
Goal-Oriented Conceptual Database Design

Lei Jiang † Thodoros Topaloglou ‡ Alex Borgida § John Mylopoulos †

†Dept. of Computer Science
University of Toronto

{leijiang,jm}@cs.toronto.edu

‡Dept. of Mech. & Ind. Eng.
University of Toronto

thodoros@mie.utoronto.ca

§Dept. of Computer Science
Rutgers University

borgida@cs.rutgers.edu

Abstract

We present details of a goal-oriented process for
database requirements analysis. This process consists of
a number of steps, spanning the spectrum from high-level
stakeholder goal analysis to detailed conceptual schema
design. The paper shows how goal modeling contributes
to systematic scoping and analysis of the application do-
main, and subsequent formal specification of database re-
quirements based on this domain analysis. Moreover, a
goal-oriented design strategy is proposed to structure the
transformation from the domain model to the conceptual
schema, according to a set of user defined design issues,
also modeled as goals. The proposed process is illustrated
step-by-step using a running example from the design of a
real-world, industrial biological database. We also report
early progress towards building full tool support, by pre-
senting a prototype that captures and stores design sessions
in a queryable form. This facility makes it possible to an-
swer questions that are hard, if not impossible, to answer
using existing methodologies for database design.

1 Introduction

Standard database development [3, 1, 7] consists of steps
for requirements analysis (resulting in a conceptual schema
for the data to be stored, using a notation such as ER or
UML Class Diagram), logical design (resulting in a rela-
tional database schema in SQL, for example), and physical
design (resulting in access structures for optimizing certain
queries). In contrast, goal-oriented approaches to software
development start with an early requirements step that fo-
cuses on modeling stakeholders’ goals, and deriving from
these functional and non-functional requirements through a
systematic process [24, 5, 19, 23]. Often-claimed ben-
efits of Goal-Oriented Requirements Engineering (GORE)
include systematic exploration of alternatives and traceabil-
ity of rationale.

In an earlier paper [14], we argued for general bene-

fits of a goal-oriented approach to database requirements
analysis, by providing a rational reconstruction of several
versions of the conceptual schema for a commercial bio-
logical database, and showing how they connected to al-
ternative expansions of one stakeholder’s goals. Such an
approach would capture not only what data means, but also
who wants them in the first place, and for what purposes;
it therefore provides additional data semantics needed for
data integration, machine interpretable web data, and scien-
tific data management.

In this paper, we present a goal-oriented process for
database requirements analysis. This process starts from
multiple stakeholders, captures their goals and plans, ana-
lyzes them for alternative data requirements, and ends with
a detailed conceptual schema of the data to be stored. The
contributions of this paper include:
1. the consideration of multiple stakeholders, and formal

capture of their goals, including data quality goals [2];
2. the distinction between a domain model of the applica-

tion, and the conceptual schema for the database-to-be;
3. a transformational approach from the domain model to

the conceptual schema, using a sequence of design oper-
ations, whose templates may be predefined;

4. a set of design issues (e.g., persistence, time, accuracy
and governance) around which the templates of design
operations are grouped, and a goal-oriented design strat-
egy for structuring the transformation process, based on
a particular prioritization of these issues;

5. a prototype implementation for capturing a particular
sequence of design operations, which allows (a) queries
to uncover information about the source of / motivation
for conceptual schema elements (thus supporting trace-
ability), and (b) roll-back on the design operations (thus
supporting exploration of alternatives).

The rest of the paper is organized as follows. We first
briefly review related work in Section 2, and provide an
overview of the design process in Section 3. The design
process is presented in detail with the running example in
section 4. The prototype is summarized in Section 5, and



we conclude and point to our research plan in Section 6.

2 Related Work and Terminology

Our modeling of goals, operations and their relationships
is influenced by the TROPOS agent-oriented software de-
velopment methodology [4], which is evolved from the i*
framework [24] for modeling and reasoning about organi-
zational environments and their information system require-
ments. In TROPOS, Goals can be hard or soft: unlike hard
goals, a softgoal has neither clear cut definition nor criteria
to decide whether it is satisfied, and is usually used to model
non-functional requirements. Three basic qualitative goal
reasoning techniques are available: (i) AND/OR-goal de-
composition for refining high-level abstract goals into low-
level operational ones; (ii) means-end analysis for identify-
ing operations (modeled as plans) to fulfill the refined goals;
and (iii) contribution analysis for detecting lateral influence
on goal fulfillment. The result of a goal analysis is a goal
model [10], which is a forest of goal/plan AND-OR trees
with contribution edges between nodes of different trees and
means-end edges connecting goal and plan nodes. Thanks
to the presence of OR-decomposition and means-end edges,
there are subsets of leaves in the tree that define alternative
ways, i.e., design alternatives, to fulfill the aggregate top-
level goals.

Although, to our best knowledge, there is no existing
GORE framework devoted specifically to database design,
some early goal-oriented approaches do model both the dy-
namic and static aspects of the system. For example, the
EKD methodology [5] proposed to model an enterprise in
terms of several interconnected sub-models, including a
“concepts model”. Its main purpose is to define a vocab-
ulary for things and phenomena that can be referred to and
reasoned about precisely and consistently by other submod-
els. In the KAOS framework [8, 23], the goal-oriented ap-
proach to object modeling starts with the modeling of goals,
and proceeds with the identification of concerned objects,
using a simple rule of reference: an object is “concerned”
by a goal if it is used in the formal specification of the
goal. In most cases, the elements in the static models re-
semble closely to entities, relationships and attributes of an
ER schema; the guidelines and techniques for deriving them
from intentional elements are considered as a suitable start-
ing point for our work. However, because of the lack of
specificity for database design, many important issues per-
tinent to data storage, management and access are not ad-
dressed at all in these approaches.

