
CSCC43 Introduction to Databases

Relational Normalization Theory



Redundancy

Dependencies between attributes cause redundancy
Ex.  All the people working in the same place have the same zip 
code

SSN Name Department Zip
1234     Joe       DCS              M5S 3H5 
4321     Mary   DCS              M5S 3H5 
5454 Tom      DCS              M5S 3H5
………………….

Redundancy

SSN           Name  Address            Hobby
123456789  Mike   123 College St.    stamps
123456789  Mike   123 College St.    coins

…………….
Redundancy



Redundancy and Other Problems
Example: Person (SSN, Name, Address, Hobbies)

A person entity with multiple hobbies yields multiple rows in table Person
Hence, the association between Name and Address for the same 
person is stored redundantly

SSN is the key of the entity set, but (SSN, Hobby) is the key of the 
corresponding relation

The relation Person can’t describe people without hobbies



Anomalies
Redundancy leads to anomalies:

Update anomaly: A change in Address must be made in several places
Deletion anomaly: Suppose a person gives up all hobbies.  Do we:

Set Hobby attribute to null?  No, since Hobby is part of key
Delete the entire row?  No, since we lose other information in the row

Insertion anomaly: Hobby value must be supplied for any inserted row 
since Hobby is part of key



Decomposition
Solution: use two relations to store Person information

Person1 (SSN, Name, Address)
Hobbies (SSN, Hobby)

The decomposition is more general: people with hobbies can now be described 
No update anomalies:

Name and address stored once
A hobby  can  be separately supplied or deleted
We can represent persons who do not have hobbies



Normalization Theory

Result of E-R analysis needs further refinement
Appropriate decomposition can solve problems
The underlying theory is referred to as normalization theory and is 
based on functional dependencies (and other kinds, like multivalued 
dependencies)



Functional Dependencies

Definition: A functional dependency (FD) on a relation schema R is a 
constraint X → Y, where X and Y are subsets of attributes of R.

Definition: An FD X → Y is satisfied in an instance r of  R if for every pair of 
tuples, t and s:  if t and s agree on all attributes in X then they must agree on all 
attributes in Y



Key Constraint
Is a special kind of functional dependency: 

Let K be a set of attributes of R, and U the set of all attributes of R. Then K
is a key if the functional dependency K → U is satisfied in R.

SSN → SSN, Name, Address (in the Person1 relation)
A candidate key is a minimal superkey

K is a key in R, if for each X ⊂ K, X is not a key
SSN, Hobby → SSN, Name, Address, Hobby but
SSN → SSN, Name, Address, Hobby
Hobby → SSN, Name, Address, Hobby

A prime attribute is an attribute of a key



Functional Dependencies cont’d

Address → ZipCode
DCS’s ZIP is M5S 3H5 

Author, Title, Edition → PublicationDate
Database Management Systems, by R. Ramakrishnan, and J. 
Gehrke, McGraw Hill, 2003 (3rd Edition) 

CourseID  → ExamDate, ExamTime
CSC343’s exam date is August 9, starting at 6pm

http://www.cs.wisc.edu/%7Edbbook/


Entailment, Closure, Equivalence

Definition: If F is a set of FDs on schema R and f is another FD on R, then F
entails f if every instance r of R that satisfies every FD in F also satisfies f

Ex: F = {A → B, B→ C} and  f  is A → C
If Phone# → Address, Address → ZipCode then

Phone# → ZipCode 
Definition: The closure of F, denoted F+, is the set of all FDs entailed by F
Definition: F and G are equivalent if F entails G and G entails F



Armstrong’s Axioms for FDs

This is the syntactic way of computing/testing the various properties of FDs 
Reflexivity: If Y ⊆ X then X → Y  (trivial FD)

Name, Address → Name
Augmentation: If X → Y  then X Z→ YZ

If Address → ZipCode then Address, Name → ZipCode, Name
Transitivity: If X → Y  and Y → Z then  X → Z

