
CSCC43 Introduction to Databases

Relational Normalization Theory

Redundancy

Dependencies between attributes cause redundancy
Ex. All the people working in the same place have the same zip
code

SSN Name Department Zip
1234 Joe DCS M5S 3H5
4321 Mary DCS M5S 3H5
5454 Tom DCS M5S 3H5
………………….

Redundancy

SSN Name Address Hobby
123456789 Mike 123 College St. stamps
123456789 Mike 123 College St. coins

…………….
Redundancy

Redundancy and Other Problems
Example: Person (SSN, Name, Address, Hobbies)

A person entity with multiple hobbies yields multiple rows in table Person
Hence, the association between Name and Address for the same
person is stored redundantly

SSN is the key of the entity set, but (SSN, Hobby) is the key of the
corresponding relation

The relation Person can’t describe people without hobbies

Anomalies
Redundancy leads to anomalies:

Update anomaly: A change in Address must be made in several places
Deletion anomaly: Suppose a person gives up all hobbies. Do we:

Set Hobby attribute to null? No, since Hobby is part of key
Delete the entire row? No, since we lose other information in the row

Insertion anomaly: Hobby value must be supplied for any inserted row
since Hobby is part of key

Decomposition
Solution: use two relations to store Person information

Person1 (SSN, Name, Address)
Hobbies (SSN, Hobby)

The decomposition is more general: people with hobbies can now be described
No update anomalies:

Name and address stored once
A hobby can be separately supplied or deleted
We can represent persons who do not have hobbies

Normalization Theory

Result of E-R analysis needs further refinement
Appropriate decomposition can solve problems
The underlying theory is referred to as normalization theory and is
based on functional dependencies (and other kinds, like multivalued
dependencies)

Functional Dependencies

Definition: A functional dependency (FD) on a relation schema R is a
constraint X → Y, where X and Y are subsets of attributes of R.

Definition: An FD X → Y is satisfied in an instance r of R if for every pair of
tuples, t and s: if t and s agree on all attributes in X then they must agree on all
attributes in Y

Key Constraint
Is a special kind of functional dependency:

Let K be a set of attributes of R, and U the set of all attributes of R. Then K
is a key if the functional dependency K → U is satisfied in R.

SSN → SSN, Name, Address (in the Person1 relation)
A candidate key is a minimal superkey

K is a key in R, if for each X ⊂ K, X is not a key
SSN, Hobby → SSN, Name, Address, Hobby but
SSN → SSN, Name, Address, Hobby
Hobby → SSN, Name, Address, Hobby

A prime attribute is an attribute of a key

Functional Dependencies cont’d

Address → ZipCode
DCS’s ZIP is M5S 3H5

Author, Title, Edition → PublicationDate
Database Management Systems, by R. Ramakrishnan, and J.
Gehrke, McGraw Hill, 2003 (3rd Edition)

CourseID → ExamDate, ExamTime
CSC343’s exam date is August 9, starting at 6pm

http://www.cs.wisc.edu/%7Edbbook/

Entailment, Closure, Equivalence

Definition: If F is a set of FDs on schema R and f is another FD on R, then F
entails f if every instance r of R that satisfies every FD in F also satisfies f

Ex: F = {A → B, B→ C} and f is A → C
If Phone# → Address, Address → ZipCode then

Phone# → ZipCode
Definition: The closure of F, denoted F+, is the set of all FDs entailed by F
Definition: F and G are equivalent if F entails G and G entails F

Armstrong’s Axioms for FDs

This is the syntactic way of computing/testing the various properties of FDs
Reflexivity: If Y ⊆ X then X → Y (trivial FD)

Name, Address → Name
Augmentation: If X → Y then X Z→ YZ

If Address → ZipCode then Address, Name → ZipCode, Name
Transitivity: If X → Y and Y → Z then X → Z

If Phone# → Address and Address → ZipCode, then
Phone# → ZipCode

Soundness
Axioms are sound: If an FD f: X→ Y can be derived from a set of FDs F using
the axioms, then f holds in every relation that satisfies every FD in F.
Example: Given X→ Y and X→ Z then

