
Structured Query Language I

Instructor: Lei Jiang

Slides provided by Ramona Truta

CSCC43, Introduction to Databases, Summer 2009 1

SQL - A little history

• Structured Query Language

• Developed originally at IBM in the late 70s

– First standard: SQL-86

– SQL-89 (minor changes)

– Second standard: SQL-92 (SQL2)

– Third standard: SQL:1999 (SQL3)

◦ Added regular expression matching, recursive queries, triggers, non-
scalar types and some object-oriented features.

– Latest standard: SQL:2003

◦ Introduced XML-related features, window functions, standardized
sequences and columns with auto-generated values

CSCC43, Introduction to Databases, Summer 2009 2

Data Definition Language (DDL)

• Allows the specification of not only a set of relations but also informa-
tion about each relation, including:

– The schema for each relation.

– The domain of values associated with each attribute.

– Integrity constraints

– The set of indices to be maintained for each relations.

– Security and authorization information for each relation.

– The physical storage structure of each relation on disk.

CSCC43, Introduction to Databases, Summer 2009 3

Schema Definition

• A schema is a collection of objects: domains, tables, indexes, asser-
tions, views, privileges.

• A schema has a name and an owner (authorization).

• Syntax:

CREATE SCHEMA <Name> [AUTORIZATION <username>]

• Example:

CREATE SCHEMA my343;

CSCC43, Introduction to Databases, Summer 2009 4

Domain types in SQL

• char(n) – fixed length string of exactly n characters.

Example: ’Polanski’

• varchar(n) – variable length string of up to n characters.

Example: ’Polanski’.

• bit(n) – fixed length bit string of exactly n bits.

Example: B’0101’, X’C1’

• varying(n) – variable length bit string of up to n bits.

CSCC43, Introduction to Databases, Summer 2009 5

Domain types in SQL cont’d

• Exact numeric domains:

– int: signed integer (4 bytes)

– smallint: signed integer (2 bytes)

– numeric(p,n): user-specified precision of p digits, with n digits
to the right of decimal point

• Approximate numeric domains

– based on floating point represention

– real, double: floating point and double-precision floating point
numbers, with machine-dependent precision

– float(n): floating point number, with user-specified precision of
at least n digits.

• Null values are allowed in all the domain types.

• Casting between data types: CAST (<attribute> AS <type>)

CSCC43, Introduction to Databases, Summer 2009 6

Types cont’d: Dates and Times

• date type: keyword DATE followed by a date in an appropriate form,
e.g. DATE ’2007-05-31’

• time type: keyword TIME followed by a string representing time; SQL
uses a 24-hour clock.

• timestamp type: combines date and time.

• Operations on these types:

– they can be compared for equality, and for order. If for two dates
d1 and d2 we have d1 < d2, then d1 is earlier than d2.

– YEAR/MONTH/DAY (d), where d is of type DATE returns the year/month/day
corresponding to a certain date.

– CURRENT_DATE returns the current date.

CSCC43, Introduction to Databases, Summer 2009 7

Table definition

• An SQL table consists of an ordered set of attributes, and (possibly
empty) set of constraints.

• The CREATE TABLE statement defines a relation schema, creating an
empty instance.

• Syntax:
CREATE TABLE <Name> (<attr1> <type> [DEFAULT <value>], ...,

<attrN> <type>[DEFAULT <value>])

• Example:

CREATE TABLE Movies (mID int,

title char(20),

director char(10),

year int default 0,

length real)

CSCC43, Introduction to Databases, Summer 2009 8

Schema Updates

• DROP <SCHEMA | TABLE | VIEW| ASSERTION <name>

removes <name> from the database.

• ALTER TABLE <name> ADD COLUMN <newcolumn> <type>

adds <newcolumn> to the table <name>

– Example:

ALTER TABLE Movies ADD COLUMN budget real

• ALTER TABLE <name> DROP COLUMN <columnName>

removes the <columnName> from the table <name>

– Example:

ALTER TABLE Movies DROP COLUMN budget

CSCC43, Introduction to Databases, Summer 2009 9

Modification of the database: Insertion

• Inserting a new tuple into a table:

INSERT INTO <name> VALUES (...)

• Example:
INSERT INTO Movies VALUES (123, ’Chinatown’, ’Polanski’, 1974, 131)

• Bulk insertions:
INSERT INTO <name> (<query>)

– the attributes in the result of <query> have to be the same as
those of <name>.

– <query> is fully evaluated before any of its resulted tuples are
inserted into <name>

CSCC43, Introduction to Databases, Summer 2009 10

Modification of the database: Insertion cont’d

• One can insert values to some attributes only:

INSERT INTO <name>(<attributes>) (<query>)

• Example:

INSERT INTO Roles(mID)

(SELECT mID FROM Movies)

• When only values for some attributes are inserted, what are the values
of the rest of the attributes ?

– Answer: default values

CSCC43, Introduction to Databases, Summer 2009 11

Database modification: deletions

• General form:

DELETE FROM <relation name>

WHERE <condition>

• Conditions apply to individual tuples; all tuples satisfying the condition
are deleted.

• Suppose we want to delete movies which currently have no assigned
actors:

DELETE FROM Movies

WHERE mID NOT IN (SELECT mID

FROM Roles)

CSCC43, Introduction to Databases, Summer 2009 12

Database modifications: updates

• General syntax:

UPDATE <table-name>

SET <new-value-assignments>

WHERE <conditions>;

<new-value-assignments> ::= <new-value-assignment>,

<new-value-assignment>

<new-value-assignment> ::= attribute = <expression> |

attribute = constant

– Conditions apply to individual tuples; all tuples satisfying the con-
ditions are updated.

– Tables are updated one tuple at a time.

• Example:

UPDATE Movies

SET Length = 134, Year = 1975

WHERE title=’Chinatown’

CSCC43, Introduction to Databases, Summer 2009 13

SQL and constraints

• Constraints are conditions that must be satisfied by every database
instance.

