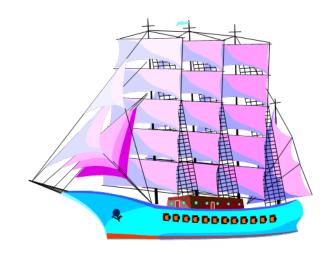
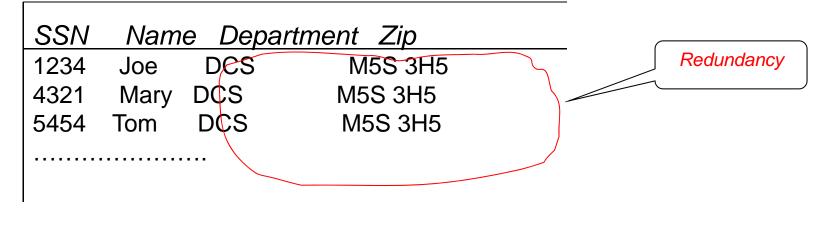
CSCC43 Introduction to Databases

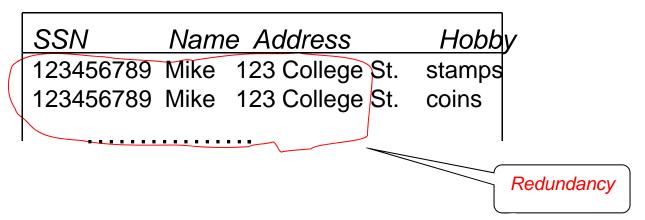
Relational Normalization Theory



Redundancy

- Dependencies between attributes cause redundancy
 - Ex. All the people working in the same place have the same zip code





Redundancy and Other Problems

- Example: Person (SSN, Name, Address, Hobbies)
 - A person entity with multiple hobbies yields multiple rows in table Person
 - Hence, the association between Name and Address for the same person is stored redundantly
 - SSN is the key of the entity set, but (SSN, Hobby) is the key of the corresponding relation
 - The relation **Person** can't describe people without hobbies

Anomalies

- Redundancy leads to anomalies:
 - Update anomaly: A change in *Address* must be made in several places
 - **Deletion anomaly**: Suppose a person gives up all hobbies. Do we:
 - Set Hobby attribute to null? <u>No</u>, since *Hobby* is part of key
 - Delete the entire row? <u>No</u>, since we lose other information in the row
 - Insertion anomaly: Hobby value must be supplied for any inserted row since Hobby is part of key

Decomposition

- Solution: use two relations to store Person information
 - Person1 (<u>SSN</u>, Name, Address)
 - Hobbies (SSN, Hobby)
- The decomposition is more general: people with hobbies can now be described
- No update anomalies:
 - Name and address stored once
 - A hobby can be separately supplied or deleted
 - We can represent persons who do not have hobbies

Normalization Theory

- Result of E-R analysis needs further refinement
- Appropriate decomposition can solve problems
- The underlying theory is referred to as normalization theory and is based on functional dependencies (and other kinds, like multivalued dependencies)

Functional Dependencies

Definition: A *functional dependency* (FD) on a relation schema **R** is a <u>constraint</u> $X \rightarrow Y$, where X and Y are subsets of attributes of **R**.

Definition: An FD $X \rightarrow Y$ is *satisfied* in an instance **r** of **R** if for **every** pair of tuples, *t* and s: if *t* and *s* agree on all attributes in X then they must agree on all attributes in Y

Key Constraint

- Is a special kind of functional dependency:
 - Let *K* be a set of attributes of R, and *U* the set of **all** attributes of R. Then *K* is a *key* if the functional dependency $K \rightarrow U$ is satisfied in R.
 - SSN → SSN, Name, Address (in the Person1 relation)
- A candidate key is a minimal superkey
 - K is a key in R, if for each $X \subset K$, X is not a key
 - SSN, Hobby \rightarrow SSN, Name, Address, Hobby but
 - SSN \rightarrow SSN, Name, Address, Hobby
 - Hobby \rightarrow SSN, Name, Address, Hobby
- A *prime attribute* is an attribute of a key

