC43

An XML solution
<books>
 <book >

<title>Database Design for Mere Mortals </title>
<author>Michael J. Hernandez</author>
<date>13/03/2003 </date>

 </book>
 <book id = “B2” >

<title>Beginning Database Design: From Novice to
Professional</title>

<author>Clare Churcher</author>
 </book>
</books>

 9CSCC43

Semistructured Data cont’d

To make the previous student list suitable for machine
consumption on the Web, it should have these
characteristics:

Be object-likeobject-like
Be schemalessschemaless (not guaranteed to conform exactly to
any schema, but different objects have some
commonality among themselves)
Be self-describingself-describing (some schema-like information, like
attribute names, is part of data itself)

Data with these characteristics are referred to as
semistructuredsemistructured.

 10CSCC43

What is Self-describing Data?
Non-self-describing (relational, object-oriented):

Data part:
 (#123, [“Students”, {[“John”, s111111111, [123,”Main St”]],

 [“Joe”, s222222222, [321, “Pine St”]] }
])

 Schema part:
 PersonListPersonList[ListName: String,

 Contents: [Name: String,
 Id: String,
 Address: [Number: Integer, Street: String]]
]

 11CSCC43

What is Self-Describing Data? cont’d
Self-describingSelf-describing:

Attribute names embedded in the data itself, but are
distinguished from values
Doesn’t need schema to figure out what is what (but
schema might be useful nonetheless)

(#12345, [ListName: “Students”,
 Contents: { [Name: “John Doe”,
 Id: “s111111111”,
 Address: [Number: 123, Street: “Main St.”]] ,
 [Name: “Joe Public”,
 Id: “s222222222”,
 Address: [Number: 321, Street: “Pine St.”]] }
])

 12CSCC43

Overview of XML
Like HTML, but any number of different tags can
be used (up to the document author) – extensible
Unlike HTML, no semantics behind the tags

For instance, HTML’s <table>…</table><table>…</table> means: render
contents as a table; in XML: doesn’t mean anything
special
Some semantics can be specified using XML Schema
(types); some using stylesheets (browser rendering)

Unlike HTML, is intolerant to bugs
Browsers will render buggy HTML pages
XML processorsXML processors are not supposed to process buggy
XML documents

 13CSCC43

<?xml version=“1.0” ?>

<PersonList Type=“Student” Date=“2002-02-02” >
 <Title Value=“Student List” />
 <Person>
 … … …
 </Person>
 <Person>
 … … …
 </Person>
</PersonList>

Elements are nested
Root element contains all others

 Element (or tag)
names

Example

ele m
e nts

Ro ot
Ro ot el em

e ntEmpty
element

 attributes

 14CSCC43

More Terminology

<Person Name = “John” Id = “s111111111”>

 John is a nice fellow

 <Address>
 <Number>21</Number>
 <Street>Main St.</Street>
 </Address>
 … … …
</Person>

Opening tag

Closing tag:
What is open must be closed

Nested element,
child of PersonPerson

Parent of AddressAddress,
Ancestor of numbernumber

“standalone” text, not
very useful as data,

non-uniform

Child of AddressAddress,
Descendant of PersonPerson

C
on

te
nt

 o
f

 P
er

so
n

Pe
rs

on

 15CSCC43

Well-formed XML Documents
Must have a root elementroot element
Every opening tagopening tag must have matching closing tag
Elements must be properly nestedproperly nested

<foo><bar></foo></bar> is a no-no
An attributeattribute name can occur at most once in an
opening tag. If it occurs,

It must have an explicitly specified value (Boolean
attrs, like in HTML, are not allowed)
The value must be quoted (with “ or ‘)

XML processors are not supposed to try and fix ill-
formed documents (unlike HTML browsers)

 16CSCC43

Tree Structure of XML
<bookstore>

<book category="COOKING">
<title lang="en">Everyday Italian</title>
<author>Giada De Laurentiis</author>
<year>2005</year>
<price>30.00</price>

</book>
<book category="CHILDREN">

<title lang="en">Harry Potter</title>
<author>J K. Rowling</author>
<year>2005</year>
<price>29.99</price>