• The constraints should be declared in CREATE TABLE

• SQL checks if each modification preserves constraints

• Table constraints

• Attribute constraints

CSCC43, Introduction to Databases, Summer 2009 14

SQL and constraints

• CREATE TABLE Movies (mID int not null primary key,

title char(20),

director char(10),

year int default 0,

length real)

INSERT INTO Movies VALUES (123, ’Chinatown’, ’Polanski’, 1974, 131)

INSERT INTO Movies VALUES (123, ’Shining’, ’Kubrick’, 1980, 131)

CSCC43, Introduction to Databases, Summer 2009 15

SQL and constraints cont’d

• Two equivalent ways to declare primary keys:

CREATE TABLE Movies (CREATE TABLE Roles (

mID int not null primary key, mID int not null,

title char(20), aID int not null,

director char(10), character char(15) not null,

year int default 0, primary key (mID, aID, character))

length real)

• What if we have another key, e.g., (title, director)?

• We cannot declare it as another primary key.

• But we can declare it as unique.

CSCC43, Introduction to Databases, Summer 2009 16

UNIQUE in SQL

• Revised example:

CREATE TABLE Movies (

mID int not null,

title char(20) not null,

director char(10) not null,

year int default 0,

length real,

primary key (mID),

unique (title, director))

• Unique specifications are verified in the same way as primary key.
INSERT INTO Movies VALUES (123, ’Chinatown’, ’Polanski’, 1974)

INSERT INTO Movies VALUES (124, ’Chinatown’, ’Polanski’, 1974)

CSCC43, Introduction to Databases, Summer 2009 17

Inclusion constraints: reminder

• Referential integrity constraints: attributes of one relation that refer
to attributes of another relation.

• There is an inclusion dependency R[A1, . . . , An] ⊆ S[B1, . . . , Bn] when

πA1,...,An(R) ⊆ πB1,...,Bn(S)

• Most often inclusion constraints occur as a part of a foreign key

CSCC43, Introduction to Databases, Summer 2009 18

Foreign keys in SQL

• Syntax:

CREATE TABLE T1 (...

foreign key <attr1, ..., attrN>

references T2 <attr1-1, ...,attrN-1>)

In T2, <attr1-1, ..., attrN-1> must be present and form a
primary key.

• Example:

CREATE TABLE Roles

(mID int not null references Movies (mID),

aID int not null,

character char(15) not null,

primary key (mID, aID, character),

foreign key (aID) references Actors (aID))

CSCC43, Introduction to Databases, Summer 2009 19

More on referential integrity constraints

• It is possible to associate reaction policies to violations of referential
integrity constraints.

• Violations arise from

– updates on referred attribute, or

– tuple deletions

• Reactions operate on the referring table (i.e., the table with the foreign
key), after changes to the referred table. They are:

◦ NO ACTION: reject the change on the referred table (the default
action);

◦ CASCADE: propagate the change from the referred table to the re-
ferring table;

◦ SET NULL: nullify the referring attribute;

◦ SET DEFAULT: assign default value to the referring attribute.

CSCC43, Introduction to Databases, Summer 2009 20

CHECK Constraints

• The most generic constraint type.

• It allows you to specify that the value of an attribute must satisfy some
condition.

CREATE TABLE R (A int,

B int CHECK (B > 0),

C int CHECK (C > 0),

CHECK (B > C))

• A CHECK constraint is satisfied if the check expression evaluates to
true or unknown.

– i.e., it is violated if the check expression evaluates to false.

CSCC43, Introduction to Databases, Summer 2009 21

Naming Constraints

• It allows you to specify a name for a constraint.

CREATE TABLE R (A int,

B int CONSTRAINT positive_B CHECK (B > 0),

C int CONSTRAINT positive_C CHECK (C > 0),

CHECK (B > C))

• It allows you to refer to the constraint when you need to update it.

ALTER TABLE R DROP CONSTRAINT ’’positive_B’’;

CSCC43, Introduction to Databases, Summer 2009 22

Data retrieval: Basic structure

• A typical SQL query has the form:

SELECT A1, A2, ..., An

FROM R1, R2, ..., Rm

WHERE C

• A1, A2, ..., An represent attributes

• R1, R2, ..., Rm represent relations

• C is a condition;

– Simple conditions can be combined using the logical connectives
AND, OR, NOT.

• This query is equivalent to the Relational Algebra expression:

πA1,A2,···An(σC(R1 × R2 × · · · × Rm))

• The result of an SQL query is a new relation.

CSCC43, Introduction to Databases, Summer 2009 23

Examples of SQL queries

Query: Find titles of movies directed by Lucas

SELECT M.title

FROM Movies M

WHERE M.director = ’Lucas’

• Tuple variable M ranges over tuples of Movies

Evaluation strategy:

– FROM clause produces Cartesian product of (input) listed relations;

– WHERE clause assigns tuples to M in sequence and produces a relation
containing only the tuples satisfying the condition;

– SELECT clause retains only the listed (output) attributes.

Result:

CSCC43, Introduction to Databases, Summer 2009 24

Examples of SQL queries

Query: Find titles of movies directed by Lucas

SELECT M.title

FROM Movies M

WHERE M.director = ’Lucas’

• Tuple variable M ranges over tuples of Movies

Evaluation strategy:

– FROM clause produces Cartesian product of (input) listed relations;

– WHERE clause assigns tuples to M in sequence and produces a relation
containing only the tuples satisfying the condition;

– SELECT clause retains only the listed (output) attributes.

Result:

title

Star Wars IV
American Graffiti

CSCC43, Introduction to Databases, Summer 2009 25

More on tuple variables

• What is the result of the following queries?