Thus, X→ Y Z is satisfied in every relation where both X→ Y and X→ Z
are satisfied

Therefore, we have derived the union rule for FDs

X → XY Augmentation by X
YX → YZ Augmentation by Y
X → YZ Transitivity

Completeness

Axioms are complete: If F entails f , then f can be derived from F
using the axioms
A consequence of completeness is the following (naïve) algorithm to
determining if F entails f:

Algorithm: Use the axioms in all possible ways to generate F+ (the
set of possible FD’s is finite so this can be done) and see if f is in
F+

Correctness

The notions of soundness and completeness link the syntax
(Armstrong’s axioms) with semantics (the definitions in terms of
relational instances)
This is a precise way of saying that the algorithm for entailment based
on the axioms is ``correct’’ with respect to the definitions

Generating F+

F

AB→ C
AB→ BCD

A→ D AB→ BD AB→ BCDE AB→ E

D→ E BCD → BCDE

Thus, AB→ BD, AB → BCD, AB → BCDE, and AB → E
are all elements of F+

union
aug

trans

aug

decomp

Attribute Closure

Calculating attribute closure leads to a more efficient way of checking
entailment
The attribute closure of a set of attributes, X, with respect to a set of
functional dependencies, F, (denoted X+

F) is the set of all attributes, A, such
that X → A

X +F is not necessarily the same as X +G if F ≠ G
Attribute closure and entailment:

Algorithm: Given a set of FDs, F, then X → Y if and only if Y ⊆ X+
F

Example - Computing Attribute Closure

F: AB → C
A → D
D → E
AC → B

X XF
+

A {A, D, E}
AB {A, B, C, D, E}
AC {A, C, B, D, E}
B {B}
D {D, E}

Is AB → E entailed by F? Yes
Is D → C entailed by F? No

Result: XF
+ allows us to determine FDs of the form

X → Y entailed by F

Computation of Attribute Closure X+
F

closure := X; // since X ⊆ X+
F

repeat
old := closure;
if there is an FD Z → V in F such that

Z ⊆ closure and V ⊆ closure
then closure := closure ∪ V

until old = closure

– If T ⊆ closure then X → T is entailed by F

Normal Forms

Each normal form is a set of conditions on a schema that guarantees certain
properties (relating to redundancy and update anomalies)

The two commonly used normal forms are third normal form (3NF) and Boyce-
Codd normal form (BCNF)

BCNF

Definition: A relation schema R is in BCNF if for every FD X→ Y associated with
R either

Y ⊆ X (i.e., the FD is trivial) or

X is a key of R
Example: Person1(SSN, Name, Address)

The only FD is SSN → Name, Address

Since SSN is a key, Person1 is in BCNF

(non) BCNF Examples

Person (SSN, Name, Address, Hobby)
The FD SSN → Name, Address does not satisfy requirements of BCNF

since the key is (SSN, Hobby)
HasAccount (AcctNum, ClientId, OfficeId)

The FD AcctNum→ OfficeId does not satisfy BCNF requirements
since keys are (ClientId, OfficeId) and (AcctNum, ClientId); not AcctNum.

Redundancy

Suppose R has an FD A → B, and A is not a key. If an instance has 2 rows with same
value in A, they must also have same value in B (=> redundancy, if the A-value repeats
twice)

If A is a key, there cannot be two rows with same value of A
Hence, BCNF eliminates redundancy

SSN Name Address Hobby
123456789 Mike 123 College St. stamps
123456789 Mike 123 College St. coins

…………….
Redundancy

Decomposition
Schema R = (R, F)

R is set a of attributes
F is a set of functional dependencies over R

Each key is described by a FD
The decomposition of schema R is a collection of schemas

Ri = (Ri, Fi) where

R = ∪i Ri for all i (no new attributes)
Fi is a set of functional dependences involving only attributes of Ri