</book>
<book category="WEB">

<title lang="en">Learning XML</title>
<author>Erik T. Ray</author>
<year>2003</year>
<price>39.95</price>

</book>
</bookstore>

 17CSCC43

Identifying and Referencing with Attributes
An attribute can be declared to have type:

IDID – unique identifier of an element
If attr1 & attr2 are both of type ID, then it is illegal to have
<something attr1=“abc”> … <somethingelse attr2=“abc”>

within the same document
IDREFIDREF – references a unique element with matching ID
attribute

If attr1 has type ID and attr2 has type IDREF then we can have:
<something attr1=“abc”> …

 <somethingelse attr2=“abc”>
IDREFSIDREFS – a list of references, if attr1 is ID and attr2 is
IDREFS, then we can have

<something attr1=“abc”>…<somethingelse
attr1=“cde”>...<someotherthing attr2=“abc cde”>

 18CSCC43

Document Type Definition (DTD)
A DTDDTD is a grammar specification for an XML
document
DTDs are optional – don’t need to be specified

If specified,
DTD can be part of the document (at the top), or
it can be given as a URL

A document that conforms (i.e., parses) w.r.t. its DTD
is said to be validvalid

XML processors are not required to check validity,
even if DTD is specified
But they are required to test well-formedness

 19CSCC43

DTDs (cont’d)

DTD specified as part of a document:
<?xml version=“1.0” ?>
<!DOCTYPE Book [
 … … …
]>
<Book> … … … </Book>

DTD specified as a standalone thing
<?xml version=“1.0” ?>
<!DOCTYPE Book “http://csc343.com/book.dtd”>
<Book> … … … </Book>

 20CSCC43

DTD Components
<!ELEMENT elt-name

 (…contents…)/EMPTY/ANY >
<!ATTLIST elt-name attr-name

 CDATA/ID/IDREF/IDREFS
 #IMPLIED/#REQUIRED
 >

Can define other things, like macros (called entities
in the XML jargon)

Type of attribute

Optional/mandatory

Element’s
contents

An attr for elt

 21CSCC43

DTD Example
<!DOCTYPE Report [

<!ELEMENT Report (Students, Classes, Courses)>
<!ELEMENT Students (Student*)>
<!ELEMENT Classes (Class*)>
<!ELEMENT Courses (Course*)>
<!ELEMENT Student (Name, Status, CrsTaken*)>
<!ELEMENT Name (First,Last)>
<!ELEMENT First (#PCDATA)>
… … …
<!ELEMENT CrsTaken EMPTY>
<!ELEMENT Class (CrsCode, Semester, ClassRoster)>
<!ELEMENT Course (CrsName)>
… … …
<!ATTLIST Report Date CDATA #IMPLIED>
<!ATTLIST Student StudId ID #REQUIRED>
<!ATTLIST Course CrsCode ID #REQUIRED>
<!ATTLIST CrsTaken CrsCode IDREF #REQUIRED

 Semester CDATA #REQUIRED >
<!ATTLIST ClassRoster Members IDREFS #IMPLIED>

]>

Zero or more

Has text content

Empty element, no
content

Same attribute in
different elements

 22CSCC43

Example: Report Document with
Cross-References

<?xml version=“1.0” ?>
<Report Date=“2002-12-12”>
 <Students>
 <Student StudId=“s111111111”>
 <Name><First>John</First><Last>Doe</Last></Name> <Status>U2</Status>
 <CrsTaken CrsCode=“CS308” Semester=“F1997” />
 <CrsTaken CrsCode=“MAT123” Semester=“F1997” />
 </Student>
 <Student StudId=“s666666666”>
 <Name><First>Joe</First><Last>Public</Last></Name> <Status>U3</Status>
 <CrsTaken CrsCode=“CS308” Semester=“F1994” />
 <CrsTaken CrsCode=“MAT123” Semester=“F1997” />
 </Student>
 <Student StudId=“s987654321”>
 <Name><First>Bart</First><Last>Simpson</Last></Name> <Status>U4</Status>
 <CrsTaken CrsCode=“CS308” Semester=“F1994” />
 </Student>
 </Students>
 …… continued … …