1. SELECT *

FROM Movies M1, Movies M2

2. SELECT M1.mID

FROM Movies M1, Movies M2

3. SELECT M.mID

FROM Movies M , Roles R

WHERE M.mID = R.mID

4. SELECT mID

FROM Movies, Roles

WHERE Movies.mID = Roles.mID

5. SELECT *

FROM Movies, Movies

CSCC43, Introduction to Databases, Summer 2009 26

More on the SELECT clause

• An asterisk (*) in the SELECT clause denotes “all attributes”
SELECT *

FROM Movies

Result:

CSCC43, Introduction to Databases, Summer 2009 27

More on the SELECT clause

• An asterisk (*) in the SELECT clause denotes “all attributes”
SELECT *

FROM Movies

Result:
mID title director year length

1 Shining Kubrick 1980 146
2 Player Altman 1992 146
3 Chinatown Polanski 1974 131
4 Repulsion Polanski 1965 143
5 Star Wars IV Lucas 1977 126
6 American Graffiti Lucas 1973 110
7 Full Metal Jacket Kubrick 1987 156

CSCC43, Introduction to Databases, Summer 2009 28

More on the SELECT clause cont’d

• The SELECT clause can contain arithmetic expressions involving the
operators +, , *, and /, and operating on constants or attributes of
tuples.

• SELECT M.mID, M.title, M.director, 2009 - M.year

FROM Movies M

Result:

• Note: SQL does not permit the “-” character in names.

• Note: SQL names are case insensitive, i.e. you can use capital or
small letters.

CSCC43, Introduction to Databases, Summer 2009 29

More on the SELECT clause cont’d

• The SELECT clause can contain arithmetic expressions involving the
operators +, , *, and /, and operating on constants or attributes of
tuples.

SELECT M.mID, M.title, M.director, 2009 - M.year

FROM Movies M

Result:

mID title director ?column?

1 Shining Kubrick 30
2 Player Altman 28
3 Chinatown Polanski 36
4 Repulsion Polanski 45
5 Star Wars IV Lucas 33
6 American Graffiti Lucas 37
7 Full Metal Jacket Kubrick 23

CSCC43, Introduction to Databases, Summer 2009 30

Renaming in SQL

• New attribute names can be introduced in SELECT using keyword AS.

• The query

SELECT M.mID, M.title, M.director, 2009 - M.year AS numOfYears

FROM Movies M

Result:

mID title director numOfYears

1 Shining Kubrick 30
2 Player Altman 28
3 Chinatown Polanski 36
4 Repulsion Polanski 45
5 Star Wars IV Lucas 33
6 American Graffiti Lucas 37
7 Full Metal Jacket Kubrick 23

CSCC43, Introduction to Databases, Summer 2009 31

More on the SELECT clause cont’d

• So far, in relational algebra and calculus, we operated with sets.
SQL, on the other hand, deals with bags, that is, sets with duplicates.

• To force the elimination of duplicates, use the keyword DISTINCT after
SELECT.

• Query: Find the names of directors who directed at least one movie.

SELECT DISTINCT director

FROM Movies

– Since a director could have directed more than one movie,
DISTINCT is necessary not to include his name more than once.

Result:

CSCC43, Introduction to Databases, Summer 2009 32

More on the SELECT clause cont’d

• So far, in relational algebra and calculus, we operated with sets.
SQL, on the other hand, deals with bags, that is, sets with duplicates.

• To force the elimination of duplicates, use the keyword DISTINCT after
SELECT.

• Query: Find the names of directors who directed at least one movie.

SELECT DISTINCT director

FROM Movies

– Since a director could have directed more than one movie,
DISTINCT is necessary not to include his name more than once.

Result:

director

Kubrick
Altman
Polanski
Lucas

CSCC43, Introduction to Databases, Summer 2009 33

Join queries

Query: Find actors playing in movies directed by Lucas:

SELECT A.aName

FROM Artists A, Roles R, Movies M

WHERE M.director = ’Lucas’ AND

R.mID = M.mID AND

A.aID = R.aID

Evaluation strategy:

– FROM clause produces Cartesian product of (input) listed relations;

– WHERE clause:

– Selection condition M.director = ’Lucas’

eliminates irrelevant tuples;

– Join conditions R.mID = M.mID AND A.aID = R.aID

relates facts to each other;

– SELECT clause retains only the listed (output) attributes.

CSCC43, Introduction to Databases, Summer 2009 34

Nested subqueries

• SQL provides a mechanism for the nesting of subqueries.

• A subquery is a select-from-where expression that is nested within an-
other query.

– In general, a WHERE clause could contain another query, and test
some relationship between an attribute and the result of that query.

• A common use of subqueries is to perform tests for

◦ set membership,

◦ set comparisons, and

◦ set cardinality.

• R IN S tests for set membership

CSCC43, Introduction to Databases, Summer 2009 35

Nested subqueries cont’d

• Example: Find actors playing in movies directed by Lucas:
SELECT A.aName

FROM Artists A

WHERE A.aID IN (SELECT DISTINCT R.aID

FROM Roles R, Movies M -- subquery

WHERE M.director = ’Lucas’ AND

R.mID = M.mID)

• Evaluation strategy:

– the subquery is evaluated once to produce the set of aID’s of actors
who played in movies of Lucas

Result: aID

– each tuple (as A) is tested against this set

Final Result: aName

CSCC43, Introduction to Databases, Summer 2009 36

Nested subqueries cont’d

• Example: Find actors playing in movies directed by Lucas:
SELECT A.aName

FROM Artists A

WHERE A.aID IN (SELECT DISTINCT R.aID

FROM Roles R, Movies M -- subquery

WHERE M.director = ’Lucas’ AND

R.mID = M.mID)

• Evaluation strategy:

– the subquery is evaluated once to produce the set of aID’s of actors
who played in movies of Lucas

Result:
aID

2

4

– each tuple (as A) is tested against this set

Final Result:
aName

Harrison Ford

Carrie Fisher

CSCC43, Introduction to Databases, Summer 2009 37

String operations

• SQL includes a string-matching operator for comparisons on character
strings. Patterns are described using two special characters:

– underscore _ – matches any character

– percent % – matches any substring, including the empty one.