Functional Dependencies cont'd

- Address \rightarrow ZipCode
 - DCS's ZIP is M5S 3H5
- Author, Title, Edition \rightarrow PublicationDate
 - <u>Database Management Systems</u>, by R. Ramakrishnan, and J. Gehrke, McGraw Hill, 2003 (3rd Edition)
- CourseID → ExamDate, ExamTime
 - CSC343's exam date is August 9, starting at 6pm

Entailment, Closure, Equivalence

Definition: If F is a set of FDs on schema R and f is another FD on R, then F entails f if every instance r of R that satisfies every FD in F also satisfies f

• Ex: $F = \{A \rightarrow B, B \rightarrow C\}$ and f is $A \rightarrow C$

• If Phone# \rightarrow Address, Address \rightarrow ZipCode then

Phone# \rightarrow ZipCode

Definition: The closure of F, denoted F⁺, is the set of all FDs entailed by F

Definition: F and G are equivalent if F entails G and G entails F

Armstrong's Axioms for FDs

- This is the syntactic way of computing/testing the various properties of FDs
- **Reflexivity**: If $Y \subseteq X$ then $X \to Y$ (trivial FD)
 - Name, Address \rightarrow Name
- Augmentation: If $X \rightarrow Y$ then $X Z \rightarrow YZ$
 - If Address → ZipCode then Address, Name → ZipCode, Name
- **Transitivity**: If $X \rightarrow Y$ and $Y \rightarrow Z$ then $X \rightarrow Z$
 - If *Phone#* \rightarrow *Address* and *Address* \rightarrow *ZipCode,* then

 $Phone \# \rightarrow ZipCode$

Soundness

- Axioms are sound: If an FD $f: X \rightarrow Y$ can be derived from a set of FDs F using the axioms, then f holds in every relation that satisfies every FD in F.
- Example: Given $X \rightarrow Y$ and $X \rightarrow Z$ then

 $\begin{array}{ll} X \rightarrow XY & Augmentation by X \\ YX \rightarrow YZ & Augmentation by Y \\ X \rightarrow YZ & Transitivity \end{array}$

- Thus, $X \rightarrow YZ$ is satisfied in every relation where both $X \rightarrow Y$ and $X \rightarrow Z$ are satisfied
 - Therefore, we have derived the union rule for FDs

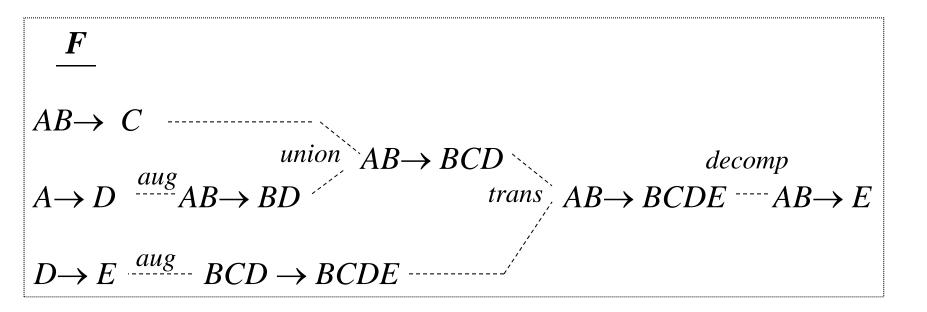
Completeness

- Axioms are complete: If F entails f, then f can be derived from F using the axioms
- A consequence of completeness is the following (naïve) algorithm to determining if *F* entails *f*:
 - Algorithm: Use the axioms in all possible ways to generate *F*⁺ (the set of possible FD's is finite so this can be done) and see if *f* is in *F*⁺

Correctness

- The notions of soundness and completeness link the syntax (Armstrong's axioms) with semantics (the definitions in terms of relational instances)
- This is a precise way of saying that the algorithm for entailment based on the axioms is ``correct'' with respect to the definitions

Generating F⁺



Thus, $AB \rightarrow BD$, $AB \rightarrow BCD$, $AB \rightarrow BCDE$, and $AB \rightarrow E$ are all elements of F^+