Starting with the notion of goals in database design is not
a new idea. See, for example, [7], where the first step is to
define a mission statement, which describes the high-level
purpose of the database. But, the mission statement is only
used for scoping the problem space and has no direct influ-

ence on the rest of the design steps. In our approach, goals
are not only identified, but also formally represented and
fully analyzed. Moreover, goals play a central role in the
analysis of initial data requirements and the specification of
the requirements in terms of a conceptual schema.

Database researchers have proposed various design
strategies to help structure database design process. For
example, [7] defines an intuitive “construct-based” strat-
egy, where the operations are defined and ordered accord-
ing to the types of modeling constructs (e.g., entities, re-
lationships and etc.). As another example, [1] offers a
set of design strategies based on the direction of model-
ing (i.e., top-down, bottom-up, inside-out and mixed); for
instance, in the top-down strategy, a conceptual schema is
produced by a series of successive refinement operations,
starting from a few highly abstract concepts. On a separate
thread, researchers considering the problems of database
schema integration (e.g., [17]) have seen the need for a
transformation-based approach to database schema manip-
ulation. Such approaches rely on precisely specified design
operations that transforms an input schema to an output
one.

3 Overview of the Design Process

An overview of the proposed design process is shown
in Figure 1. It covers both the analysis of initial require-
ments and the specification of these requirements in terms
of a conceptual schema. Goal-oriented requirements anal-
ysis starts with a list of stakeholders and their high-level
goals, which are refined and interrelated to produce a goal
model. The goal model captures not a single, but several
alternative sets of data requirements, from which a particu-
lar one is chosen to generate the conceptual schema for the
database-to-be.

Figure 1: overview of the proposed process

Goal-oriented schema design is further divided into two
stages: the modeling of the application domain and the de-
tailed design of the conceptual schema. One of the impor-
tant contributions of modern RE is the distinction between
environment and system-to-be [11, 13]. In the context of our
database design, the analogue is the distinction between the
domain model and the conceptual schema. A domain model
describes the necessary understanding of a part of the real
world, and facilitates the communication of domain knowl-
edge between developers, end-users and other stakeholders.
In this sense, it plays a role similar to the “concepts model”
in the EKD framework [5]. A conceptual schema, on the
other hand, represents the semantics of the actual data in



the proposed database; its design focuses on issues that are
specific to the conceptual content and organization of the
data. This view is consistent with earlier work on applying
general software development principles and techniques to
database design [3], where our domain model and concep-
tual schema correspond to its analysis and design models
respectively. Issues of interest for conceptual schema de-
sign mentioned in [3] include persistence, time and units.
We are also interested in other issues, such as measurement
provenance (i.e., metadata about the process that produces
the actual data to be stored), data governance (i.e., issues
concerning the usage of stored data such as security and pri-
vacy) and various data quality dimensions (e.g., accuracy),
which can be (partially) addressed at the schema level and
at the design time. One advantage of the separation of do-
main modeling and schema design is that one would not
need to change the domain model when changes are made
to governance, provenance and quality requirements.

For example, persistence asks what elements in the do-
main model need to be maintained by the database-to-be.
In a library setting, the domain model is likely to have an
entity for the library. But we may not model it explicitly in
the conceptual schema, if there is only one library. In such a
case, the ternary relationship borrows(patron, book, library)
in the domain model would also be replaced by a binary re-
lationship borrows(patron, book) in the conceptual schema.
As another example, in a hospital setting, the domain model
may include patients, nurses, medical measurements (e.g.,
blood pressure) of patients, and even equipment and meth-
ods for generating the measurements. But the latter may
or may appear in the conceptual schema, depending on the
provenance requirements.

Goals play a central role throughout the proposed pro-
cess. In requirements analysis and domain modeling, hard
goals circumscribe the subject matter to be modeled, i.e., to
define the universe of discourse (UoD) for the database-to-
be, while softgoals are used to select a subset of the leaf-
level hard goals and plans as the chosen design alternative.
In this sense, goal analysis helps to save domain modeling
efforts. In conceptual schema design, softgoals drive the
transformation from the domain model to the conceptual
schema by guiding the selection and application of proper
design operations. This leads to the goal-oriented design
strategy that will be discussed in detail in the next section.

4 Detailed Design Process

The proposed design process is divided into eight steps,
and illustrated step-by-step with a running example from
the design of a real-world, industrial biological database,
building on our previous case study [14]. In addition to the
running example, each step is described by its input, output,
the main tasks to be performed, and a detailed description.

This includes available techniques that can be used to fulfill
the main task(s), and if a design decision needs to be made,
the criteria for making such decision.

In our previous case study [14], we demonstrated the
benefits of a goal-oriented approach to database design
through the comparison of concepts presented in several
versions of the conceptual schema produced during its evo-
lution with those derived from alternative expansions of
stakeholder goals. In this paper, the focus is on the deriva-
tion process of the conceptual schema from stakeholder
goals. The original biological database is large and only
a portion of it is studied in the case study. In this paper,
in addition to those already considered in the case study,
the design process is also applied to additional data require-
ments, such as the acquisition of sample data, with special
attention to data measurement, ownership and accuracy is-
sues.

Step 1 Identify stakeholder goals, including their qual-
ity requirements.