– attribute LIKE pattern

• Examples:

pattern ’_a_b_’ matches cacbc, aabba, etc

pattern ’%a%b_’ matches ccaccbc, aaaabcbcbbd, aba, etc

• SQL supports a variety of string operations such as

– concatenation (using ||)

– converting from upper to lower case (and vice versa)

– finding string length, extracting substrings, etc.

CSCC43, Introduction to Databases, Summer 2009 38

String operations cont’d

• Is Kubrick spelled with a “k” or “ck” at the end?

SELECT Title, Director

FROM Movies

WHERE director LIKE ’Kubri%’

• Is Polanski spelled with a “y” or with an “i”?

SELECT Title, Director

FROM Movies

WHERE director LIKE ’Polansk%’

• What happens if we change it to
WHERE director LIKE ’Polansk_’?

CSCC43, Introduction to Databases, Summer 2009 39

Set comparison

• <value> <condition> ALL (<query>)

is true if either:
◦ <query> evaluates to the empty set, or

◦ for every <value1> in the result of <query>,
<value> <condition> <value1> is true.

• where <condition> can be <,≤, >,≥, 6=, =

• For example,

5 > ALL(∅) is true;

5 > ALL({1, 2, 3}) is true;

5 > ALL({1, 2, 3, 4, 5, 6}) is false.

5 6= ALL({1, 2, 3, 4}) is true.

5 = ALL({4, 5}) is false.

• 6= ALL is equivalent to NOT IN

• But, = ALL is not equivalent to IN

CSCC43, Introduction to Databases, Summer 2009 40

Set comparison cont’d

• Find directors whose all movies have been completed before 1980.

SELECT DISTINCT M.director

FROM Movies M

WHERE 1980 > ALL (SELECT M1.year

FROM Movies M1

WHERE M1.director = M.director)

• Result: director

CSCC43, Introduction to Databases, Summer 2009 41

Set comparison cont’d

• Find directors whose all movies have been completed before 1980.

SELECT DISTINCT M.director

FROM Movies M

WHERE 1980 > ALL (SELECT M1.year

FROM Movies M1

WHERE M1.director = M.director)

• Result:
director

Polanski

Lucas

CSCC43, Introduction to Databases, Summer 2009 42

Set comparison cont’d

• <value> <condition> ANY (<query>)

is true if for some <value1> in the result of <query>,
<value> <condition> <value1> is true.

• where <condition> can be <,≤, >,≥, 6=

• For example,

5 < ANY(∅) is false;

5 < ANY({1, 2, 3, 4} is false;

5 < ANY({1, 2, 3, 4, 5, 6} is true.

5 6= ANY({1, 2, 3, 4, 5}) is true.

5 = ANY({4, 5}) is true.

• = ANY is equivalent to IN

• But, 6= ANY is not equivalent to NOT IN

CSCC43, Introduction to Databases, Summer 2009 43

Set comparison cont’d

• Find directors who completed some movies before 1980.

SELECT DISTINCT M.director

FROM Movies M

WHERE 1980 > ANY (SELECT M1.year

FROM Movies M1

WHERE M1.director = M.director)

• Result: director

CSCC43, Introduction to Databases, Summer 2009 44

Set comparison cont’d

• Find directors who completed some movies before 1980.

SELECT DISTINCT M.director

FROM Movies M

WHERE 1980 > ANY (SELECT M1.year

FROM Movies M1

WHERE M1.director = M.director)

• Result:
director

Kubrick

Lucas

CSCC43, Introduction to Databases, Summer 2009 45

Set Operations

• The set operations UNION, INTERSECT, and EXCEPT operate on
relations and correspond to the relational algebra operations ∪,∩,−.

• Each of the above operations automatically eliminates duplicates; to
retain all duplicates use UNION ALL, INTERSECT ALL, and
EXCEPT ALL.

• Suppose a tuple occurs m times in R and n times in S; then, it occurs:

– m + n times in R UNION ALL S

– min(m,n) times in R INTERSECT ALL S

– max(0, m - n) times in R EXCEPT ALL S

• For the relations below, what is the result of all the above operations?

R:

A B

1 2

3 4

1 2

3 4

S:

A B

1 2

5 6

1 2

CSCC43, Introduction to Databases, Summer 2009 46

Empty set traps

• Consider R:

A

1
2

S: A

• What is the result of the following query?

SELECT R.A

FROM R, S

CSCC43, Introduction to Databases, Summer 2009 47

Test for empty relation

• EXISTS(<query>) returns true if the result of <query> contains at
least one tuple.

• NOT EXISTS(<query>) returns true if the result of <query> con-
tains no tuples.

• Note: R − S = ∅ ⇔ R ⊆ S

i.e., relation S contains relation R can be written as
NOT EXISTS (R EXCEPT S)

CSCC43, Introduction to Databases, Summer 2009 48

A more complicated example

• Find actors who played in all the movies directed by “Lucas”

• Strategy:

– Let R contain all the movies directed by “Lucas” and

– Let SA contain all the movies in which an actor A played.
– For each actor A

If R ⊆ SA then output A.

