
CSCC43

CSCC43 Introduction to Databases

Using SQL in an ApplicationUsing SQL in an Application



CSCC43

Outline

 Embedded SQL
 Dynamic SQL
 JDBC
 



CSCC43

Interactive vs. Non-Interactive SQL

 Interactive SQLInteractive SQL:  SQL statements input from 
terminal;  DBMS outputs to screen
 Inadequate for most uses

 It may be necessary to process the data before output
 Amount of data returned not known in advance

 SQL has very limited expressive power
 Non-interactive SQLNon-interactive SQL:  SQL statements are 

included in an application program written in a host 
language, like C, Java, COBOL



CSCC43

Application Program

 Host languageHost language:  A conventional language (e.g., C, 
Java) that supplies control structures, 
computational capabilities, interaction with physical 
devices

 SQLSQL: supplies ability to interact with database.
 Using the facilities of bothUsing the facilities of both: the application 

program can act as an intermediary between the 
user at a terminal and the DBMS



CSCC43

Preparation

 Before an SQL statement is executed, it must be 
prepared prepared by the DBMS:
 What indices can be used? 
 In what order should tables be accessed?
 What constraints should be checked?

 Decisions are based on schema, table sizes, etc.
 Result is a query execution planquery execution plan
 Preparation is a complex activity, usually done at 

run time,  justified by the complexity of query 
processing



CSCC43

Introducing SQL Into the Application

 SQL statements can be incorporated into an 
application program in two different ways:
 Statement Level Interface (SLI):  Application 

program is a mixture of host language statements 
and SQL statements and directives

 Call Level Interface (CLI):  Application program is 
written entirely in host language 

 SQL statements are values of string variables that are 
passed as arguments to host language (library) 
procedures



CSCC43

Statement Level Interface

 SQL statements and directives in the application 
have a special syntax that sets them off from host 
language constructs
 e.g.,     EXEC SQL   SQL_statement

 PrecompilerPrecompiler scans program and translates SQL 
statements into calls to host language library 
procedures that communicate with DBMS

 Host language compiler then compiles program



CSCC43

Statement Level Interface cont’d
 SQL constructs in an application take two forms:

 Standard SQL statements (embedded  SQL): 
 Useful when SQL portion of program is known at 

compile time 
 Directives (dynamic SQL):  

 Useful when SQL portion of program not known at 
compile time. 

 Application constructs SQL statements at run time as 
values of host language variables that are manipulated 
by directives

 Precompiler translates statements and directives 
into arguments of calls to library procedures.



CSCC43

Call Level Interface

 Application program written entirely in host 
language (no precompiler)
 Examples: JDBC, ODBC

 SQL statements are values of string variables 
constructed at run time using host language 
 Similar to dynamic SQL

 Application uses string variables as arguments of 
library routines that communicate with DBMS
 e.g.    executeQuery(“SQL query statement”)



CSCC43

Static SQL

 Declaration section for host/SQL communication
 Colon convention for value (WHERE) and result 

(INTO) parameters

EXEC SQL BEGIN DECLARE BEGIN          
 int year;
    char director [11];
    char  SQLSTATE [6];
EXEC SQL END DECLARE ;
        ……….
EXEC  SQL  SELECT  M.year
     INTO  :year
     FROM  MoviesMovies M
     WHERE  M.director = :director;

Variables 
shared by 
host and 

SQL

“:” used to set off 
host variables



CSCC43

Status

EXEC  SQL  SELECT  M.year
     INTO  :year
     FROM  MoviesMovies M
     WHERE  M.director = :director;
if ( !strcmp (SQLSTATE, “00000”) ) {
      printf ( “statement failed” ) 
};

In  
parameter

Out  
parameter



CSCC43

Buffer Mismatch Problem

 Problem:  SQL deals with tables (of arbitrary size); 
host language program deals with fixed size 
buffers
 How does the application allocate storage for the 

result of a SELECT statement? 
 Solution:  Fetch a single row at a time

 Space for a single row (number and type of out 
parameters) can be determined from schema and 
allocated in application



CSCC43

Cursors

 Result setResult set – set of rows produced by a SELECT 
statement

 CursorCursor – pointer to a row in the result set.
 Cursor operations:

 DeclarationDeclaration
 OpenOpen – execute SELECT to determine result set and 

initialize pointer
 FetchFetch – advance pointer and retrieve next row
 CloseClose – deallocate cursor



CSCC43

Cursors cont’d

SELECTcursor

Base table

Result set
(or pointers to it)application



CSCC43

Cursors cont’d
EXEC SQL DECLAREDECLARE  GetTitleGetTitle CURSOR FOR
    SELECT  M.mID, M.title         --cursor is not a schema element
     FROM MoviesMovies M
     WHERE  M.director = :director  AND M.year < 1980;
    ………
EXEC SQL OPENOPEN GetTitle;
if ( !strcmp ( SQLSTATE, “00000”)) {... No error... };
    ……….
EXEC SQL FETCHFETCH GetTitle INTO :mID, :title;
while  ( SQLSTATE = “00000”)  {
    … process the returned row...
    EXEC SQL FETCHFETCH  GetTitleGetTitle  INTO :mID, :title;
}
if ( !strcmp ( SQLSTATE, “02000”)) {…No tuples found... };
    ……….
EXEC SQL CLOSECLOSE  GetTitle;