Input: A list of stakeholders. Output: A list of high-level
goals of the stakeholders. Task(s): Goal identification.
Description: In our framework, we assume there are a num-
ber of key roles with respect to a database, such as data
provider, owner, custodian, consumer and regulator. Fur-
thermore, we assume that the list of stakeholders is given,
instantiating these roles. Stakeholders express a variety of
goals depending on their backgrounds, responsibilities and
agendas. The objective of this step is to identify top-level
(strategic) goals of each stakeholder, including both hard
goals and softgoals. We further distinguish softgoals that
concern the data quality (DQ) dimensions [2] from others.
Example: In our example, three main domain stakehold-
ers are given: Genomics Information Sponsor, Chief Sci-
entist, and Pharmaceutical Partner (hereafter called Spon-
sor, Scientist and Partner respectively). The Sponsor plays
the role of data provider who is responsible for creating a
research tool for subscription by making available a high
quality gene expression (GX) reference dataset (G1). She is
also the decision maker who has the financial responsibility
for the project (i.e. controlled budget of the experiments,
S1). The Scientist and Partner are application domain ex-
perts in molecular biology and drug discovery respectively,
whose daily work depends on GX reference datasets. The
ultimate goal of the Scientist is to obtain a comprehensive
understanding the biology of genes (G3) and have publish-
able research results (S4), while for the Partner, the top pri-
ority is to discover and validate drug targets, focusing only
on a deep understanding of the properties of disease-specific
genes (G2). Consequently, the Partner wants the GX ref-
erence dataset that has deep coverage of diseases (S2) and
has high biological relevance to drug discovery (S3). These
goals are shown in Figure 2. Furthermore, the data quality



softgoals shared by all stakeholders include data accuracy
(QS1), data security (QS2), flexible representation (QS3)
and provenance of measurement data (QS4).

Step 2 Generate a goal model.

Input: A list of high-level goals produced in Step 1.
Output: A goal model. Task(s): Goal analysis.
Description: High level goals give the overall agenda pro-
moted/pursued by stakeholders, but lack details. Goal
(AND/OR) decomposition can be used to refine these goals.
Systematic methods of decomposing goals have been pro-
posed in the literature. For example, [16] introduced a
variability-intensive approach to goal decomposition, based
on variability concerns. A variability concern is a question
associated with a goal, whose alternative answers lead to
alternative refinements of the goal. For softgoals, the NFR
framework [6] offers a catalogue of refinement methods,
among others, to guide decomposing high-level softgoals
into their offspring. Contribution analysis [4] can be used
to interrelated goals by identifying positive/negative contri-
butions to the fulfillment of both hard goals and softgoals.
As we will see later, in the case of softgoals, “contribution
edges” are often used to evaluate design alternatives.
Example: In our example, in order for the Sponsor to
achieve its top goal G1 of commercializing a GX refer-
ence dataset, she could either provide comprehensive GX
data (G1.1) or provide disease-focused GX data (G1.2). On
the contrary, the Partner’s top goal G2 of drug discovery is
AND-decomposed into G2.1 - G2.3, meaning that she has
to achieve all these subgoals in order to fulfill the top goal.
If we continue this process for each stakeholder, we pro-
duce a goal model, a portion of which is shown in Figure
2. Going down in the tree, as goals become more specific,
we can start recognizing lateral influence between goals
through contribution analysis. For example, Goal G2.1.1
of the Partner to subscribe to a disease specific disease col-
lection becomes feasible if the Sponsor pursues Goal G1.2
which aims at providing disease specific GX data. More-
over, the contribution edge from Goal G2.1.1 to Softgoal S3
with label “+”, indicates that subscription to a disease spe-
cific GX collection contributes positively to the fulfillment
of Partner’s softgoal of drug discovery relevance; similarly,
contribution edges labeled with “-” between S1 (control of
budget) and S2 (coverage of diseases) models the fact that
these two softgoals conflict with each other by nature.

Step 3 Select a design alternative.

Input: The goal model obtained in Step 2.
Output: A set of the leaf-level goals in the goal model.
Task(s): Goal evaluation.
Description: As we have discussed, a goal model captures
not a single, but several design alternatives, thanks to goal

Figure 2: A portion of the goal model

OR-decomposition (i.e., goal level variability) and means-
end analysis (i.e., process level variability). In this step, we
resolve the first type of variability by selecting a set of leaf-
level goals whose collective fulfillment achieves the aggre-
gate top-level goals; we use softgoals as evaluation crite-
ria. Formal goal reasoning techniques are available [10] to
help the designer from carrying out this process manually.
In particular, in backward reasoning [10], the goal model is
analyzed to find out a particular design alternative that guar-
antees the achievement of the desired top-level goals and
softgoals at the minimum cost. A complication in this step
is that softgoals may conflict with each other, so that there is
usually no uniformly “best solution”. Conflicts among soft-
goals can be resolved by ranking softgoals into a partially
ordered list using stakeholders’ preferences.
Example: Given the goal model from Step 2, there are total
2 × 2 × 3 = 12 alternative ways to fulfill the top-level goals
{G1, G2, G3}, as shown in Table 1. Assuming a partial
ordering of softgoals {S2, S3} � S1 � S4, and the contri-
bution edges as shown in Figure 2, the following choices
can be made for the three variability points: “disease fo-
cused (G1.2)”, “multiple, both (G1.2.1.1.2)”, “subscription
(G2.1.1)”. This produces the design alternative DA1(Step3)
= {G1.2.1.1.2, G1.2.1.1, G1.2.1.2, G1.2.1, G1.2, G1} ∪
{G2.1.1, G2.1, G2.2, G2.3, G2} ∪ {G3.1, G3.2, G3.3, G3}
∪ {S1, S2, S3, S4} ∪ {QS1, QS2, QS3, QS4}1.