SELECT A.aName

FROM Artists A

WHERE NOT EXISTS ((SELECT M.mID

FROM Movies M

WHERE M.director = ’Lucas’)

EXCEPT

(SELECT R.mID

FROM Roles R

WHERE R.aID = A.aID))

CSCC43, Introduction to Databases, Summer 2009 49

A more complicated example cont’d

Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

Artists:

aID aName nat

1 Jack Nicholson American

2 Harrison Ford American

3 Philip Stone British

4 Carrie Fisher American

Roles:

mID aID character

1 1 Jack Torrance

1 3 Delbert Grady

3 1 Jake ’J.J.’ Gittes

5 2 Han Solo

5 4 Princess Leia Organa

6 2 Bob Falfa

CSCC43, Introduction to Databases, Summer 2009 50

A more complicated example cont’d

Evaluation:

• R:

mID

5

6

S1:

mID

S2:

mID

S3:

mID

S4:

mID

• The subquery in the WHERE clause has to be evaluated for every tuple
in Artists

– Evaluation for the first tuple (1, ’Jack Nicholson’):

WHERE NOT EXISTS(

mID

5

6

-
mID

) is WHERE NOT EXISTS(

mID

)

which evaluates to

– Evaluation for the second tuple (2, ’Harrison Ford’):

WHERE NOT EXISTS(

mID

5

6

-
mID

) is WHERE NOT EXISTS(mID)

which evaluates to

CSCC43, Introduction to Databases, Summer 2009 51

A more complicated example cont’d

Evaluation:

• R:

mID

5

6

S1:

mID

1

3

S2:

mID

5

6

S3:
mID

1
S4:

mID

5

• The subquery in the WHERE clause has to be evaluated for every tuple
in Artists

– Evaluation for the first tuple (1, ’Jack Nicholson’):

WHERE NOT EXISTS(

mID

5

6

-
mID

1

3

) is WHERE NOT EXISTS(

mID

5

6

)

which evaluates to false

– Evaluation for the second tuple (2, ’Harrison Ford’):

WHERE NOT EXISTS(

mID

5

6

-
mID

5

6

) is WHERE NOT EXISTS(mID)

which evaluates to true

CSCC43, Introduction to Databases, Summer 2009 52

A more complicated example cont’d

– Evaluation for the third tuple (3, ’Philip Stone’):

WHERE NOT EXISTS(

mID

5

6

-
mID

) is WHERE NOT EXISTS(

mID

) which

evaluates to

– Evaluation for the fourth tuple (4, ’Carrie Fisher’):

WHERE NOT EXISTS(

mID

5

6

-
mID

) is WHERE NOT EXISTS(mID) which

evaluates to

Therefore, the final result of the query is aName

CSCC43, Introduction to Databases, Summer 2009 53

A more complicated example cont’d

– Evaluation for the third tuple (3, ’Philip Stone’):

WHERE NOT EXISTS(

mID

5

6

- mID

1
) is WHERE NOT EXISTS(

mID

5

6

) which

evaluates to false

– Evaluation for the fourth tuple (4, ’Carrie Fisher’):

WHERE NOT EXISTS(

mID

5

6

- mID

5
) is WHERE NOT EXISTS(

mID

6
) which

evaluates to false

Therefore, the final result of the query is aName

Harrison Ford

CSCC43, Introduction to Databases, Summer 2009 54

Structured Query Language II

CSCC43, Introduction to Databases, Summer 2009 55

Null values

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 NULL Altman 1992 146

3 Chinatown NULL 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

8 Kubrick A Clockwork Orange NULL NULL

• What could null possibly mean? There are three possibilities:

– Value exists, but is unknown at the moment.

– Value does not exist.

– There is no information.

• SQL approach: there is a single general purpose NULL for all cases of
missing/inapplicable information

CSCC43, Introduction to Databases, Summer 2009 56

Null values cont’d

• To test for null values:

<attribute> IS [NOT] NULL

• Example:

– For T:
A B

1 2

NULL 3

– the result of the query

SELECT B SELECT B

FROM T FROM T

WHERE A IS NULL WHERE A IS NOT NULL

is: B is: B

CSCC43, Introduction to Databases, Summer 2009 57

Null values cont’d

• To test for null values:

<attribute> IS [NOT] NULL

• Example:

– For T:
A B

1 2

NULL 3

– the result of the query

SELECT B SELECT B

FROM T FROM T

WHERE A IS NULL WHERE A IS NOT NULL

is: B

3
is: B

2

CSCC43, Introduction to Databases, Summer 2009 58

Nulls cont’d

• Consider S:

A

1

2

1

2

null

null

• Are the following queries equivalent?

1. SELECT A FROM S WHERE A <> 1

UNION ALL

SELECT A FROM S WHERE A = 1

2. SELECT A FROM S

CSCC43, Introduction to Databases, Summer 2009 59

Nulls cont’d

• Consider R:

A

1

2

1

2

null

null

• Are the following queries equivalent?

1. SELECT A FROM R WHEN A <> 1

UNION ALL

SELECT A FROM R WHEN A = 1

UNION ALL

SELECT A FROM R WHEN A IS NULL

2. SELECT A FROM R

CSCC43, Introduction to Databases, Summer 2009 60

Nulls and other operations

• Rule: For any arithmetic, string, etc. operation, if one argument is
NULL, then the result is NULL.

• Example:

– For R:
A

1

NULL

and S: B

2

– the result of the query

SELECT R.A + S.B AS C

FROM R, S

– is:

CSCC43, Introduction to Databases, Summer 2009 61

Nulls and other operations

• Rule: For any arithmetic, string, etc. operation, if one argument is
NULL, then the result is NULL.

• Example:

– For R:
A

1

NULL

and S: B

2

– the result of the query

SELECT R.A + S.B AS C

FROM R, S

– is:
C

3

NULL

CSCC43, Introduction to Databases, Summer 2009 62

Nulls and other operations cont’d

• A comparison with NULL value returns UNKNOWN

• How does unknown interact with Boolean connectives?