Attribute Closure

- Calculating attribute closure leads to a more efficient way of checking entailment
- The *attribute closure* of a set of attributes, *X*, with respect to a set of functional dependencies, *F*, (denoted X_{F}^{+}) is the set of all attributes, *A*, such that $X \rightarrow A$
 - X_{F}^{+} is not necessarily the same as X_{G}^{+} if $F \neq G$
- Attribute closure and entailment.
 - Algorithm: Given a set of FDs, **F**, then $X \rightarrow Y$ if and only if $Y \subseteq X^+_F$

Example - Computing Attribute Closure

	X	X_{F}^{+}
F : $AB \rightarrow C$	A	{A, D, E}
$A \rightarrow D$	AB	{A, B, C, D, E}
$D \rightarrow E$	AC	{A, C, B, D, E}
$AC \rightarrow B$	В	<i>{B}</i>
	D	{D, E}

Is $AB \rightarrow E$ entailed by **F**? Yes Is $D \rightarrow C$ entailed by **F**? No

Result: X_{F}^{+} allows us to determine FDs of the form $X \rightarrow Y$ entailed by **F**

Computation of Attribute Closure X_{F}^{+}

closure := X; // since $X \subseteq X_F^+$ repeat old := closure; if there is an FD $Z \rightarrow V$ in F such that $Z \subseteq$ closure and $V \subseteq$ closure then closure := closure $\bigcirc V$ until old = closure

- If $T \subseteq closure$ then $X \rightarrow T$ is entailed by **F**

Normal Forms

Each normal form is a set of conditions on a schema that guarantees certain properties (relating to redundancy and update anomalies)

The two commonly used normal forms are *third normal form* (3NF) and *Boyce-Codd normal form* (BCNF)

BCNF

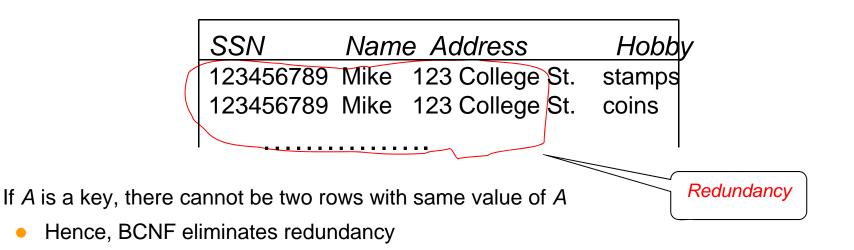
- **Definition**: A relation schema **R** is in BCNF if for every FD $X \rightarrow Y$ associated with **R** either
 - $Y \subseteq X$ (i.e., the FD is trivial) or
 - X is a key of **R**
- Example: Person1(SSN, Name, Address)
 - The only FD is $SSN \rightarrow Name$, Address
 - Since SSN is a key, Person1 is in BCNF

(non) BCNF Examples

- Person (SSN, Name, Address, Hobby)
 - The FD $SSN \rightarrow Name$, Address does <u>not</u> satisfy requirements of BCNF
 - since the key is (SSN, Hobby)
- HasAccount (AcctNum, ClientId, OfficeId)
 - The FD AcctNum→ OfficeId does not satisfy BCNF requirements
 - since keys are (ClientId, OfficeId) and (AcctNum, ClientId); not AcctNum.

Redundancy

Suppose **R** has an FD $A \rightarrow B$, and A is not a key. If an instance has 2 rows with same value in A, they must also have same value in B (=> redundancy, if the A-value repeats twice)



Decomposition

- Schema R = (R, F)
 - *R* is set a of attributes
 - **F** is a set of functional dependencies over R
 - Each key is described by a FD
- The *decomposition of schema* **R** is a collection of schemas

 $\mathbf{R}_{i} = (R_{i}, F_{i})$ where

- $R = \bigcup_i R_i$ for all *i* (*no new attributes*)
- F_i is a set of functional dependences involving only attributes of R_i
- **F** entails **F**_i for all *i* (*no new FDs*)
- The *decomposition of an instance*, **r**, of **R** is a set of relations $\mathbf{r}_i = \pi_{Ri}(\mathbf{r})$ for all *i*