F entails Fi for all i (no new FDs)
The decomposition of an instance, r, of R is a set of relations

ri = πRi(r) for all i

Example Decomposition

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN→ Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

BCNF Decomposition Algorithm

Input: R = (R; F)

Decomp := R
while there is S = (S; F’) ∈ Decomp and S not in BCNF do

Find X → Y ∈ F’ that violates BCNF // X isn’t a key in S
Replace S in Decomp with
S1 = (XY; F1), S2 = ((S - Y) ∪ X); F2)
// F1 = all FDs of F’ involving only attributes of XY
// F2 = all FDs of F’ involving only attributes of (S - Y)∪ X

end
return Decomp

Simple Example

HasAccount :

(ClientId, OfficeId, AcctNum)

(ClientId , AcctNum)

BCNF (only trivial FDs)

• Decompose using AcctNum → OfficeId :

(OfficeId, AcctNum)

BCNF: AcctNum is key
FD: AcctNum → OfficeId

ClientId,OfficeId → AcctNum
AcctNum → OfficeId

A Larger Example
Given: R = (R; F) where R = ABCDEGHK and

F = {ABH→ C, A→ DE, BGH→ K, K→ ADH, BH→ GE}

step 1: Find a FD that violates BCNF
Not ABH → C since (ABH)+ includes all attributes

(BH is a key)
A → DE violates BCNF since A is not a key (A+ =ADE)

step 2: Split R into:
R1 = (ADE, F1={A→ DE })
R2 = (ABCGHK; F1={ABH→C, BGH→K, K→AH, BH→G})
Note 1: R1 is in BCNF
Note 2: Decomposition is lossless since A is a key of R1.
Note 3: FDs K → D and BH → E are not in F1 or F2. But

both can be derived from F1∪ F2
(E.g., K→ A and A→ D implies K→ D)

Hence, decomposition is dependency preserving.

Example cont’d
Given: R2 = (ABCGHK; {ABH→C, BGH→K, K→AH, BH→G})

step 1: Find a FD that violates BCNF.
Not ABH → C or BGH → K, since BH is a key of R2
K→ AH violates BCNF since K is not a superkey (K+ =AH)

step 2: Split R2 into:
R21 = (KAH, F21={K → AH})
R22 = (BCGK; F22={})

Note 1: Both R21 and R22 are in BCNF.
Note 2: The decomposition is lossless (since K is a key of R21)
Note 3: FDs ABH→ C, BGH→ K, BH→ G are not in F21

or F22 , and they can’t be derived from F1 ∪ F21 ∪ F22 .
Hence the decomposition is not dependency-preserving

Lossless Schema Decomposition

A decomposition should not lose information
A decomposition (R1,…,Rn) of a schema, R, is lossless if every valid
instance, r, of R can be reconstructed from its components:

where each ri = πRi(r)

r = r1 r2 rn……

Lossy Decomposition

r ⊆ r1 r2 ... rn

SSN Name Address SSN Name Name Address
1111 Joe 1 Pine 1111 Joe Joe 1 Pine
2222 Alice 2 Oak 2222 Alice Alice 2 Oak
3333 Alice 3 Pine 3333 Alice Alice 3 Pine

r ⊇ r1 r2 rn...

r1 r2r ⊇

The following is always the case (Think why?):

But the following is not always true:

Example:

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join,
but not in the original

Lossy Decompositions:
What is Actually Lost?

In the previous example, the tuples
(2222, Alice, 3 Pine) and (3333, Alice, 2 Oak)
were gained, not lost!

Why do we say that the decomposition was lossy?