If Phone# → Address and Address → ZipCode, then
Phone# → ZipCode



Soundness
Axioms are sound: If an FD  f: X→ Y can be derived from a set of FDs  F using 
the axioms, then  f holds in every relation that satisfies every FD in F.
Example: Given  X→ Y and  X→ Z then

Thus,  X→ Y Z is satisfied in every relation where both X→ Y and  X→ Z 
are satisfied

Therefore, we have derived the union rule for FDs

X → XY      Augmentation by X
YX → YZ    Augmentation by Y
X → YZ       Transitivity



Completeness

Axioms are complete: If F entails f , then f can be derived from F
using the axioms
A consequence of completeness is the following (naïve) algorithm to 
determining if F entails f: 

Algorithm: Use the axioms in all possible ways to generate F+ (the 
set of possible FD’s is finite so this can be done) and see if  f  is in 
F+



Correctness

The notions of soundness and completeness link the syntax 
(Armstrong’s axioms) with semantics (the definitions in terms of 
relational instances)
This is a precise way of saying that the algorithm for entailment based 
on the axioms is ``correct’’ with respect to the definitions



Generating F+

F

AB→ C
AB→ BCD        

A→ D        AB→ BD                                 AB→ BCDE      AB→ E

D→ E           BCD → BCDE

Thus, AB→ BD, AB → BCD, AB → BCDE, and AB → E 
are all elements of F+

union
aug

trans

aug

decomp



Attribute Closure

Calculating attribute closure leads to a more efficient way of checking 
entailment
The attribute closure of a set of attributes,  X, with respect to a set of 
functional dependencies, F, (denoted X+

F) is the set of all attributes,  A, such 
that X → A

X +F is not necessarily the same as X +G if F ≠ G
Attribute closure and entailment: 

Algorithm: Given a set of FDs, F, then X → Y if and only if Y  ⊆ X+
F



Example - Computing Attribute Closure

F: AB → C            
A → D
D → E
AC → B

X                 XF
+

A            {A, D, E}
AB         {A, B, C, D, E}
AC         {A, C, B, D, E}   
B            {B}
D            {D, E}

Is  AB → E entailed by F?    Yes
Is  D → C  entailed by F?      No

Result:  XF
+ allows us to determine FDs of the form

X → Y entailed by F



Computation of Attribute Closure  X+
F

closure := X;               // since X ⊆ X+
F

repeat
old := closure;
if there is an FD  Z → V in F such that  

Z ⊆ closure and V ⊆ closure
then closure := closure ∪ V

until old = closure

– If T ⊆ closure then X → T is entailed by F



Normal Forms

Each normal form is a set of conditions on a schema that guarantees certain 
properties (relating to redundancy and update anomalies)

The two commonly used normal forms are third normal form (3NF) and Boyce-
Codd normal form (BCNF)



BCNF

Definition: A relation schema R is in BCNF if for every FD X→ Y associated with 
R either

Y ⊆ X (i.e., the FD is trivial) or

X is a key of R
Example: Person1(SSN, Name, Address)

The only FD is SSN → Name, Address

Since SSN is a key, Person1 is in BCNF



(non) BCNF   Examples

Person (SSN, Name, Address, Hobby)
The FD  SSN → Name, Address does not satisfy requirements of BCNF 

since the key is (SSN, Hobby)
HasAccount (AcctNum, ClientId, OfficeId)

The FD AcctNum→ OfficeId does not satisfy BCNF requirements 
since keys are (ClientId, OfficeId) and (AcctNum, ClientId); not AcctNum.