Table 1: Design alternatives in the goal model
Variability Points Number of Choices Criteria
Coverage of the GX dataset: 2 Budget (S1),
- Comprehensive (G1.1), Publishable (S4)
- Disease focused (G1.2)
Choice of data sources: 2 Budget (S1)
- Single, own (G1.2.1.1.1), Coverage (S2)
- Multiple, both (G1.2.1.1.2)
Method of gene discovery: 3 Coverage (S2),
- Subscription (G2.1.1), Relevance (S3)
- Inhouse screening (G2.1.2)
- Public DB (G2.1.3)

Step 4 Identify initial set of domain notions from goals.

Input: The goals in the chosen design alternative.
Output: A list of domain notions extracted from these goals.
Task(s): Domain knowledge extraction.

1We simply consider all softgoals belong to every design alternative.



Description: In this step, we extract initial data require-
ments from the goals in the chosen design alternative. The
extracted terms are collectively called domain notions. The
rule of direct reference, similar to that in KAOS [8], is used
for this task: a term in a goal description is a domain notion
if it describes a real-world concept, a relationship linking
concepts or an attribute attached to a concept or relation-
ship in the domain.

This rule always has high precision but possibly low re-
call with respect to the domain model. This is because some
relevant domain notions may not appear in any goal descrip-
tion, and can only be discovered through other means (e.g.,
using domain ontologies). With respect to the final concep-
tual schema, it always has low precision. But this is not a
drawback of our approach; identification of relevant domain
notions for persistent storage is achieved partially by con-
sidering plans in Step 5 and partially by considering quality
goals in Step 8.

Example: The set of domain notions DNC1(Step4), cor-
responding to the design alternative DA1(Step3), is shown in
Table 22. Of course, had a different design alternative been
selected, this list would be different.

Table 2: Domain notions extracted from DA1(Step3)
Goals Domain Notions
G1 gene, gene expression
G1.2 disease
G1.2.1 linked(gene expression, disease)
G1.2.1.1 biological sample, donor
G1.2.1.2
G1.2.1.1.2 sample source, collaborator

As domain notions represent potential application data
requirements, their identification helps to further refine
some of the data quality softgoals. For example, the abstract
data accuracy softgoal QS1 can be refined into, among oth-
ers, accuracy of disease information QS1.1 (if it is indeed a
requirement from the user) immediately after the extraction
of the domain notion disease.

Step 5 Identify and select plans.

Input: The goals in the chosen design alternative.
Output: A set of plans that collectively fulfill these goals.
Task(s): Goal operationalization, plan evaluation.
Description: So far, the goals in the chosen design alter-
native are not actionable. The process of gradually ana-
lyzing goals to identify operational specifications is often
referred to as goal operationalization [8, 19]. Both logic-
based [9, 15] and heuristic-based [19, 18] approaches have
been proposed for this task. The former is based on a set
of pre-defined, formally proved refinement patterns, while
the latter relies on a “round-trip” between goal identifica-
tion and scenario authoring. Unlike other approaches, our
emphasis is on identifying alternative plans to fulfill a goal,

2To avoid unnecessary repetition and simplify the discussion, we now
focus on the part of the goal model rooted at Goal G1.

using the means-end analysis [4]. Plan selection are sub-
ject to the same evaluation process as the goals. In this step,
there is no need to describe each plan in detail, nor formally,
but only to a degree that is sufficient for their evaluation.
Example: In our example, at least two well-established pro-
cedures can be carried out to acquire biological sample and
donor data needed for gene expression analysis: perform
animal model study (P1.1) and perform human tissue sur-
vey (P1.2). The first choice studies animal models in a
controlled environment, while the second relies on avail-
able tissue samples excised from human patients during a
surgical operation. An animal model study is considered
significantly more costly (S1) compared to a human tissue
survey since it yields more samples and therefore requires
more analysis resources. However, a disease model study
gives better coverage of diseases (S2) than tissue surveys,
because they are easier to manipulate in a controlled envi-
ronment. With respect to higher biological relevance (S3),
human data are obviously more valuable than animal data.
This portion of the goal model is shown in Figure 3.

Figure 3: A portion of the goal model enriched with plans

Means-end analysis introduces additional design alterna-
tives. The total number of alternatives we have identified so
far is 12 × 2 (for the type of studies) × 2 (for choice of dis-
ease descriptions) = 48 (See Figure 3). Assuming the same
partial ordering of softgoals as before, and the contribution
edges shown in Figure 3, P1.1 and P2.2 are selected during
the evaluation process. This extends the design alternative
we obtained in Step 3: DA1 = DA1(Step3) ∪ {P1.1, P2.2}.
Other design alternatives we will refer to later in the dis-
cussion are DA2 = DA1(Step3) ∪ {P1.2, P2.2} and DA3 =
DA1(Step3) ∪ {P1.1, P1.2, P2.2}.

Step 6 Expand the set of domain notions using plans.