What was lost is information:
That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either
2 Oak or 3 Pine
That 3333 lives at 3 Pine: In the decomposition, 3333 can live at either
2 Oak or 3 Pine

Testing for Losslessness

A (binary) decomposition of R = (R, F) into R1 = (R1, F1) and R2 = (R2, F2) is
lossless if and only if :

either the FD
(R1 ∩ R2) → R1 is in F+

or the FD
(R1 ∩ R2) → R2 is in F+

Example

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN → Name, Address}

can be decomposed into

R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

Since R1 ∩ R2 = SSN and SSN → R1 the decomposition is lossless

Dependency Preservation

Consider a decomposition of R = (R, F) into R1 = (R1, F1) and R2 = (R2, F2)

An FD X → Y of F+ is in Fi iff X ∪ Y ⊆ Ri

An FD, f ∈F+ may be in neither F1, nor F2, nor even
(F1 ∪ F2)+

Checking that f is true in r1 or r2 is (relatively) easy
Checking f in r1 r2 is harder – requires a join
Ideally: want to check FDs locally, in r1 and r2, and have a guarantee
that every f ∈F holds in r1 r2

The decomposition is dependency preserving iff the sets F and F1 ∪ F2 are equivalent:
F+ = (F1 ∪ F2)+

Then checking all FDs in F, as r1 and r2 are updated, can be done by checking F1 in
r1 and F2 in r2

Dependency Preservation

If f is an FD in F, but f is not in F1 ∪ F2, there are two possibilities:
f ∈ (F1 ∪ F2)+

If the constraints in F1 and F2 are maintained, f will be maintained
automatically.

f∉ (F1 ∪ F2)+

f can be checked only by first taking the join of r1 and r2. This is
costly.

Example

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN → Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and
R2 = {SSN, Hobby}
F2 = { }

Since F = F1 ∪ F2 the decomposition is dependency preserving

Example

Schema: (ABC; F) , F = {A B, B C, C B}
Decomposition:

(AC, F1), F1 = {A C}
Note: A C ∉ F, but in F+

(BC, F2), F2 = {B C, C B}

A B ∉ (F1 ∪ F2), but A B ∈ (F1 ∪ F2)+.
So F+ = (F1 ∪ F2)+ and thus the decompositions is still dependency
preserving

Example
HasAccount (AcctNum, ClientId, OfficeId)

f1: AcctNum → OfficeId
f2: ClientId, OfficeId → AcctNum

Decomposition:
R1 = (AcctNum, OfficeId; {AcctNum → OfficeId})
R2 = (AcctNum, ClientId; {})

Decomposition is lossless:
R1 ∩ R2= {AcctNum} and AcctNum → OfficeId

In BCNF

Not dependency preserving: f2 ∉ (F1 ∪ F2)+

HasAccount does not have BCNF decompositions that are both lossless and dependency
preserving! (Check, eg, by enumeration)
Hence: BCNF+lossless+dependency preserving decompositions are not always
achievable!

Third Normal Form

Compromise – Not all redundancy removed, but dependency
preserving decompositions are always possible (and, of course,
lossless)
3NF decomposition is based on a minimal cover

Third Normal Form

A relational schema R is in 3NF if for every FD X→ Y associated
with R either:

Y ⊆ X (i.e., the FD is trivial); or

X is a superkey of R; or
Every A∈ Y is part of some key of R

3NF is weaker than BCNF (every schema that is in BCNF is also in
3NF)

BCNF
conditions

3NF Example

HasAccount (AcctNum, ClientId, OfficeId)

ClientId, OfficeId → AcctNum
OK since LHS contains a key

AcctNum → OfficeId
OK since RHS is part of a key

HasAccount is in 3NF but it might still contain redundant information due to
AcctNum OfficeId (which is not allowed by BCNF)

3NF (Non) Example

Person (SSN, Name, Address, Hobby)

(SSN, Hobby) is the only key.
SSN→ Name violates 3NF conditions since Name is not
part of a key and SSN is not a superkey

Minimal Cover

A minimal cover of a set of dependencies, F, is a set of dependencies, U, such
that:

U is equivalent to F (F+ = U+)
All FDs in U have the form X → A where A is a single attribute
It is not possible to make U smaller (while preserving equivalence) by

Deleting an FD
Deleting an attribute from an FD (either from LHS or RHS)

FDs and attributes that can be deleted in this way are called redundant

Computing Minimal Cover

Example: F = {ABH → CK, A → D, C → E,
BGH → L, L → AD, E → L, BH → E}

step 1: Make RHS of each FD into a single attribute
Algorithm: Use the decomposition inference rule for FDs
Example: L → AD replaced by L → A, L → D ;

ABH → CK by ABH →C, ABH →K

step 2: Eliminate redundant attributes from LHS.
Algorithm: If FD XB → A ∈ F (where B is a single attribute) and
X → A is entailed by F, then B was unnecessary
Example: Can an attribute be deleted from ABH → C ?