Redundancy

Suppose R has an FD A → B, and A is not a key.  If an instance has 2 rows with same 
value in A, they must also have same value in B (=> redundancy, if the A-value repeats 
twice)

If A is a key, there cannot be two rows with same value of A
Hence, BCNF eliminates redundancy

SSN           Name  Address            Hobby
123456789  Mike   123 College St.    stamps
123456789  Mike   123 College St.    coins

…………….
Redundancy



Decomposition
Schema R = (R, F)

R is set a of attributes
F is a set of functional dependencies over R

Each key is described by a FD
The decomposition of schema R is a collection of schemas 

Ri = (Ri, Fi) where

R = ∪i Ri for all i (no new attributes)
Fi is a set of functional dependences involving only attributes of  Ri

F entails Fi for all i  (no new FDs)
The decomposition of an instance, r, of R is a set of relations 

ri = πRi(r) for all i



Example Decomposition

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN→ Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and 
R2 = {SSN, Hobby}
F2 = { }



BCNF Decomposition Algorithm

Input:  R = (R; F)

Decomp := R
while there is S = (S; F’) ∈ Decomp and S not in BCNF  do 

Find X → Y ∈ F’ that violates BCNF // X isn’t a key in S
Replace S in Decomp  with  
S1 = (XY; F1),  S2 = ((S - Y) ∪ X); F2)
// F1 = all FDs of F’ involving only attributes of  XY 
// F2 = all FDs of F’ involving only attributes of (S - Y)∪ X

end
return  Decomp



Simple Example

HasAccount :

(ClientId,  OfficeId,  AcctNum)

(ClientId ,  AcctNum)

BCNF (only trivial FDs)

• Decompose using  AcctNum → OfficeId :

(OfficeId,  AcctNum)

BCNF: AcctNum is key
FD: AcctNum → OfficeId

ClientId,OfficeId → AcctNum
AcctNum → OfficeId



A Larger Example
Given: R = (R; F) where R = ABCDEGHK and 

F = {ABH→ C, A→ DE, BGH→ K, K→ ADH, BH→ GE}

step 1:  Find a FD that violates BCNF
Not ABH → C since (ABH)+ includes all attributes 

(BH is a key)
A → DE violates BCNF since A is not a key  (A+ =ADE)

step 2:  Split R into: 
R1 = (ADE, F1={A→ DE })
R2 = (ABCGHK; F1={ABH→C, BGH→K, K→AH, BH→G})
Note 1:  R1 is in BCNF
Note 2:  Decomposition is lossless since A is a key of R1.
Note 3:  FDs K → D and BH → E are not in F1 or F2. But

both can be derived from F1∪ F2
(E.g., K→ A  and A→ D implies K→ D)

Hence, decomposition is dependency preserving.



Example cont’d
Given: R2 = (ABCGHK; {ABH→C, BGH→K, K→AH, BH→G})

step 1:  Find a FD that violates BCNF.
Not ABH → C or BGH → K, since BH is a key of R2
K→ AH  violates BCNF since K is not a superkey (K+ =AH)

step 2:  Split R2 into: 
R21 = (KAH, F21={K → AH})
R22 = (BCGK; F22={})

Note 1: Both R21 and R22 are in BCNF.
Note 2: The decomposition is lossless (since K is a key of R21)
Note 3: FDs  ABH→ C, BGH→ K, BH→ G  are not in F21

or  F22 , and they can’t be derived from F1 ∪ F21 ∪ F22 .
Hence the decomposition is not dependency-preserving



Lossless Schema Decomposition

A decomposition should not lose information
A decomposition (R1,…,Rn) of a schema, R, is lossless if every valid 
instance, r, of R can be reconstructed from its components:

where each  ri = πRi(r)

r = r1 r2 rn……



Lossy Decomposition

r ⊆ r1 r2 ... rn

SSN     Name   Address SSN    Name Name    Address
1111  Joe        1 Pine            1111   Joe         Joe        1 Pine
2222  Alice     2 Oak              2222  Alice       Alice     2 Oak
3333  Alice     3 Pine              3333 Alice       Alice     3 Pine

r ⊇ r1 r2 rn...

r1 r2r ⊇

The following is always the case (Think why?):

But the following is not always true:

Example:

The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are  in the join, 
but not in the original



Lossy Decompositions: 
What is Actually Lost?

In the previous example, the tuples 
(2222, Alice, 3 Pine) and (3333, Alice, 2 Oak)
were gained, not lost!  