Input: The plans in the chosen design alternative.
Output: A list of domain notions extracted from these plans.
Task(s): Process modeling, domain knowledge extraction.
Description: In this step, we expand the list of domain no-
tions using the input plans. We produce for each leaf-level
plan a detailed process description, which characterizes the
operations in the plan in terms of pre-/post-conditions. Fol-
lowing [20, 8], we consider both inspecting operations (i.e.,
queries) and modifying operations (i.e., actions). This is



particular important to database design, since high-level
queries can be treated in the same way as actions in re-
quirements analysis. There are two ways in which domain
notions are identified: as the information required or pro-
duced by these operations, or as the information recorded
as the evidence that these operations were carried out with
proper attention to qualitative and/or quantitative detail.
Example: Animal model studies (P1.1) are normally car-
ried out in the following steps before gene expression anal-
ysis: generating a study design (P1.1.1), measuring animal
subjects (P1.1.2), excising (P1.1.3) and performing treat-
ments (P1.1.4) on animal samples, obtaining planned sam-
ple measurements (P1.1.5), and performing quality and dis-
ease verification tests (P1.1.6)3. The domain notions that
are derived from these sub-plans are listed in Table 3. The
final result of this step is the expanded list of domain no-
tions, corresponding to the design alternative DA1 from
Step 5: DNC1 = DNC1(Step4) ∪{domain notions extracted
from P1.1 and P2.2}. The same process would be carried
out for DA2 (or DA3), if it were selected instead of DA1.

Table 3: Domain notions extracted from DA1(Step3)
Plans Domain Notions
P1.1.1 study, study purpose, study design, animal subject;
P1.1.2 animal measurements (e.g., strain, weight, gender)
P1.1.3 organ, organ type, tissue, cell culture
P1.1.4 sample treatment, treatment type, treatment description),

disease description
P1.1.5 sample measurement (e.g., weight, dose per unit weight)
P1.1.6 test (test type, test result)

Step 7 Construct the domain model.

Input: The expanded list of domain notions.
Output: A domain model. Task(s): Domain analysis.
Description: In this step, the domain notions are analyzed
and organized into a model of the application domain, using
a diagrammatic notation such as UML diagrams (possibly
with OCL assertions), or a formal language such as first-
order logic. Well-known object modeling techniques can
be applied here directly. In a design process, the designer
has to add information when moving from earlier stages
to later ones. Some of this information may come only
from external sources, such as domain ontologies. Sug-
umaran and Storey have proposed a semi-automatic ap-
proach for creating and evaluating conceptual schemas us-
ing lightweight domain ontologies [21]. There are two es-
sential tasks in their proposal: determining the relevance be-
tween user requirements and ontological terms, and specify-
ing the stop conditions for the automatic propagation of rel-
evance through relationships in the ontology. Explicit goal
modeling provides assistance for both tasks.

It is also important to note that, following prior work on
requirements engineering [11, 8], the domain model is taken

3For the sake of space, we omit the detailed descriptions for these plans
here.

to represent an all-encompassing (“God’s eye”) view of the
history of the domain; therefore all domain notions are as-
sumed to have an additional time dimension, which may or
may not be explicit represented in the model, based on the
modeling language used.
Example: Given the expanded list of domain notions,
DNC1 (from Step 6), a portion of the domain model is
sketched in Figure 4, using a UML Class Diagram4.

Figure 4: a portion of the domain model for DA1

Step 8 Construct the conceptual schema.

Input: The domain model from Step 7. Output: A concep-
tual schema. Task(s): Schema transformation.
Description: In this step, we unify and expand the earlier
mentioned use of schema design strategies (e.g., [1]) and
schema transformations (e.g., [17]) into a transformational
framework. We view schema design as a series of trans-
formation steps; this is true even at the conceptual level,
although the transformations are informal, in the sense that
human expertise is often required. Part of the design knowl-
edge can be crystallized as design operations and design
strategies. A design operation is a template of a design ac-
tion that transforms an input schema by adding or remov-
ing schema elements; a design strategy is defined by a set
of available design operations and a partial order in which
these operations can be applied.

Both information-preserving and information-changing
(i.e., augmenting and reducing) operations are allowed. One
novelty of our approach is that the design strategy itself
is viewed as being goal-oriented, based on issues such as
measurement provenance, data governance and data qual-
ity, which are relevant to the particular problem at hand. In
particular, these issues are elicited and modeled as softgoals
in earlier steps, and operationalized in this step as a set of
design properties, attached to the elements of the schema.
The value of a design property guides the designer in select-
ing and applying proper design operations to “resolve” the
corresponding issue on the schema element.

The proposed goal-oriented design strategy is presented
in Table 4 as pseudocode. It consists of three phases:
initialization (step 1 - 3), valuation (step 4) and resolution

4For clarity, some of details are omitted in the diagram, such as associ-
ation, role names and attributes, which are not relevant for the discussion.



(step 5 - 8). Although this process is intended for a
database designer, tools can be built to provide guidance in
the key tasks (shown in bold). For example, the selection
and application of design operations can be facilitated
by maintaining a catalogue of operations, together with
their contributions to the typical valuations of the design
properties. We show several examples of such design
operations below.