IDREF

ID

 23CSCC43

Report Document (cont’d)
 <Classes>
 <Class>
 <CrsCode>CS308</CrsCode> <Semester>F1994</Semester>
 <ClassRoster Members=“s666666666 987654321” />
 </Class>
 <Class>
 <CrsCode>CS308</CrsCode> <Semester>F1997</Semester>
 <ClassRoster Members=“s111111111” />
 </Class>
 <Class>
 <CrsCode>MAT123</CrsCode> <Semester>F1997</Semester>
 <ClassRoster Members=“s111111111 s666666666” />
 </Class>
 </Classes>
…… continued … …

IDREFS

 24CSCC43

Report Document cont’d

 <Courses>
 <Course CrsCode = “CS308” >
 <CrsName>Market Analysis</CrsName>
 </Course>
 <Course CrsCode = “MAT123” >
 <CrsName>Market Analysis</CrsName>
 </Course>
 </Courses>
</Report>

ID

 25CSCC43

Limitations of DTDs

Don’t understand namespaces
Very limited assortment of data types (just strings)
Very weak w.r.t. consistency constraints
(ID/IDREF/IDREFS only)
Can’t express unordered contents conveniently
All element names are global: can’t have one Name
type for people and another for companies:

<!ELEMENT Name (Last, First)>
<!ELEMENT Name (#PCDATA)>

both can’t be in the same DTD

 26CSCC43

XML Schema

Came to rectify some of the problems with DTDs
Advantages:

Integrated with namespaces
Many built-in types
User-defined types
Has local element names
Powerful key and referential constraints

Disadvantages:
Unwieldy – much more complex than DTDs

 27CSCC43

XML Query Languages
XPath XPath – core query language.

Very limited, a glorified selection operator.
Very useful, though: used in XML Schema, XSLT,
XQuery, many other XML standards

XSLTXSLT – a functional style document transformation
language.

Very powerful, very complicated
XQueryXQuery – W3C standard.

Very powerful, fairly intuitive, SQL-style
SQL/XMLSQL/XML – attempt to marry SQL and XML, part of
SQL:2003

 28CSCC43

Why Query XML?

Need to extract parts of XML documents
Need to transform documents into different forms
Need to relate – join – parts of the same or
different documents

 29CSCC43

XPath
Analogous to path expressions in object-oriented
languages (e.g., OQL)
Extends path expressions with query facility
XPath views an XML document as a tree

Root of the tree is a new node, which doesn’t correspond to
anything in the document
Internal nodes are elements
Leaves are either

Attributes
Text nodes
Comments
Other things that we didn’t discuss (processing instructions, …)

 30CSCC43

XPath Document Tree
Root of XML documentRoot of XML tree

 31CSCC43

Document Corresponding to the Tree
A fragment of the report document from earlier

 <?xml version=“1.0” ?>
<!-- Some comment -->
<Students>

<Student StudId=“111111111” >
<Name><First>John</First><Last>Doe</Last></Name>
<Status>U2</Status>
<CrsTaken CrsCode=“CS308” Semester=“F1997” />
<CrsTaken CrsCode=“MAT123” Semester=“F1997” />

</Student>
<Student StudId=“987654321” >

<Name><First>Bart</First><Last>Simpson</Last></Name>
<Status>U4</Status>
<CrsTaken CrsCode=“CS308” Semester=“F1994” />

</Student>
</Students>
<!-- Some other comment -->

 32CSCC43

Terminology

Parent/childParent/child nodes, as usual
Child nodesChild nodes (that are of interest to us) are of
types:

text,
element,
attribute.

Ancestor/descendantAncestor/descendant nodes – as usual in
trees

 33CSCC43

XPath Basics
An XPath expression takes a document tree as
input and returns a multi-set of nodes of the tree
Expressions that start with / are absolute path absolute path
expressionsexpressions

//
/Students/Student/Students/Student
/Student /Student

 34CSCC43

XPath Basics
An XPath expression takes a document tree as input
and returns a multi-set of nodes of the tree
Expressions that start with / are absolute path absolute path
expressionsexpressions

// – returns root node of XPath tree
/Students/Student/Students/Student – returns all StudentStudent-elements that
are children of StudentsStudents elements, which in turn must
be children of the root
/Student /Student – returns empty set (no such children at root)