Example Decomposition

Schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and $R_2 = \{SSN, Hobby\}$ $F_2 = \{\}$

BCNF Decomposition Algorithm

Input: **R** = (*R*; *F*)

Decomp := R while there is $\mathbf{S} = (S; \mathbf{F}') \in Decomp$ and \mathbf{S} not in BCNF do Find $X \to Y \in \mathbf{F}'$ that violates BCNF // X isn't a key in \mathbf{S} Replace \mathbf{S} in Decomp with $\mathbf{S}_1 = (XY; \mathbf{F}_1), \ \mathbf{S}_2 = ((S - Y) \cup X); \mathbf{F}_2)$ // $\mathbf{F}_1 = all \ FDs \ of \ \mathbf{F}' \ involving \ only \ attributes \ of \ XY$ // $\mathbf{F}_2 = all \ FDs \ of \ \mathbf{F}' \ involving \ only \ attributes \ of \ (S - Y) \cup X$ end

return Decomp

Simple Example

HasAccount :

(ClientId, OfficeId, AcctNum)

• Decompose using *AcctNum* → *OfficeId* :

(OfficeId, AcctNum)

(ClientId, AcctNum)

BCNF: AcctNum is key FD: AcctNum \rightarrow OfficeId

BCNF (only trivial FDs)

A Larger Example

Given: $\mathbf{R} = (R; F)$ where R = ABCDEGHK and $F = \{ABH \rightarrow C, A \rightarrow DE, BGH \rightarrow K, K \rightarrow ADH, BH \rightarrow GE\}$

step 1: Find a FD that violates BCNF Not $ABH \rightarrow C$ since $(ABH)^+$ includes all attributes (BH is a key) $A \rightarrow DE$ violates BCNF since A is not a key $(A^+=ADE)$

step 2: Split **R** into: $\mathbf{R}_1 = (ADE, \mathbf{F}_1 = \{A \rightarrow DE\})$ $\mathbf{R}_2 = (ABCGHK; \mathbf{F}_1 = \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$ Note 1: \mathbf{R}_1 is in BCNF Note 2: Decomposition <u>is</u> *lossless* since A is a key of \mathbf{R}_1 . Note 3: FDs $K \rightarrow D$ and $BH \rightarrow E$ are not in \mathbf{F}_1 or \mathbf{F}_2 . But both can be derived from $\mathbf{F}_1 \cup \mathbf{F}_2$ (*E.g., K* $\rightarrow A$ and A $\rightarrow D$ implies K $\rightarrow D$) Hence, decomposition <u>is</u> dependency preserving.

Example cont'd

Given: $R_2 = (ABCGHK; \{ABH \rightarrow C, BGH \rightarrow K, K \rightarrow AH, BH \rightarrow G\})$

step 1: Find a FD that violates BCNF. Not $ABH \rightarrow C$ or $BGH \rightarrow K$, since BH is a key of \mathbb{R}_2 $K \rightarrow AH$ violates BCNF since K is not a superkey ($K^+ = AH$)

step 2: Split
$$R_2$$
 into:
 $R_{21} = (KAH, F_{21} = \{K \rightarrow AH\})$
 $R_{22} = (BCGK; F_{22} = \{\})$

Note 1: Both R_{21} and R_{22} are in BCNF. Note 2: The decomposition is *lossless* (since *K* is a key of R_{21}) Note 3: FDs $ABH \rightarrow C, BGH \rightarrow K, BH \rightarrow G$ are not in F_{21} or F_{22} , and they can't be derived from $F_1 \cup F_{21} \cup F_{22}$. Hence the decomposition is *not* dependency-preserving

Lossless Schema Decomposition

- A decomposition should not lose information
- A decomposition (R₁,...,R_n) of a schema, R, is *lossless* if every valid instance, r, of R can be reconstructed from its components:

where each $\mathbf{r}_{i} = \pi_{\mathbf{R}i}(\mathbf{r})$

$$\mathbf{r} = \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots \ldots \bowtie \mathbf{r}_n$$