Compute AB+
F, AH+

F, BH+
F.

Since C ∈ (BH)+
F , BH → C is entailed by F and A is redundant in

ABH → C.

Computing Minimal Cover cont’d

step 3: Delete redundant FDs from G
Algorithm: If G – {f} entails f, then f is redundant

If f is X → A then check if A ∈ X+
G-{f}

Example: BH → L is entailed by E → L, BH → E, so it is
redundant

Note: The order of steps 2 and 3 cannot be interchanged!!

Synthesizing a 3NF Schema

step 1: Compute a minimal cover, U, of F. The decomposition is based on U, but
since U+ = F+ the same functional dependencies will hold
A minimal cover for
F = {ABH→CK, A→D, C→E, BGH→L, L→AD, E→ L, BH → E}

is
U = {BH→C, BH→K, A→D, C→E, L→A, E→L}

Starting with a schema R = (R, F)

Synthesizing a 3NF schema cont’d

step 2: Partition U into sets U1, U2, … Un such that the LHS of all elements of Ui
are the same

U1 = {BH → C, BH → K}, U2 = {A → D},
U3 = {C → E}, U4 = {L → A}, U5 = {E → L}

step 3: For each Ui form schema Ri = (Ri, Ui), where Ri is the set of all attributes
mentioned in Ui

Each FD of U will be in some Ri. Hence the decomposition is dependency
preserving
R1 = (BHCK; BH→C, BH→ K), R2 = (AD; A→D), R3 = (CE; C →
E), R4 = (AL; L→A), R5 = (EL; E → L)

Synthesizing a 3NF schema cont’d

step 4: If no Ri is a superkey of R, add schema R0 = (R0,{}) where R0 is a key of R.
R0 = (BGH, {})

R0 might be needed when not all attributes are necessarily contained in R1∪R2
…∪Rn

– A missing attribute, A, must be part of all keys
(since it’s not in any FD of U, deriving a key constraint from U
involves the augmentation axiom)

R0 might be needed even if all attributes are accounted for in R1∪R2 …∪Rn

– Example: (ABCD; {A B, C D}).
Step 3 decomposition:

R1 = (AB; {A B}), R2 = (CD; {C D}).
Lossy! Need to add (AC; { }), for losslessness

Step 4 guarantees lossless decomposition.

	Slide Number 1
	Redundancy
	Redundancy and Other Problems
	Anomalies
	Decomposition
	Normalization Theory
	Functional Dependencies
	Key Constraint
	Functional Dependencies cont’d
	Entailment, Closure, Equivalence
	Armstrong’s Axioms for FDs
	Soundness
	Completeness
	Correctness
	Generating F+
	Attribute Closure
	Example - Computing Attribute Closure
	Computation of Attribute Closure X+F
	Normal Forms
	BCNF
	(non) BCNF Examples
	Redundancy
	Decomposition
	Example Decomposition
	BCNF Decomposition Algorithm
	Simple Example
	A Larger Example
	Example cont’d
	Lossless Schema Decomposition
	Lossy Decomposition
	Lossy Decompositions: �What is Actually Lost?
	Testing for Losslessness
	Example
	Dependency Preservation
	Dependency Preservation
	Example
	Example
	Example
	Third Normal Form
	Third Normal Form
	3NF Example
	3NF (Non) Example
	Minimal Cover
	Computing Minimal Cover
	Computing Minimal Cover cont’d
	Synthesizing a 3NF Schema
	Synthesizing a 3NF schema cont’d
	Synthesizing a 3NF schema cont’d