Why do we say that the decomposition was lossy?

What was lost is information:
That  2222 lives at  2 Oak:  In the decomposition, 2222 can live at either 
2 Oak or 3 Pine
That  3333 lives at  3 Pine:  In the decomposition, 3333 can live at either 
2 Oak or 3 Pine



Testing for Losslessness

A (binary) decomposition of  R = (R, F) into R1 = (R1, F1) and R2 = (R2, F2) is 
lossless if and only if :

either the FD
(R1 ∩ R2 ) → R1 is in  F+

or the FD
(R1 ∩ R2 ) → R2 is in  F+



Example

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN → Name, Address}

can be decomposed into

R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and 
R2 = {SSN, Hobby}
F2 = { }

Since R1 ∩ R2 = SSN  and SSN → R1  the decomposition is lossless



Dependency Preservation

Consider a decomposition of R = (R, F) into R1 = (R1, F1) and R2 = (R2, F2)

An FD X → Y of F+ is in Fi  iff  X ∪ Y ⊆ Ri

An FD,  f ∈F+ may be in neither F1, nor F2, nor even 
(F1 ∪ F2)+

Checking that  f is true in r1 or r2 is (relatively) easy
Checking  f in  r1 r2 is harder – requires a join
Ideally:  want to check FDs locally, in r1 and r2, and have a guarantee 
that every f ∈F holds in r1 r2

The decomposition is dependency preserving iff the sets F and F1 ∪ F2 are equivalent:  
F+ = (F1 ∪ F2)+

Then checking all FDs in F, as r1 and r2 are updated, can  be done by checking F1 in 
r1 and F2 in r2



Dependency Preservation

If  f is an FD in F, but f is not in F1 ∪ F2, there are two possibilities:
f ∈ (F1 ∪ F2)+

If the constraints in  F1 and F2 are maintained,  f will be maintained 
automatically.

f∉ (F1 ∪ F2)+

f can be checked only by first taking the join of r1 and r2.  This is 
costly.



Example

Schema (R, F) where
R = {SSN, Name, Address, Hobby}
F = {SSN → Name, Address}

can be decomposed into
R1 = {SSN, Name, Address}
F1 = {SSN → Name, Address}

and 
R2 = {SSN, Hobby}
F2 = { }

Since F = F1 ∪ F2 the decomposition is dependency preserving



Example

Schema: (ABC;  F) ,  F = {A B, B C, C B}
Decomposition:

(AC, F1),  F1 = {A C}
Note:  A C ∉ F, but in F+

(BC, F2),  F2 = {B C, C B}

A B ∉ (F1  ∪ F2),  but  A B ∈ (F1  ∪ F2)+.
So  F+ = (F1  ∪ F2)+  and thus the decompositions is still dependency 
preserving



Example
HasAccount (AcctNum, ClientId, OfficeId)

f1: AcctNum → OfficeId
f2: ClientId, OfficeId → AcctNum

Decomposition:
R1 = (AcctNum, OfficeId;  {AcctNum → OfficeId})
R2 = (AcctNum, ClientId;   {})

Decomposition is lossless: 
R1 ∩ R2= {AcctNum} and AcctNum → OfficeId

In BCNF

Not dependency preserving:  f2 ∉ (F1 ∪ F2)+

HasAccount does not have BCNF decompositions that are both lossless and dependency 
preserving! (Check, eg, by enumeration)
Hence:    BCNF+lossless+dependency preserving  decompositions are not always 
achievable!