Logical value value

true 1
false 0
unknown 1/2

x logical operator y value

x AND y min (x, y)
x OR y max (x, y)
NOT x 1 - x

CSCC43, Introduction to Databases, Summer 2009 63

Nulls in subqueries

• For R:
A

1

2

and S:

A

1

2

3

4

the result of the query

SELECT S.A

FROM S

WHERE S.A NOT IN (SELECT R.A

FROM R)

• is: A

CSCC43, Introduction to Databases, Summer 2009 64

Nulls in subqueries

• For R:
A

1

2

and S:

A

1

2

3

4

the result of the query

SELECT S.A

FROM S

WHERE S.A NOT IN (SELECT R.A

FROM R)

• is:
A

3

4

CSCC43, Introduction to Databases, Summer 2009 65

Nulls in subqueries cont’d

• For R:

A

1

2

NULL

and S:

A

1

2

3

4

the result of the query

SELECT S.A

FROM S

WHERE S.A NOT IN (SELECT R.A

FROM R)

• is: A

CSCC43, Introduction to Databases, Summer 2009 66

Nulls in subqueries cont’d

• Although this result is counterintuitive, it is correct.

• 1 NOT IN {1,2,null} evaluates to false,

• 2 NOT IN {1,2,null} evaluates to false,

• How to evaluate 3 NOT IN (SELECT R1.A FROM R1)?

3 NOT IN {1,2,null}
=

• Similarly, 4 NOT IN {1,2,null} evaluates to

• Thus, the query returns A

CSCC43, Introduction to Databases, Summer 2009 67

Nulls in subqueries cont’d

• Although this result is counterintuitive, it is correct.

• 1 NOT IN {1,2,null} evaluates to false,

• 2 NOT IN {1,2,null} evaluates to false,

• How to evaluate 3 NOT IN (SELECT R1.A FROM R1)?

3 NOT IN {1,2,null}
= (3 6= 1) AND (3 6= 1) AND (3 6= null)

= true AND true AND unknown

= unknown

• Similarly, 4 NOT IN {1,2,null} evaluates to unknown.

• Thus, the query returns A

CSCC43, Introduction to Databases, Summer 2009 68

Join relations

Query: Find actors playing in movies directed by Lucas:

• Recall:

SELECT A.aName

FROM Movies M, Roles R, Artists A

WHERE M.director = ’Lucas’ AND

R.mID = M.mID AND

A.aID = R.aID

• We will see other ways to write this query.

CSCC43, Introduction to Databases, Summer 2009 69

Join relations cont’d

• Join operations take two relations and return as result another relation.

• These additional operations are typically used as subquery expressions
in the FROM clause:

FROM Table [JoinType] JOIN Table ON <condition>

• Join type defines how tuples in each relation that do not match any
tuple in the other relation (based on the join condition) are treated.

– LEFT OUTER

– RIGHT OUTER

– FULL OUTER

CSCC43, Introduction to Databases, Summer 2009 70

Join relations cont’d

Query: Find actors playing in movies directed by Lucas:

• One solution:

SELECT A.aName

FROM Movies M, Roles R, Artists A

WHERE M.director = ’Lucas’ AND

R.mID = M.mID AND

A.aID = R.aID

• Another solution:

SELECT A.aName

FROM (Movies M JOIN Roles R ON ((M.director = ’Lucas’) AND

(R.mID = M.mID)))

JOIN Artists A ON A.aID = R.aID

CSCC43, Introduction to Databases, Summer 2009 71

Join relations cont’d

• Studio:

Name mID

United 1

United 2

Dreamworks 3

Finance:

mID Gross

1 156

2 412

4 25

• Query: for each studio, find the total gross of its movies:

SELECT S.Name, SUM(F.gross) AS Total

FROM Studio S JOIN Finance F ON S.mID = F.mID

GROUP BY S.Name

• Result: Name Total

United 568

• Dreamworks is lost because movie 3 doesn’t match anything in Finance.

CSCC43, Introduction to Databases, Summer 2009 72

Outer Joins

• Idea: perform a join, and keep tuples that do not match too, padding
them with nulls.

• The result of the query

SELECT *

FROM Studio LEFT OUTER JOIN Film ON S.mID = F.mID

is: Name mID mID1 Gross

• The result of the query

SELECT S.Name, SUM(F.gross) AS Total

FROM Studio S LEFT OUTER JOIN Finance F ON S.mID = F.mID

GROUP BY S.Name

is: Name Total

CSCC43, Introduction to Databases, Summer 2009 73

Outer Joins

• The result of the query

SELECT *

FROM Studio LEFT OUTER JOIN Film ON S.mID = F.mID

is:

Name mID mID1 Gross

United 1 1 156

United 2 2 412

Dreamworks 3 NULL NULL

• The result of the query

SELECT S.Name, SUM(F.gross) AS Total

FROM Studio S LEFT OUTER JOIN Finance F ON S.mID = F.mID

GROUP BY S.Name

is:
Name Total

United 568

Dreamworks NULL

CSCC43, Introduction to Databases, Summer 2009 74

Other Outer Joins

• The result of the query

SELECT *

FROM Studio RIGHT OUTER JOIN Finance ON S.mID = F.mID

is: Name mID mID1 Gross

• The result of the query

SELECT *

FROM Studio FULL OUTER JOIN Finance ON S.mID = F.mID

is: Name mID mID1 Gross

CSCC43, Introduction to Databases, Summer 2009 75

Other Outer Joins

• The result of the query

SELECT *

FROM Studio RIGHT OUTER JOIN Finance ON S.mID = F.mID

is:

Name mID mID1 Gross

United 1 1 156

United 2 2 412

NULL NULL 4 25

• The result of the query

SELECT *

FROM Studio FULL OUTER JOIN Finance ON S.mID = F.mID

is:

Name mID mID1 Gross

United 1 1 156

United 2 2 412

Dreamworks 3 NULL NULL

NULL NULL 4 25

CSCC43, Introduction to Databases, Summer 2009 76

Derived relations

• Find directors, provided that they have directed at least 2 movies.

• Solution with HAVING:
SELECT director

FROM Movies

GROUP BY director

HAVING COUNT(mID) >= 2

• Solution with a derived relation, Temp:

SELECT director

FROM (SELECT director, COUNT(mID) AS CTN

FROM Movies

GROUP BY director) AS Temp

WHERE CTN > 2

CSCC43, Introduction to Databases, Summer 2009 77

Views

• Provide a mechanism to hide certain data from the view of certain
users.