 35CSCC43

XPath Basics cont’d
CurrentCurrent (or contextcontext node) – exists during the
evaluation of XPath expressions (and in other XML
query languages)
 . – denotes the current node;
.. – denotes the parent

 foo/barfoo/bar
 ../foo/bar/foo/bar
 /abc/cde/abc/cde

Expressions that don’t start with / are relativerelative (to the
current node)

 36CSCC43

XPath Basics cont’d
CurrentCurrent (or contextcontext node) – exists during the
evaluation of XPath expressions (and in other XML
query languages)
 . – denotes the current node;
.. – denotes the parent

 foo/barfoo/bar – returns all barbar-elements that are children of
foofoo nodes, which in turn are children of the current node
 ../foo/bar/foo/bar – same
 /abc/cde/abc/cde – all cdecde e-children of abcabc e-children of the
parent of the current node

Expressions that don’t start with / are relativerelative (to the
current node)

 37CSCC43

Attributes, Text, etc.

/Students/Student//Students/Student/@@StudentIdStudentId
/Students/Student/Name/Last//Students/Student/Name/Last/text(text())
XPath provides means to select other document
components as well

Denotes an
attribute

 38CSCC43

Attributes, Text, etc.

/Students/Student//Students/Student/@@StudtIdStudtId – returns all StudentIdStudentId
 a-children of StudentStudent, which are e-children of
StudentsStudents, which are children of the root
/Students/Student/Name/Last//Students/Student/Name/Last/text(text()) – returns all t-
children of Last e-children of …
XPath provides means to select other document
components as well

Denotes an
attribute

 39CSCC43

Overall Idea and Semantics

An XPath expression is:
locationStep1/locationStep2/…locationStep1/locationStep2/…

Location stepLocation step:
Axis::nodeSelector[predicate]Axis::nodeSelector[predicate]

Navigation axis axis:
child, parent – have seen
ancestor, descendant, ancestor-or-self, descendant-or-self –
will see later
some other

Node selectorNode selector: node name or wildcard; e.g.,
./child::Student (we used ./Student, which is an abbreviation)
./child::* – any e-child (abbreviation: ./*)

PredicatePredicate: a selection condition; e.g.,
Students/Student[CourseTaken/@CrsCode = “CSC343”]

This is called fullfull syntax.
We used abbreviatedabbreviated syntax before.

Full syntax is better for describing
meaning. Abbreviated syntax is better for

programming.

 40CSCC43

XPath Semantics
The meaning of the expression
locationStep1/locationStep2/…locationStep1/locationStep2/… is the set of all
document nodes obtained as follows:

Find all nodes reachable by locationStep1 locationStep1 from the current
node
For each node N in the result, find all nodes reachable from
N by locationStep2; locationStep2; take the union of all these nodes
For each node in the result, find all nodes reachable by
locationStep3locationStep3, etc.
The value of the path expression on a document is the set
of all document nodes found after processing the last
location step in the expression

 41CSCC43

Overall Idea of the Semantics cont’d
locationStep1/locationStep2/…locationStep1/locationStep2/… means:

Find all nodes specified by locationStep1locationStep1
For each such node N:

sFind all nodes specified by locationStep2locationStep2
using N as the current node
Take union

For each node returned by locationStep2locationStep2 do the
same

locationSteplocationStep = axis::node[predicate]axis::node[predicate]
Find all nodes specified by axis::nodeaxis::node
Select only those that satisfy predicatepredicate

 42CSCC43

More on Navigation Primitives
2nd CrsTakenCrsTaken child of 1st StudentStudent child of StudentsStudents:
/StudentsStudents/StudentStudent[1]/CrsTakenCrsTaken[2]

All last CourseTakenCourseTaken elements within each Student
element:
/Students/Student/CrsTaken[last(/Students/Student/CrsTaken[last()])]

 43CSCC43

Wildcards
Wildcards are useful when the exact structure of
document is not known
Descendant-or-selfDescendant-or-self axis, // : allows to descend
down any number of levels (including 0)

 //CrsTakenCrsTaken – all CrsTakenCrsTaken nodes under the root
 Students//@NameStudents//@Name – all NameName attribute nodes under
the elements Students, who are children of the current
node