Table 4: Goal-oriented design strategy
Input: a domain model, a set of design issues
Output: a conceptual schema where the design issues are “resolved” for
every schema element
1. Copy the input domain model as the initial conceptual schema
2. Prioritize the input design issues
3. For each design issue, create a corresponding design property for every
schema element, with the default “null” value
4. For each schema element, assign each of its design properties a
non-null value (if possible) and mark it as “unresolved”
5. Find the design issue with highest priority and select a schema element E for
which the corresponding design property P is marked as “unresolved”.
6. If no such design issue, then done; otherwise if the value of P is “null”,
then continue; otherwise apply a design operation to resolve P on E
7. mark P as “resolved” for E
8. check P for other schema elements that are affected by the operation
and mark them as “resolved”, if so. Return to step 5

Example: According the quality softgoals identified in
Step 1, there are four design issues to be addressed: data
accuracy (QS1), data security (QS2), flexibility represen-
tation (QS3) and measurement provenance(QS4). We also
consider two special issues, persistence (QS5) and tempo-
ral dimension(QS6), which are applicable to any schema
design problem. In our example, these issues are priori-
tized in the following order: (QS1, QS4, QS2, QS5, QS6,
QS3). Below we focus on the first five design issues and
show examples of design operations that are used to trans-
form the input domain model (from Step 7, Figure 4) into
a conceptual schema. The goal is to generate a conceptual
schema that is complete (i.e., all information that requires
persistent storage is properly modeled in the schema) and
pertinent (i.e., the schema only contains elements that are
truly relevant to the achievement of goals in the chosen de-
sign alternative). Moreover, all the design issues need to be
addressed in the schema, and the traceability from goals to
schema elements need to be properly maintained.

Addressing accuracy issue. In the simplest case, the
accuracy property of a schema element can be assigned a
’yes’ or ’no’ value, corresponding to an accuracy softgoal.
For example, we could assign a ’yes’ value to the attribute
disease description, given Softgoal QS1.1. More useful as-
signment (in terms of providing guidance to the selection of
design operations) can be made if the mechanisms to mon-
itor, assess and improve the accuracy of the data is avail-
able. One such example appears in [2], where the syntac-
tic accuracy (i.e., no invalid values) is distinguished from
the semantic one (i.e., no incorrect values). One way to
enhance the syntactic accuracy of an attribute is to refine

it (e.g., address) into its components (e.g., city, street and
postcode); one could argue that each component attribute
could be more easily validated, possibly against a public-
available dictionary or controlled vocabulary (e.g., a list of
valid city names) [2]. In our example, the accuracy value
for disease description can be refined as {’yes’, ’syntactic’,
’attribute decomposition’}. Figure 5 shows how a design
operation decomposes the attribute Disease.description in
the domain model into Disease.name (i.e., a standardized
name for the disease), Disease.code (i.e., the corresponding
standardized disease code), Disease.source (i.e., the stan-
dardization source) and Disease.description (i.e., an infor-
mal disease description). The entity SNOMED CT repre-
sents a controlled vocabulary for disease names and codes,
derived from the SNOMED Clinical Terms, one of the stan-
dardized health care terminologies5.

Figure 5: a sample operation addressing accuracy issue

Addressing provenance issue. In the context of e-
science, measurement provenance [12] refers to the meta-
data that describes in-silico experiments, including the pur-
pose, creator and design of the experiments, and the param-
eters used in the data generation processes. In our exam-
ple, measurement provenance is an important issue to be
addressed. For example, in order to monitor / control the
quality of biological samples and subsequently generated
gene expression data, the information about the experimen-
tal process needs to be recorded as well. This requirement
assigns non-null values to the provenance properties to the
entities Tissue and Cell Culture, among others. These val-
ues correspond to the process parameters that need to be
stored: for Tissue, it includes “the amount of time it takes
after the tissue sample is excised and before it is frozen”;
for Cell Culture, it includes “the method used to harvest and
isolate the cell”. This issue can be resolved by an operation
that adds the attributes time-to-freeze and isolation-method
to Tissue and Cell Culture respectively (see Figure 6).

Figure 6: a sample operation addressing provenance issue

Addressing security issue. Data governance concerns
additional data requirements that enforce the policies gov-
erning the use of application data. Being one type of data
governance, the security issue concerns security assurance

5http://www.snomed.org



mechanisms which can be enforced at the schema level. In
our example, the following schema elements are assigned
a non-null value for their security properties: Biological
Sample, Tissue, Cell Culture, Measurement and Repeated
Observation. The valuation of these properties are based on
the following requirements statement: “A biological sample
may be derived from a sample source that is provided by a
specific collaborator. In this case, this collaborator owns the
biological sample data. The owner of biological sample al-
ways has unlimited access to all the data related to the sam-
ple, while other collaborator may also have certain access
privileges based on mutual agreements.” Figure 7 shows
how the security issue is addressed for the entity Biologi-
cal Sample, by a design operation that introduces the entity
User Group and the relationship access with the attribute
privilege.

Figure 7: a sample operation addressing security issue

Addressing persistence issue. Persistence concerns
whether certain elements could be removed from the
schema, without affecting the fulfillment of goals in the
chosen design alternative. Every schema element needs to
have assigned a non-null (’yes’ or ’no’) value for its persis-
tence property. It is obvious that all schema elements in-
troduced by previous design operations, e.g., SNOMED CT
and User Group, are persistent elements. In our exam-
ple, the list of non-persistent schema elements are: {Donor
Measurement, Sample Measurement, Donor, Organ, Study,
Sample Source}. The decisions are ultimately determined
by the goals and plans in DA1 (from Step 5). For example,
Donor is non-persistent since Animal Subject is its only sub-
entity justifiable in DA1 (i.e., by P1.1). On the other hand,
Collaborator is assigned a persistent value while Sample
Source is not. This is because knowing the ownership of
samples is sufficient to support the access control to the
sample data (a subgoal of QS2), and no other goal fulfill-
ment in DA1 requires the availability of sample source in-
formation.