• Provide a way to save intermediate results, for future reference.

• Usually it is done when the result of a certain query is needed often

• Syntax:
CREATE VIEW <name> (<attributes>) AS <query>

• Example: suppose we need directors and actors playing in movies di-
rected by them.

CREATE VIEW DirAct (dir, act) AS

SELECT M.director, R.aID

FROM Movies M, Roles R

WHERE M.mID = R.mID

CSCC43, Introduction to Databases, Summer 2009 78

Using views

• Once a view is created, it can be used in queries.

• Find the actors who played in movies directed by “Lucas”

SELECT act

FROM DirAct

WHERE dir = ’Lucas’

• When the view is no longer needed, it has to be dropped.

DROP VIEW <name>

CSCC43, Introduction to Databases, Summer 2009 79

WITH Clause

• Allows views to be defined locally to a query, rather than globally.
Analogous to procedures in a programming language.

WITH DirAct (dir, act) AS

(SELECT M.director, A.aID

FROM Movies M, Roles R

WHERE M.mID = R.mID)

SELECT act

FROM DirAct

WHERE dir = ’Lucas’

• Note: the WITH clause it’s not supported by PostgreSQL

CSCC43, Introduction to Databases, Summer 2009 80

Structured Query Language III

CSCC43, Introduction to Databases, Summer 2009 81

Aggregate functions

These functions operate on the values of a column of a relation, and return
a value.

– avg: average value

– min: minimum value

– max: maximum value

– sum: sum of values

– count: number of values

CSCC43, Introduction to Databases, Summer 2009 82

Aggregate functions cont’d

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

• Count the number of tuples in Movies

SELECT COUNT(*) AS noTuples

FROM Movies

• Result: noTuples

CSCC43, Introduction to Databases, Summer 2009 83

Aggregate functions cont’d

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

• Count the number of tuples in Movies

SELECT COUNT(*) AS noTuples

FROM Movies

• Result: noTuples

7

CSCC43, Introduction to Databases, Summer 2009 84

Aggregate functions cont’d

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

• Find the number of directors.

SELECT COUNT(DISTINCT director) AS noDirectors

FROM Movies

• Result: noDirectors

CSCC43, Introduction to Databases, Summer 2009 85

Aggregate functions cont’d

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

• Find the number of directors.

SELECT COUNT(DISTINCT director) AS noDirectors

FROM Movies

• Result: noDirectors

4

CSCC43, Introduction to Databases, Summer 2009 86

Aggregate functions cont’d

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

• Find the average length of Lucas’s movies.

SELECT AVG(length) AS AVGL

FROM Movies

WHERE director = ’Lucas’

• Result: AVGL

CSCC43, Introduction to Databases, Summer 2009 87

Aggregate functions cont’d

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

• Find the average length of Lucas’s movies.

SELECT AVG(length) AS AVGL

FROM Movies

WHERE director = ’Lucas’

• Result: AVGL

118

CSCC43, Introduction to Databases, Summer 2009 88

Aggregation and grouping

• For each director, return the average running time of his/her movies.

SELECT Director, AVG(Length) AS Avgl

FROM Movies

GROUP BY Director

• How does grouping work?

director ... length
d1 ... l1
...
d1 ... ln
d2
...

→
director

d1 {l1, . . . , ln}
... ...

→
director avgl

d1 (
∑n

i=1 li)/n
... ...

CSCC43, Introduction to Databases, Summer 2009 89

Aggregation cont’d

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

• For each director, return the average running time of his/her movies.

• SELECT Director, AVG(length) AS AVGL

FROM Movies

GROUP BY director

CSCC43, Introduction to Databases, Summer 2009 90

Aggregation cont’d

Evaluation:

• First, create groups based on the values of the director attribute.

“group” director mID title year length

1 Kubrick 1 Shining 1980 146

Kubrick 7 Full Metal Jacket 1987 156

2 Altman 2 Player 1992 146

3 Polanski 3 Chinatown 1974 131

Polanski 4 Repulsion 1965 143

4 Lucas 5 Star Wars IV 1977 126

Lucas 6 American Graffiti 1973 110

• Then, for each group, compute the average length of the movies in it.

• Result: director AVGL

CSCC43, Introduction to Databases, Summer 2009 91

Aggregation cont’d

Evaluation:

• First, create groups based on the values of the director attribute.

“group” director mID title year length

1 Kubrick 1 Shining 1980 146

Kubrick 7 Full Metal Jacket 1987 156

2 Altman 2 Player 1992 146

3 Polanski 3 Chinatown 1974 131

Polanski 4 Repulsion 1965 143

4 Lucas 5 Star Wars IV 1977 126

Lucas 6 American Graffiti 1973 110

• Then, for each group, compute the average length of the movies in it.

• Result:

director AVGL

Kubrick 151

Altman 146

Polanski 137

Lucas 118

CSCC43, Introduction to Databases, Summer 2009 92

Rules about grouping

SELECT director, title, AVG(length) AS AVGL

FROM Movies

GROUP BY director

ERROR: column ”movies.title” must appear in the GROUP BY clause or
be used in an aggregate function.

Rule: Attributes in SELECT clause outside of aggregate functions must
appear in the GROUP BY list.

CSCC43, Introduction to Databases, Summer 2009 93

Rules about grouping cont’d

How do we evaluate the following query?

SELECT director, title, AVG(length) AS AVGL

FROM Movie

GROUP BY director, title

• Create groups based on the values of the director, title attributes.

“group” director title mID year length

1 Kubrick Shining 1 1980 146

2 Kubrick Full Metal Jacket 7 1987 156

3 Altman Player 2 1992 146

4 Polanski Chinatown 3 1974 131

5 Polanski Repulsion 4 1965 143

6 Lucas Star Wars IV 5 1977 126

7 Lucas American Graffiti 6 1973 110

CSCC43, Introduction to Databases, Summer 2009 94

Rules about grouping cont’d

• Then, for each group, compute the average length of the movies in it.