The * wildcard:
 ** – any element: Student/*/text()Student/*/text()
 @*@* – any attribute: Students//@*Students//@*

 44CSCC43

XPath Queries (selection predicates)
Recall: Location step = Axis::nodeSelector[Axis::nodeSelector[predicatepredicate]]
Predicate:

XPath expression = const | built-in function | XPath
expression
XPath expression
 built-in predicate
 a Boolean combination thereof

Axis::nodeSelector[Axis::nodeSelector[predicatepredicate]] ⊆ Axis::nodeSelector Axis::nodeSelector
but contains only the nodes that satisfy predicate predicate
Built-in predicateBuilt-in predicate: special predicates for string
matching, set manipulation, etc.
Built-in functionBuilt-in function: large assortment of functions for
string manipulation, aggregation, etc.

 45CSCC43

XPath Queries – Examples
Students who have taken CSC343:

//Student[CrsTaken/@CrsCode=“CSC343”]
True if : “CSC343” ∈ //Student/CrsTaken/@CrsCode

Complex example:
//Student[Status=“U3” and starts-with(.//Last, “A”)
 and contains(concat(.//@CrsCode,””),“ESE”)
 and not(.//Last = .//First)]

Aggregation: sum(), count()
//Student[sum(.//@Grade) div count(.//@Grade) > 3.5]

 46CSCC43

Xpath Queries cont’d
Testing whether a subnode exists:

//Student[CrsTaken/@Grade]
 students who have a grade (for some course)

//Student[Name/First or CrsTaken/@Semester
 or Status/text() = “U4”]

– students who have either a first name or have taken a
course in some semester or have status U4

Union operator, | :
//CrsTaken[@Semester=“F2001”] ||

//Class[Semester=“F1990”]

 union lets us define heterogeneous collections of
nodes

 47CSCC43

XQuery – XML Query Language
Integrates XPath with earlier proposed query
languages: XQL, XML-QL
SQL-style, not functional-style
2007: XQuery 1.0

 48CSCC43

XQuery Basics: FLOWR Expression
General structure:

FOR variable declarations
LET variable declarations
WHERE condition
ORDER BY list
RETURN document

XQuery XQuery
expressionexpression

 49CSCC43

XQuery Basics: FLOWR Expression

Example:
 (: students who took MAT123 :)
FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123”
RETURN $t/Student

Result:
<Student StudId=“111111111” Name=“John Doe” />
<Student StudId=“123454321” Name=“Joe Blow” />

This document on
next slides

commentcomment

 50CSCC43

transcript.xml
<Transcripts>

<Transcript>
<Student StudId=“111111111” Name=“John Doe” />
<CrsTaken CrsCode=“CS308” Semester=“F1997” Grade=“B” />
<CrsTaken CrsCode=“MAT123” Semester=“F1997” Grade=“B” />
<CrsTaken CrsCode=“EE101” Semester=“F1997” Grade=“A” />
<CrsTaken CrsCode=“CS305” Semester=“F1995” Grade=“A” />

</Transcript>

<Transcript>
<Student StudId=“987654321” Name=“Bart Simpson” />
<CrsTaken CrsCode=“CS305” Semester=“F1995” Grade=“C” />
<CrsTaken CrsCode=“CS308” Semester=“F1994” Grade=“B” />

</Transcript>

… … cont’d … …

 51CSCC43

transcript.xml (cont’d)
<Transcript>

<Student StudId=“123454321” Name=“Joe Blow” />
<CrsTaken CrsCode=“CS315” Semester=“S1997” Grade=“A” />
 <CrsTaken CrsCode=“CS305” Semester=“S1996” Grade=“A” />
 <CrsTaken CrsCode=“MAT123” Semester=“S1996” Grade=“C” />

</Transcript>
<Transcript>

<Student StudId=“023456789” Name=“Homer Simpson” />
<CrsTaken CrsCode=“EE101” Semester=“F1995” Grade=“B” />
 <CrsTaken CrsCode=“CS305” Semester=“S1996” Grade=“A” />

</Transcript>

</Transcripts>

 52CSCC43

XQuery Basics (cont’d)
Previous query doesn’t produce a well-formed XML
document; the following does:

 <StudentList>
{

FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken/@CrsCode = “MAT123”
RETURN $t/Student

}
</StudentList>

Query
inside XML

 53CSCC43

Document Restructuring with XQuery
Reconstruct lists of students taking each class using
the TranscriptTranscript records:

FOR $c IN doc(“transcript.xml”)//CrsTaken
ORDER BY $c/@CrsCode
RETURN

<ClassRoster >
{

FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken[@CrsCode = $c/@CrsCode and

 @Semester = $c/@Semester]
 ORDER BY $t/student/@studId
 RETURN $t/Student

}
</ClassRoster>

Query inside
RETURN

 54CSCC43

Document Restructuring (cont’d)
Output elements have the form:

<ClassRoster CrsCode=“CS305” Semester=“F1995” >
 <Student StudId=“111111111” Name=“John Doe” />
 <Student StudId=“987654321” Name=“Bart Simpson” />
</ClassRoster>

Problem: the above element will be output twice:
once when $c is bound to

<CrsTaken CrsCode=“CS305” Semester=“F1995” Grade=“A” />
and once when $c is bound to

<CrsTaken CrsCode=“CS305” Semester=“F1995” Grade=“C” />

NoteNote: grades are different – distinct-values() won’t
eliminate transcript records that refer to same class!

John Doe’s

Bart Simpson’s

 55CSCC43

Document Restructuring cont’d
Solution: instead of

for $c in doc(“transcript.xml”)//CrsTaken
use

for $c in doc(“classes.xmlclasses.xml”)//Class

 where classes.xmlclasses.xml lists course offerings (course
code/semester) explicitly (no need to extract them from
transcript records).

 Then $c is bound to each class exactly once, so each
class roster will be output exactly once

Document on
next slide

 56CSCC43

http://uoft.edu/classes.xml
<Classes>

<Class CrsCode=“CS308” Semester=“F1997” >
<CrsName>SE</CrsName> <Instructor>Adrian Jones</Instructor>

</Class>
<Class CrsCode=“EE101” Semester=“F1995” >

<CrsName>Circuits</CrsName> <Instructor>David Jones</Instructor>
</Class>
<Class CrsCode=“CS305” Semester=“F1995” >

<CrsName>Databases</CrsName> <Instructor>Mary Doe</Instructor>
</Class>
<Class CrsCode=“CS315” Semester=“S1997” >

<CrsName>TP</CrsName> <Instructor>John Smyth</Instructor>
</Class>
<Class CrsCode=“MAR123” Semester=“F1997” >

<CrsName>Algebra</CrsName> <Instructor>Ann White</Instructor>
</Class>

</Classes>

 57CSCC43

Document Restructuring (cont’d)More problems: the above query will list classes with
no students. Reformulation that avoids this:

FOR $c IN doc(“classes.xml”)//Class
WHERE doc(“transcripts.xml”)//CrsTaken[@CrsCode = $c/@CrsCode

 and @Semester = $c/@Semester]
ORDER BY $c/@CrsCode
RETURN

<ClassRoster CrsCode = “{$c/@CrsCode}”
 Semester = “{$c/@Semester}”> {

FOR $t IN doc(“transcript.xml”)//Transcript
WHERE $t/CrsTaken[@CrsCode = $c/@CrsCode and

 @Semester = $c/@Semester]
 ORDER BY $t/Student/@StudId
 RETURN $t/Student

}
</ClassRoster>

Test that classes
aren’t empty

 58CSCC43

XQuery Semantics
So far the discussion was informal
XQuery semantics defines what the expected result
of a query is
Defined analogously to the semantics of SQL

 59CSCC43

XQuery Semantics cont’d
Step 1Step 1: Produce a list of bindings for variables

The FOR clause binds each variable to a list of nodes
specified by an XQuery expression.
The expression can be:

An XPath expression
An XQuery query
A function that returns a list of nodes

End result of a FOR clause:
Ordered list of tuples of document nodes
Each tuple is a binding for the variables in the FOR
clause

 60CSCC43

XQuery Semantics cont’d
Example (bindings):

Let FOR declare $A and $B
Bind $A to document nodes {v,w}; $B to {x,y,z}
Then FOR clause produces the following list of
bindings for $A and $B:

$A/v, $B/x
$A/v, $B/y
$A/v, $B/z
$A/w, $B/x
$A/w, $B/y
$A/w, $B/z

 61CSCC43

XQuery Semantics cont’d

Step 2Step 2: filter the bindings via the WHERE clause
Use each tuple binding to substitute its components for
variables;
retain those bindings that make WHERE true

Example:
WHERE $A/CrsTaken/@CrsCode = $B/Class/@CrsCode

Binding:
$A/w, where w = <CrsTaken CrsCode=“CS308” …/>
$B/x, where x = <Class CrsCode=“CS308” … />

Then w/CrsTaken/@CrsCode = x/Class/@CrsCode,
so the WHERE condition is satisfied & binding retained

 62CSCC43

XQuery Semantics cont’d
Step 3Step 3: Construct result

For each retained tuple of bindings, instantiate the
RETURN clause
This creates a fragment of the output document
Do this for each retained tuple of bindings in sequence

 63CSCC43

Grouping and Aggregation
Does not use separate grouping operator
Uses built-in aggregate functions count, avg, sum,
etc. (some borrowed from XPath)

 64CSCC43

Aggregation Example
Produce a list of students along with the number of
courses each student took:
 FOR $t IN fn:doc(“transcripts.xml”)//Transcript,

 $s IN $t/Student
 LET $c := $t/CrsTaken
 RETURN

 <StudentSummary StudId = “{$s/@StudId}” Name = “{$s/@Name}”
 TotalCourses = {fn:count(fn:distinct-values($c))} />

The grouping effect is achieved because $c is bound
to a new set of nodes for each binding of $t

 65CSCC43

Quantification in XQuery
XQuery supports explicit quantification: SOME (∃)
and EVERY (∀)
Example:Example:

FOR $t IN fn:doc(“transcript.xml”)//Transcript
WHERE SOME $ctct ININ $t/CrsTakent/CrsTaken

 SATISFIES $ct/@CrsCode = “MAT123”
RETURN $t/Student

“Almost” equivalent to:
 FOR $t IN fn:doc(“transcript.xml”)//Transcript,
 $ct IN $t/CrsTaken$ct IN $t/CrsTaken
 WHERE $ct/@CrsCode = “MAT123”
 RETURN $t/Student

Not equivalent, if students can take same course twice!

 66CSCC43

Implicit Quantification
Note: in SQL, variables that occur in FROM, but not
SELECT are implicitly quantified with ∃
In XQuery, variables that occur in FOR, but not
RETURN are similar to those in SQL. However:

In XQuery variables are bound to document nodes
In SQL a variable can be bound to the same value
only once; identical tuples are not output twice (in
theory)

This is why the two queries in the previous slide are
not equivalent

 67CSCC43

Quantification cont’d
Retrieve all classes (from classes.xml) where each
student took MAT123

Hard to do in SQL (before SQL-99) because of the
lack of explicit quantification

FOR $c IN fn:doc(classes.xml)//Class
LET $g := { (: TranscriptTranscript records that correspond to class $c :)

FOR tt IN fn:doc(“transcript.xml”)//Transcript
WHERE $tt/CrsTaken/CrsTaken/@Semester = $c/@Semester

AND $t/CrsTaken/@CrsCode = $c/@CrsCode
RETURN tt

 }
WHERE EVERY $tr IN $g SATISFIES

NOT fn:empty($tr[CrsTaken/@CrsCode=“MAT123”])

RETURN $c ORDER BY $c/@CrsCode

 68CSCC43

XQuery Functions: Example

Count the number of e-children recursively:

DECLARE FUNCTION countNodes($e AS element()) AS integer
{
 RETURN

 IF empty($e/*) THEN 0
 ELSE
 sum(FOR $n IN $e/* RETURN countNodes($n)) + count($e/*)

}

XQuery
expression

Built-in
functions sum,
count, empty

Function
signature

 69CSCC43

User-defined Functions
Can define functions, even recursive ones
Functions can be called from within an XQuery
expression
Body of function is an XQuery expression
Result of expression is returned

Result can be a primitive data type (integer, string), an
element, a list of elements, a list of arbitrary document
nodes, …