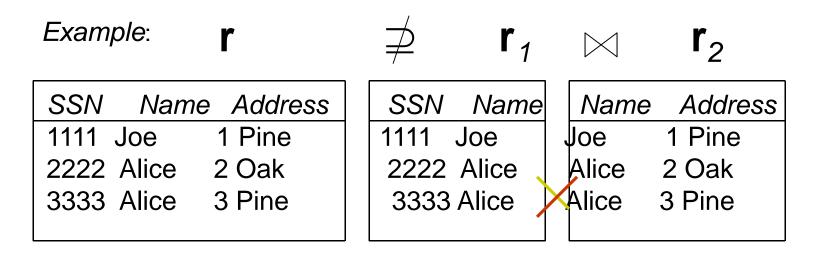
Lossy Decomposition

The following is always the case (Think why?):

 $\mathbf{r} \subseteq \mathbf{r}_1 \ \bowtie \ \mathbf{r}_2 \ \bowtie \ \ldots \ \bowtie \ \mathbf{r}_n$

But the following is not always true:

 $\mathbf{r} \supseteq \mathbf{r}_1 \bowtie \mathbf{r}_2 \bowtie \ldots \bowtie \mathbf{r}_n$



The tuples (2222, Alice, 3 Pine) and (3333, Alice, 2 Oak) are in the join, but not in the original

Lossy Decompositions: What is Actually Lost?

In the previous example, the tuples

(2222, Alice, 3 Pine) and (3333, Alice, 2 Oak)

were gained, not lost!

- Why do we say that the decomposition was lossy?
- What was lost is *information*:
 - That 2222 lives at 2 Oak: In the decomposition, 2222 can live at either 2 Oak or 3 Pine
 - That 3333 lives at 3 Pine: In the decomposition, 3333 can live at either 2 Oak or 3 Pine

Testing for Losslessness

- A (binary) decomposition of $\mathbf{R} = (R, F)$ into $\mathbf{R}_1 = (R_1, F_1)$ and $\mathbf{R}_2 = (R_2, F_2)$ is lossless *if and only if* :
 - either the FD
 - $(R_1 \cap R_2) \rightarrow R_1$ is in F^+
 - or the FD
 - \rightarrow $(R_1 \cap R_2) \rightarrow R_2$ is in F^+

Example

Schema (*R*, *F*) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$ can be decomposed into

 $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$ and

Since $R_1 \cap R_2 = SSN$ and $SSN \rightarrow R_1$ the decomposition is lossless

Dependency Preservation

- Consider a decomposition of $\mathbf{R} = (R, F)$ into $\mathbf{R}_1 = (R_1, F_1)$ and $\mathbf{R}_2 = (R_2, F_2)$
 - An FD $X \rightarrow Y$ of F^+ is in F_i iff $X \cup Y \subseteq R_i$
 - An FD, $f \in F^+$ may be in neither F_1 , nor F_2 , nor even
 - $(\pmb{F}_1 \cup \pmb{F}_2)^+$
 - Checking that f is true in \mathbf{r}_1 or \mathbf{r}_2 is (relatively) easy
 - Checking f in \mathbf{r}_1 \mathbf{r}_2 is harder requires a join
 - *Ideally*: want to check FDs <u>locally</u>, in \mathbf{r}_1 and \mathbf{r}_2 , and have a guarantee that every $f \in F$ holds in $\mathbf{r}_1 \Join \mathbf{r}_2$
- The decomposition is *dependency preserving* iff the sets F and $F_1 \cup F_2$ are equivalent: $F^+ = (F_1 \cup F_2)^+$
 - Then checking all FDs in $F_{,}$ as r_{1} and r_{2} are updated, can be done by checking F_{1} in r_{1} and F_{2} in r_{2}

Dependency Preservation

- If f is an FD in **F**, but f is not in $F_1 \cup F_2$, there are two possibilities:
 - $f \in (\boldsymbol{F}_1 \cup \boldsymbol{F}_2)^+$
 - If the constraints in F_1 and F_2 are maintained, f will be maintained automatically.
 - $f \notin (\boldsymbol{F}_1 \cup \boldsymbol{F}_2)^+$
 - f can be checked only by first taking the join of r₁ and r₂. This is costly.