Reference 
resolved at 
compile 
time,
Value 
substituted 
at OPEN 
time



CSCC43

Cursor Types
 Insensitive cursor: Result set (effectively) 

computed and stored in a separate table at 
OPEN time
 Changes made to base table subsequent to OPEN 

(by any transaction) do not affect result set
 Cursor is read-only

 Cursors that are not insensitive: Specification 
not part of SQL standard 
 Changes made to base table subsequent to OPEN 

(by any transaction) can affect result set
 Cursor is updatable



CSCC43

Insensitive Cursor

                        key1 t t t t t t t t            key1    t t t t qqt t t t 
                        key3 yyyyyyyy            key2    xxxxxxxxx
                        key4 zzzzzzzzz            key3    yyyrryyyy
                                                             key4    zzzzzzzzzz
                                                             key5    uuuuuuuuu
                                                             key6   vvvvvvvvv

Base Table

cursor

Result  
Set

Tuples added after 
opening the cursor

Changes made after 
opening cursor not seen 

in the cursor



CSCC43

Cursors

DECLARE cursor-name [INSENSITIVEINSENSITIVE] [SCROLLSCROLL] 
     CURSOR FOR  table-expr
     [ ORDER BY column-list ]
     [ FOR {READ ONLYREAD ONLY | UPDATEUPDATE [ OF column-list ] } ]
For  updatable (not insensitive, not read-only) cursors
      UPDATE  table-name                          --base table
            SET  assignment   
           WHERE CURRENT OF  cursor-name

      DELETE  FROM  table-name               --base table
            WHERE CURRENT OF  cursor-name



CSCC43

Scrolling

 If SCROLL option not specified in cursor declaration, 
FETCH always moves cursor forward one position

 If SCROLL option is included in DECLARE CURSOR 
section, cursor can be moved in arbitrary ways around 
result set:

     FETCH PRIORPRIOR FROM GetTitleGetTitle INTO :mID, :title;
    Also:  FIRST, 
                LAST, 
                ABSOLUTE n, 
                RELATIVE n

Get previous tuple



CSCC43

Dynamic SQL
 Problem:  Application might not know in advance:

 The SQL statement to be executed
 The database schema to which the statement is 

directed
 Example:  User inputs database name and SQL 

statement interactively from terminal
 In general, application constructs (as the value of a 

host language string variable) the SQL statement 
at run time

 Preparation (necessarily) done at run time



CSCC43

Dynamic SQL cont’d

 SQL-92 defines syntax for embedding directives 
into application for constructing, preparing, and 
executing an SQL statement
 Referred to as Dynamic SQL
 Statement level interface

 Dynamic and static SQL can be mixed in a single 
application



CSCC43

Dynamic SQL cont’d

 stst is an SQL variable; names the SQL statement
 tmptmp, yearyear, directordirector  are host language variables (note colon 

notation)
 directordirector  is an in parameter; supplies value for  placeholder  (?)
 year year  is an out parameter; receives value from M.year
 PREPARE names SQL statement stst and sends it to DBMS for 

preparation
 EXECUTE causes the statement named stst to be executed

strcpy (tmp, “SELECT  M.year FROM MoviesMovies M  \
                            WHERE M.director = ?” ) ;
EXEC SQL PREPAREPREPARE st FROM :tmp;
EXEC SQL EXECUTEEXECUTE st INTO :year USING :director;

placeholder



CSCC43

Connections 

 To connect to an SQL database, use a 
connect statement
  CONNECT  TO database_name AS          

connection_name USING user_id



CSCC43

Transactions

 No explicit statement is needed to begin a 
transaction
 A transaction is initiated when the first SQL 

statement that accesses the database is executed
 The mode of transaction execution can be set with

   SET TRANSACTION READ ONLY
              ISOLATION LEVEL SERIALIZABLE

 Transactions are terminated with COMMIT or 
ROLLBACK statements



CSCC43

JDBC

 Call-level interface (CLI) for executing SQL from a 
Java program

 SQL statement is constructed at run time as the 
value of a Java variable (as in dynamic SQL)

 JDBC passes SQL statements to the underlying 
DBMS.  Can be interfaced to any DBMS that has a 
JDBC driver

 Part of SQL:2003



CSCC43

JDBC
 Different RDBMS systems have surprisingly little in 

common other than their use of SQL; each has its 
own unique API.

 JDBC (Java Database Connectivity) provides a 
standard, generic SQL database access interface.