Third Normal Form

Compromise  – Not all redundancy removed, but dependency 
preserving decompositions are always possible (and, of course, 
lossless)
3NF decomposition is based on a minimal cover



Third Normal Form

A relational schema R is in 3NF if for every FD  X→ Y  associated 
with R either:

Y ⊆ X (i.e., the FD is trivial); or

X is a superkey of R; or
Every A∈ Y is part of some key of R

3NF is weaker than BCNF (every schema that is in BCNF is also in 
3NF)

BCNF 
conditions



3NF Example

HasAccount (AcctNum, ClientId, OfficeId)

ClientId, OfficeId → AcctNum
OK since LHS contains a  key

AcctNum → OfficeId
OK since RHS is part of a key

HasAccount is in 3NF but it might still contain redundant information due to 
AcctNum OfficeId (which is not allowed by BCNF)



3NF (Non) Example

Person (SSN, Name, Address, Hobby)

(SSN, Hobby) is the only key.
SSN→ Name violates 3NF conditions since Name is not 
part of a key and SSN is not a superkey



Minimal Cover

A minimal cover of a set of dependencies, F, is a set of dependencies, U, such 
that:

U is equivalent to F (F+ = U+)
All FDs in U have the form X → A where A is a single attribute
It is not possible to make U smaller (while preserving equivalence) by

Deleting an FD
Deleting an attribute from an FD  (either from LHS or RHS)

FDs and attributes that can be deleted in this way are called redundant



Computing Minimal Cover

Example: F = {ABH → CK, A → D, C → E,
BGH → L, L → AD, E → L, BH → E}

step 1: Make RHS of each FD into a single attribute
Algorithm:  Use the decomposition inference rule for FDs
Example: L → AD replaced by L → A, L → D ;   

ABH → CK by ABH →C, ABH →K

step 2: Eliminate redundant attributes from LHS.  
Algorithm: If FD XB → A ∈ F (where B is a single attribute) and 
X → A is entailed by F, then B was unnecessary 
Example: Can an attribute be deleted from ABH → C ?  

Compute AB+
F, AH+

F, BH+
F. 

Since C ∈ (BH)+
F , BH → C  is entailed by F and A is redundant in 

ABH → C.



Computing Minimal Cover cont’d

step 3: Delete redundant FDs from G
Algorithm:  If G – {f} entails  f, then  f  is redundant

If f  is X → A then check if A ∈ X+
G-{f}

Example: BH → L is entailed by E → L,  BH → E, so it is 
redundant

Note:  The order of steps 2 and 3 cannot be interchanged!! 



Synthesizing a 3NF Schema

step 1: Compute a minimal cover, U, of F.  The decomposition is based on U, but 
since U+ = F+ the same functional dependencies will hold
A minimal cover for  
F = {ABH→CK, A→D, C→E, BGH→L, L→AD, E→ L, BH → E}

is
U = {BH→C, BH→K, A→D, C→E, L→A, E→L}

Starting with a schema R = (R, F)



Synthesizing a 3NF schema cont’d

step 2: Partition U into sets U1, U2, … Un such that the LHS of all elements of Ui 
are the same

U1 = {BH → C, BH → K}, U2 = {A → D}, 
U3 = {C → E}, U4 = {L → A}, U5 = {E → L}

step 3: For each Ui form schema Ri = (Ri, Ui), where Ri  is the set of all attributes 
mentioned in Ui

Each FD of U will be in some Ri.  Hence the decomposition is dependency 
preserving
R1 = (BHCK;  BH→C, BH→ K),  R2 = (AD;  A→D),              R3 = (CE;  C →
E),  R4 = (AL;  L→A),  R5 = (EL;  E → L)



Synthesizing a 3NF schema cont’d

step 4: If no Ri is a superkey of R, add schema R0 = (R0,{}) where R0 is a key of R.
R0 = (BGH, {})

R0  might be needed when not all attributes are necessarily contained in R1∪R2
…∪Rn

– A missing attribute, A, must be part of all keys 
(since it’s not in any FD of U, deriving a key constraint from U
involves the augmentation axiom)

R0  might be needed even if all attributes are accounted for in R1∪R2 …∪Rn

– Example:    (ABCD; {A B, C D}).  
Step 3 decomposition: 

R1 = (AB; {A B}),  R2 = (CD; {C D}).  
Lossy! Need to add (AC; { }), for losslessness

Step 4 guarantees lossless decomposition.
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