Example

Schema (R, F) where $R = \{SSN, Name, Address, Hobby\}$ $F = \{SSN \rightarrow Name, Address\}$

can be decomposed into

 $R_1 = \{SSN, Name, Address\}$ $F_1 = \{SSN \rightarrow Name, Address\}$

and

$$R_2 = \{SSN, Hobby\}$$
$$F_2 = \{\}$$

Since $\mathbf{F} = \mathbf{F}_1 \cup \mathbf{F}_2$ the decomposition is dependency preserving

Example

- Schema: (ABC; F), $F = \{A \rightarrow B, B \rightarrow C, C \rightarrow B\}$
- Decomposition:
 - $(AC, F_1), F_1 = \{A \rightarrow C\}$
 - ▶ Note: $A \rightarrow C \notin F$, but in F^+
 - $(BC, \mathbf{F}_2), \mathbf{F}_2 = \{B \rightarrow C, C \rightarrow B\}$
- $A \rightarrow B \notin (\mathbf{F}_1 \cup \mathbf{F}_2)$, but $A \rightarrow B \in (\mathbf{F}_1 \cup \mathbf{F}_2)^+$.
 - So $F^+ = (F_1 \cup F_2)^+$ and thus the decompositions is still dependency preserving

Example

HasAccount (AcctNum, ClientId, OfficeId)

 $f_1: AcctNum \rightarrow OfficeId$

 f_2 : ClientId, OfficeId \rightarrow AcctNum

Decomposition:

 $R_1 = (AcctNum, OfficeId; \{AcctNum \rightarrow OfficeId\})$

 $R_2 = (AcctNum, ClientId; \{\})$

Decomposition <u>is</u> lossless:

```
R_1 \cap R_2 = \{AcctNum\} \text{ and } AcctNum \rightarrow OfficeId \}
```

In BCNF

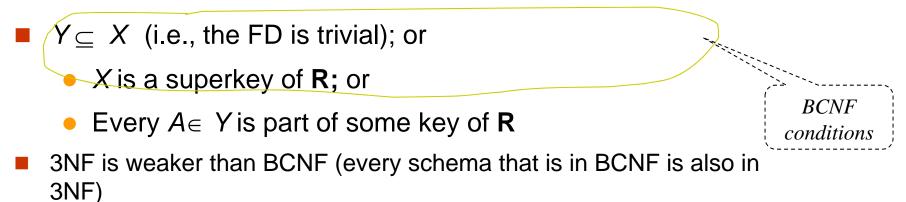
- <u>Not</u> dependency preserving: $f_2 \notin (F_1 \cup F_2)^+$
- HasAccount does not have BCNF decompositions that are both lossless and dependency preserving! (Check, eg, by enumeration)
- Hence: BCNF+lossless+dependency preserving decompositions are not always achievable!

Third Normal Form

- Compromise Not all redundancy removed, but dependency preserving decompositions are <u>always</u> possible (and, of course, lossless)
- 3NF decomposition is based on a *minimal cover*

Third Normal Form

A relational schema **R** is in 3NF if for every FD $X \rightarrow Y$ associated with **R** either:



3NF Example

HasAccount (AcctNum, ClientId, OfficeId)

- ClientId, OfficeId \rightarrow AcctNum
 - OK since LHS contains a key
- AcctNum \rightarrow OfficeId
 - OK since RHS is part of a key
- HasAccount is in 3NF but it might still contain redundant information due to AcctNum → OfficeId (which is not allowed by BCNF)

3NF (Non) Example

- Person (SSN, Name, Address, Hobby)
 - (SSN, Hobby) is the only key.
 - SSN→ Name violates 3NF conditions since Name is not part of a key and SSN is not a superkey

Minimal Cover

- A minimal cover of a set of dependencies, F, is a set of dependencies, U, such that:
 - U is equivalent to F ($F^+ = U^+$)
 - All FDs in **U** have the form $X \rightarrow A$ where A is a single attribute
 - It is not possible to make **U** smaller (while preserving equivalence) by
 - Deleting an FD
 - Deleting an attribute from an FD (either from LHS or RHS)
 - FDs and attributes that can be deleted in this way are called *redundant*