Removing a non-persistent attribute is straightforward.
For a non-persistent entity involved in a generalization hi-
erarchy, the well-known transformation rules to flatten the
hierarchy can be applied. In other situations, the non-
persistent entity is involved in regular relationships, some
or all of which may be persistent. Figure 8 shows an design
operation that removes the entity Sample Source, while pro-
moting the indirect relationship between Biological Sample
and Collaborator to a direct one.

Addressing temporal issue. For each persistent

Figure 8: a sample operation addressing persistence issue

element, we need to decide at what time points
data needs to be acquired and stored. The do-
main of the temporal property include following values:
{’instantaneous-explicit’, ’instantaneous-implicit’, ’sta-
ble’, ’single-explicit’, ’single-implicit’, ’multiple-periodic’,
’multiple-ordered’, ’multiple-predefined’, ’multiple-user-
specified’}. Like persistence, the valuation of the property
is largely determined by the stakeholder goals and plans
in the chosen design alternative. In our example, the re-
lationship owned-by is assigned the temporal value ’single-
implicit’, reflecting the implicit assumption that ownership
of biological samples will never change as far as the stake-
holder goals are concerned (so recording the time when
the ownership takes effect is unnecessary). On the other
hand, the entity Measurement is assigned the temporal value
’multiple-periodic’, meaning that some measurement data
(e.g., survival status, dose per unit weight) need to be col-
lected periodically and this historic information needs to be
kept in the database.

Here we show one example of a design operation that
can be applied to resolve the temporal issue for the entity
Measurement (Figure 9). The original entity is divided into
Measurement and Repeated Observation, where the former
is used to record the general information about the measure-
ment (including the starting time and frequency) and the
latter to keep track of the actual values in a fixed interval
(using the attribute order to distinguish them).

Figure 9: a sample operation addressing temporal issue

The final result of applying the above and other opera-
tions is shown in Figure 106.

5 Design Environment Prototype

A design process, especially a detailed and complex one,
without proper tool support is not likely to be adopted in
practice. The two most important benefits we seek in such
a tool-supported design environment are (a) partial automa-
tion (i.e., to automate the routine part of the design process

6It is important to note that (i) the sample operations are used for
demonstration purpose; they are by no means the only or optimal solu-
tions, and (ii) the proposed design strategy applies to any design issue that
the stakeholders feel relevant to the problem at hand, not just those we
show in the example.



Figure 10: a portion of the conceptual schema for DA1

and provide guidance in certain steps of the process) and
(b) book-keeping (i.e., to track traces of changes between
steps). In this section, we report early progress towards
building full tool support, in the form of a prototype that
captures and stores design sessions in a queryable form in a
MySQL database. This facility makes it possible to answer
questions regarding the properties of the schema elements
and design steps, which are hard, if not impossible, to an-
swer using existing methodologies. In addition, roll-back
features of the database can be used to explore alternative
conceptual schema designs.

A key component of the prototype is a metamodel of the
design process. Part of the metamodel is shown in Figure
11 (corresponding to the domain modeling and schema de-
sign steps in Figure 1). Based on this metamodel, the de-
sign session of the running example (as described in Sec-
tion 4) is captured and stored in a relational database using
MySQL. The questions that can be answered include the
general ones, such as (a) what are the main purposes of the
database and how does the schema design serve them, and
(b) what other alternatives have been considered, and the
specific ones, such as (c) how are the accuracy requirements
addressed, (d) why is the entity SNOMED-CT included, and
(e) what are the differences between the design alternatives
DA1 and DA2 in terms of the schema elements involved.

Figure 11: a portion of the metamodel for the prototype

Figure 12 is a screen dump showing how the last two
questions above are answered using three SQL queries. The
first query returns the softgoal “accuracy of disease infor-
mation” (QS1.1) as the explanation of the presence of the
entity SNOMED-CT in DA1; the second query lists the
schema elements that are shared by design alternatives DA1
and DA2, while the last one lists those that are specific
to DA1. The ability to answer these and other questions

helps to better understand the goal model and the resulting
schema, and, in case of changing requirements (e.g., from
animal studies (P1.1) to human studies (P1.2)), to make in-
formed decisions during schema evolution.

Figure 12: a screen shot of the design environment prototype

6 Conclusion

We have presented a goal-oriented process for database
requirements analysis, drawing ideas from existing GORE
frameworks. Our goal-oriented approach is advantageous
over conventional ones for following reasons. First, it sup-
ports systematic exploration of design alternatives: goal
models define alternative sets of concepts for fulfilling a
goal. Conventional approaches start with a requirement
statement that describes one way of solving the problem;
therefore, they do not recognize alternatives, and as a result
can lead to overweight designs (e.g., including all possible
data that might be needed). Second, it distinguishes the do-
main model from the conceptual schema, bearing an anal-
ogy to the environment-system distinction, well accepted
for software development. Last, it provides a goal-oriented
design strategy to compliment the traditional strategies that
are based on the types of modeling constructs or the direc-
tion of refinement. The proposed process has been applied
to the design of a real-world biological database, and a pro-
totype has been constructed as a proof-of-concept and first
step towards building a stable design environment.

This work can be extended along several different
threads. First, the present approach covers only structural
aspects of the conceptual schema; identifying and speci-
fying integrity constraints (e.g., identifiers, cardinalities) is
another important part of schema design. Next, for a goal-
oriented methodology to become practical, it has to be re-
fined to accommodate both top-down and bottom-up fash-
ions in the elicitation of different models. For GORE, this is
consistent with the idea that goal-orientation does not imply
a pure top-down strategy, i.e., goals can be identified by re-
finement using how questions and by abstraction using why
questions [22]. For database design, this is consistent with



the view that the sample queries and data, and forms and
reports from the existing system play an important role in
requirements analysis [7], just like “scenarios” and “uses-
cases” in software design.