 The JDBC API defines classes to represent major 
DB functionality, such as database connections, 
SQL statements, result sets, and database 
metadata. 

 JDBC allows a Java program to issue SQL 
statements and process the results.



CSCC43

JDBC Goals

 DB independence: provide Java programmers with 
a uniform, simple interface to a wide range of 
relational databases.  Can replace underlying 
database with minimal code impact.

 Platform independence.
 Provide a common base on which higher level tools 

and interfaces can be built.
 Note JDBC does not attempt to standardize SQL 

syntax across vendor DB products, which often 
implement their own proprietary SQL extensions.



CSCC43

JDBC API
 4 main interfaces:

 java.sql.DriverManager – handles loading of drivers 
and provides support for creating new database 
connections

 java.sql.Connection –represents a connection to a 
particular database

 java.sql.Statement – acts as a container for 
executing an SQL statement on a given connection.  
Passes SQL strings to the DB for execution and result 
set return

 java.sql.ResultSet – controls access to the row 
results of a given statement



CSCC43

JDBC Run-Time Architecture

DBMS

application driver
manager

DB/2
driver

PostgreSQL
driver

Oracle
driver

DB/2
database

PostgreSQL
database

Oracle
database



CSCC43

Executing a Query

import  java.sql.*;      -- import all classes in package java.sql

Class.forName (driver name);      // static method of class Class
            // loads specified driver

Connection con = DriverManager.getConnection(Url, Id, Passwd);
•  Static method of class DriverManager; attempts to connect to DBMS
•  If successful, creates a connection object, con,  for managing the connection

Statement stat = con.createStatement ();
•  Creates a statement object stat
•  Statements have executeQuery() method



CSCC43

Executing a Query cont’d
String query = “SELECT   M.title  FROM  MoviesMovies M” +

“WHERE   M.director = ‘Polanski’ ” +
“AND  M.year < 1980”;

ResultSet  res = stat.executeQuery (query);
•  Creates a result set object, res.
•  Prepares and executes the query.
•  Stores the result set produced by execution in res
   (analogous to opening a cursor).
•  The query string can be constructed at run time (as above).
•  The input parameters are plugged into the query when
    the string is formed



CSCC43

String query = “SELECT  M.title  FROM  Movies MMovies M” +
“WHERE  M.director = ?  AND  M.year < ?”;

PreparedStatement  ps = con.prepareStatement ( query );
•  Prepares the statement
•  Creates a prepared statement object, ps, containing the
    prepared statement
•  PlaceholdersPlaceholders (?) mark positions of  in in  parameters;
    special  API is provided to plug the actual values in 
    positions indicated by the ??’s

 

Preparing and Executing a Query

placeholders



CSCC43

Preparing and Executing a Query cont’d
String  director, year;
………
ps.setString(1, director);     // set value of first inin parameter 
ps.setString(2, year);         // set value of second inin parameter

ResultSet  res = ps.executeQuery ( );
•  Creates a result set object, res
•  Executes the query
•  Stores the result set produced by execution in res

while  ( res.next ( ) )  {                           // advance the cursor
       j = res.getString (“title”);        // fetch output int-value
       …process output value…
}



CSCC43

Handling Exceptions

 try/catch is the basic structure within which an SQL 
statement should be embedded

 If an exception is thrown, an exception object, ex, is 
created and the catch clause is executed

 The exception object has methods to print an error 
message, return SQLSTATE, etc.

try {
     ...Java/JDBC code...
}  catch ( SQLException  ex ) {
     …exception handling code... 
}



CSCC43

Transactions in JDBC
 Default  for a connection is 

 Transaction boundaries
 Autocommit mode:  each  SQL statement is a transaction.
To group several statements into a transaction use 
    con.setAutoCommit (false)

 Isolation
 default isolation level of the underlying DBMS
To change isolation level use 
con.setTransactionIsolationLevel (TRANSACTION_SERIALIZABLE)

 With autocommit off:
 transaction is committed using con.commit().  
 next transaction is automatically initiated (chaining)

 Transactions on each connection committed separately


	Lecture 2: Physical Data Organization 
	Using SQL in an Application
	Interactive vs. Non-Interactive SQL
	Application Program
	Preparation
	Introducing SQL Into the Application
	Statement Level Interface
	Statement Level Interface cont’d
	Call Level Interface
	Embedded SQL
	Status
	Buffer Mismatch Problem
	Cursors
	Cursors cont’d
	Slide 15
	Cursor Types
	Insensitive Cursor
	Slide 18
	Scrolling
	Dynamic SQL
	Dynamic SQL cont’d
	Slide 22
	Connections 
	Transactions
	JDBC
	Slide 26
	JDBC Goals
	JDBC API
	JDBC Run-Time Architecture
	Executing a Query
	Executing a Query cont’d
	Preparing and Executing a Query
	Preparing and Executing a Query cont’d
	Handling Exceptions
	Transactions in JDBC