Computing Minimal Cover

Example: $F = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, \}$

 $BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E$

- step 1: Make RHS of each FD into a single attribute
 - Algorithm: Use the decomposition inference rule for FDs
 - Example: $L \rightarrow AD$ replaced by $L \rightarrow A, L \rightarrow D$;

 $ABH \rightarrow CK$ by $ABH \rightarrow C$, $ABH \rightarrow K$

- **step 2**: Eliminate redundant attributes from LHS.
 - Algorithm: If FD $XB \rightarrow A \in F$ (where B is a single attribute) and
 - $X \rightarrow A$ is entailed by **F**, then B was unnecessary
 - Example: Can an attribute be deleted from $ABH \rightarrow C$?
 - Compute AB⁺_F, AH⁺_F, BH⁺_F.
 - Since $C \in (BH)^+_F$, $BH \rightarrow C$ is entailed by F and A is redundant in $ABH \rightarrow C$.

Computing Minimal Cover cont'd

step 3: Delete redundant FDs from G

• Algorithm: If $G - \{f\}$ entails f, then f is redundant

• If f is $X \to A$ then check if $A \in X^+_{G-\{f\}}$

• Example: $BH \rightarrow L$ is entailed by $E \rightarrow L$, $BH \rightarrow E$, so it is redundant

Note: The order of steps 2 and 3 cannot be interchanged!!

Synthesizing a 3NF Schema

Starting with a schema $\mathbf{R} = (R, F)$

step 1: Compute a minimal cover, U, of F. The decomposition is based on U, but since $U^+ = F^+$ the same functional dependencies will hold

A minimal cover for

$$\mathbf{F} = \{ABH \rightarrow CK, A \rightarrow D, C \rightarrow E, BGH \rightarrow L, L \rightarrow AD, E \rightarrow L, BH \rightarrow E\}$$

is

 $U = \{BH \rightarrow C, BH \rightarrow K, A \rightarrow D, C \rightarrow E, L \rightarrow A, E \rightarrow L\}$

Synthesizing a 3NF schema cont'd

step 2: Partition **U** into sets U_1, U_2, \dots, U_n such that the LHS of all elements of U_i are the same

•
$$\boldsymbol{U}_1 = \{BH \rightarrow C, BH \rightarrow K\}, U_2 = \{A \rightarrow D\},$$

 $U_3 = \{C \to E\}, U_4 = \{L \to A\}, U_5 = \{E \to L\}$

- **step 3**: For each U_i form schema $\mathbf{R}_i = (R_i, U_i)$, where R_i is the set of all attributes mentioned in U_i
 - Each FD of *U* will be in some R_i. Hence the decomposition is *dependency* preserving
 - $\mathbf{R}_1 = (BHCK; BH \rightarrow C, BH \rightarrow K), \ \mathbf{R}_2 = (AD; A \rightarrow D), \qquad \mathbf{R}_3 = (CE; C \rightarrow E), \ \mathbf{R}_4 = (AL; L \rightarrow A), \ \mathbf{R}_5 = (EL; E \rightarrow L)$

Synthesizing a 3NF schema cont'd

- **step 4**: If no R_i is a superkey of **R**, add schema $R_0 = (R_0, \{\})$ where R_0 is a key of **R**.
 - **R**₀ = (*BGH*, {})
 - R_0 might be needed when not all attributes are necessarily contained in $R_1 \cup R_2$... $\cup R_n$
 - A missing attribute, A, must be part of all keys

(since it's not in any FD of U, deriving a key constraint from U involves the augmentation axiom)

- R_0 might be needed even if all attributes are accounted for in $R_1 \cup R_2 \dots \cup R_n$
 - Example: $(ABCD; \{A \rightarrow B, C \rightarrow D\})$.

Step 3 decomposition:

 $R_1 = (AB; \{A \rightarrow B\}), R_2 = (CD; \{C \rightarrow D\}).$

Lossy! Need to add (AC; { }), for losslessness

• Step 4 guarantees lossless decomposition.