Last but not least, in order to better appreciate the ben-
efits, while minimizing the obvious overhead of the goal-
oriented approach (e.g., modeling of goals), it is necessary
to have a fully functioning design environment that provides
support and guideline to the designer throughout the whole
design process. As one of its key components, the catalogue
of templates of design operations needs to be formally de-
fined based on further experience and study, and at the same
time, made extensible so that user-defined operations can be
easily integrated.

References

[1] P. Atzeni, S. Ceri, S. Paraboschi, and R. Torlone. Database
Systems - Concepts, Languages and Architectures. McGraw-
Hill Book Company, 1999.

[2] C. Batini and M. Scannapieco. Data Quality: Concepts,
Methodologies and Techniques. Springer, 1st edition, 2006.

[3] M. Blaha and W. Premerlani. Object-oriented modeling and
design for database applications. Prentice-Hall, 1997.

[4] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. My-
lopoulos. Tropos: An agent-oriented software development
methodology. Autonomous Agents and Multi-Agent Systems,
8(3):203–236, 2004.

[5] J. A. Bubenko, D. Brash, and J. Stirna. Ekd user guide. Tech-
nical report, Kista, Dept. of Computer and Systems Science,
Royal Institute of Technology (KTH) and Stockholm Uni-
versity, Stockholm, Sweden, 1998.

[6] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-
Functional Requirements in Software Engineering. Kluwer
Publishing, 2000.

[7] T. M. Connolly and C. E. Begg. Database Solutions: A step
by step guide to building databases. Addison Wesley, 2003.

[8] A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-
directed requirements acquisition. Sci. Comput. Program.,
20(1-2):3–50, 1993.

[9] R. Darimont and A. van Lamsweerde. Formal refinement
patterns for goal-driven requirements elaboration. In Pro-
ceedings of the 4th ACM SIGSOFT symposium on Founda-
tions of software engineering, pages 179–190, 1996.

[10] P. Giorgini, J. Mylopoulos, and R. Sebastiani. Goal-oriented
requirements analysis and reasoning in the tropos methodol-
ogy. In Eng. App. of Artifcial Intelligence, 18/2, 2005.

[11] S. Greenspan, J. Mylopoulos, and A. Borgida. On formal
requirements modeling languages: Rml revisited. In Pro-
ceedings of the 16th international conference on Software
engineering, pages 135–147, Los Alamitos, CA, USA, 1994.

[12] M. Greenwood, C. Goble, R. Stevens, J. Zhao, M. Addis,
D. Marvin, L. Moreau, and T. Oinn. Provenance of e-science
experiments - experience from bioinformatics. In The UK
OST e-Science second All Hands Meeting 2003 (AHM’03),
Nottingham, UK, pages 223–226, 2003.

[13] M. Jackson. The meaning of requirements. Ann. Softw. Eng.,
3:5–21, 1997.

[14] L. Jiang, T. Topaloglou, A. Borgida, and J. Mylopoulos. In-
corporating goal analysis in database design: A case study
from biological data management. In Proceedings of the 14th
IEEE International Requirements Engineering Conference,
pages 196–204. IEEE Computer Society, 2006.

[15] E. Letier and A. van Lamsweerde. Deriving operational soft-

ware specifications from system goals. SIGSOFT Softw. Eng.
Notes, 27(6):119–128, 2002.

[16] S. Liaskos, A. Lapouchnian, Y. Yu, E. Yu, and J. Mylopou-
los. On goal-based variability acquisition and analysis. In
Proceedings of the 14th IEEE International Conference on
Requirements Engineering, 2006.

[17] A. Poulovassilis and P. M. Brien. A general formal
framework for schema transformation. Data Knowl. Eng.,
28(1):47–71, 1998.

[18] C. Rolland, G. Grosz, and R. Kla. Experience with goal-
scenario coupling in requirements engineering. In Proceed-
ings of the 4th IEEE International Symposium on Require-
ments Engineering, page 74. IEEE Computer Society, 1999.

[19] C. Rolland, C. Souveyet, and C. B. Achour. Guiding
goal modeling using scenarios. IEEE Trans. Softw. Eng.,
24(12):1055–1071, 1998.

[20] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and
W. Lorensen. Object-oriented modeling and design.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.

[21] V. Sugumaran and V. C. Storey. Supporting database de-
signers in entity-relationship modeling: An ontology- based
approach. In the International Conference on Information
Systems, ICIS 2003, December 14-17, 2003, Seattle, Wash-
ington, USA, pages 59–71, 2003.

[22] A. van Lamsweerde. Goal-oriented requirements engineer-
ing: A guided tour. In Proceedings of the 5th IEEE Interna-
tional Symposium on Requirements Engineering, page 249.
IEEE Computer Society, 2001.

[23] A. van Lamsweerde and E. Letier. From object orientation
to goal orientation: A paradigm shift for requirements engi-
neering. In the Monterey’02 Workshop, pages 4–8. Springer-
Verlag, 2003.

[24] E. S. K. Yu. Towards modeling and reasoning support for
early-phase requirements engineering. In Proceedings of the
3rd IEEE International Symposium on Requirements Engi-
neering, page 226. IEEE Computer Society, 1997.