• Result:

director title AVGL

Kubrick Shining 146

Kubrick Full Metal Jacket 156

Altman Player 146

Polanski Chinatown 131

Polanski Repulsion 143

Lucas Star Wars IV 126

Lucas American Graffiti 110

CSCC43, Introduction to Databases, Summer 2009 95

Nulls and aggregation

• Rule for nulls and aggregate functions:

– First, ignore all nulls,

– and then compute the aggregation value.

Exception: COUNT(*)

• Example:

– For R:
A

1

NULL

– the result of the query SELECT COUNT(*) AS CTN FROM R

is: CTN

– the result of the query SELECT COUNT(R.A) AS CTN FROM R

is: CTN

CSCC43, Introduction to Databases, Summer 2009 96

Nulls and aggregation

• Rule for nulls and aggregate functions:

– First, ignore all nulls,

– and then compute the aggregation value.

Exception: COUNT(*)

• Example:

– For R:
A

1

NULL

– the result of the query SELECT COUNT(*) AS CTN FROM R

is: CTN

2

– the result of the query SELECT COUNT(R.A) AS CTN FROM R

is: CTN

1

CSCC43, Introduction to Databases, Summer 2009 97

Selection based on aggregation results

• Find directors and average length of their movies, provided they made
at least two movies.

• Idea:

◦ from all the groups of directors, consider only those for whom COUNT(mID) ≥ 2;

◦ for those directors, compute AVG(Length)

• SQL has a special syntax for it: HAVING.

• SELECT director, AVG(length)

FROM Movies

GROUP BY director

HAVING COUNT(mID) >= 2

CSCC43, Introduction to Databases, Summer 2009 98

Selection based on aggregation results cont’d

Evaluation:

• First, create groups based on the values of the director attribute.

“group” director mID title year length

1 Kubrick 1 Shining 1980 146
Kubrick 7 Full Metal Jacket 1987 156

2 Altman 2 Player 1992 146

3 Polanski 3 Chinatown 1974 131
Polanski 4 Repulsion 1965 143

4 Lucas 5 Star Wars IV 1977 126

Lucas 6 American Graffiti 1973 110

• Then, among these groups, select only those satisfying the condition in
HAVING:
“group” director mID title year length

1 Kubrick 1 Shining 1980 146

Kubrick 7 Full Metal Jacket 1987 156

3 Polanski 3 Chinatown 1974 131

Polanski 4 Repulsion 1965 143

4 Lucas 5 Star Wars IV 1977 126
Lucas 6 American Graffiti 1973 110

CSCC43, Introduction to Databases, Summer 2009 99

Selection based on aggregation results cont’d

Evaluation cont’d:

• For the remaining groups, compute the aggregation AVG(length)

• Result:

director AVGL

Kubrick 151

Polanski 137

Lucas 118

CSCC43, Introduction to Databases, Summer 2009 100

Aggregates in WHERE

• Results of aggregates can be used for comparisons not only in the
HAVING clause.

• Find the director and the title of the longest movie.

SELECT M.director, M.title

FROM Movies M

WHERE M.length = (SELECT MAX(M1.length) AS MAXL

FROM Movies M1)

• Result: director title

• Note: SELECT MAX(M1.length) AS MAXL
FROM Movies M1

returns MAXL

CSCC43, Introduction to Databases, Summer 2009 101

Aggregates in WHERE

• Results of aggregates can be used for comparisons not only in the
HAVING clause.

• Find the director and the title of the longest movie.

SELECT M.director, M.title

FROM Movies M

WHERE M.length = (SELECT MAX(M1.length) AS MAXL

FROM Movies M1)

• Result: director title

Kubrick Full Metal Jacket

• Note: SELECT MAX(M1.length) AS MAXL
FROM Movies M1

returns MAXL

156

CSCC43, Introduction to Databases, Summer 2009 102

Aggregates in WHERE cont’d

• Be careful not to write:

SELECT M.director, M.title

FROM Movies M

WHERE M.length = MAX(SELECT M1.length

FROM Movies M1)

which is incorrect.

• Instead, you can write in SQL:

SELECT M.director, M.title

FROM Movies M

WHERE M.length >= ALL (SELECT M1.length

FROM Movies M1)

CSCC43, Introduction to Databases, Summer 2009 103

Ordering the output

• Causes tuples to be outputed in a specified order.

• Syntax: ORDER BY <attribute> ASC | DESC

• Movies:

mID title director year length

1 Shining Kubrick 1980 146

2 Player Altman 1992 146

3 Chinatown Polanski 1974 131

4 Repulsion Polanski 1965 143

5 Star Wars IV Lucas 1977 126

6 American Graffiti Lucas 1973 110

7 Full Metal Jacket Kubrick 1987 156

• Consider the query as before, and, this time, we are ordering the output:

SELECT director, AVG(length) AS AVGL

FROM Movies

GROUP BY director

HAVING COUNT(mID) >= 2

ORDER BY AVGL

CSCC43, Introduction to Databases, Summer 2009 104

Ordering the output cont’d

• Intermediate result, before ordering the output:

director AVGL

Kubrick 151

Polanski 137

Lucas 118

• Ordering the output ASCending: director AVGL

• Ordering the output DESCending: director AVGL

CSCC43, Introduction to Databases, Summer 2009 105

Ordering the output cont’d

• Intermediate result, before ordering the output:

director AVGL

Kubrick 151

Polanski 137

Lucas 118

• Ordering the output ASCending:

director AVGL

Lucas 118

Polanski 137

Kubrick 151

• Ordering the output DESCending:

director AVGL

Kubrick 151

Polanski 137

Lucas 118

CSCC43, Introduction to Databases, Summer 2009 106

