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Abstract. We address the fundamental question: what does it mean for data in a 
database to be of high quality? We motivate our discussion with examples, 
where traditional views on data quality are found to be unsatisfactory. Our work 
is founded on the premise that data values are primarily linguistic signs that 
convey meaning from their producer to their user through senses and referents. 
In this setting, data quality issues arise when discrepancies occur during this 
communication. We sketch a theory of senses for individual values in a rela-
tional table based on its semantics expressed using some ontology. We use this 
to offer a compositional approach, where data quality is expressed in terms of a 
variety of primitive relationships among values and their senses. We evaluate 
our approach by accounting for quality attributes in other frameworks proposed 
in the literature. This exercise allows us to (i) reveal and differentiate multiple, 
sometimes conflicting, definitions of a quality attribute, (ii) accommodate com-
peting views on how these attributes are related, and (iii) point to possible new 
definitions. 

1   Introduction 

The quality of any artifact is determined by the degree to which it fulfills its intended 
use (“fitness for purpose”). Arguably, for a database the purpose is answering ques-
tions about the application it models. Data quality (DQ), the fitness of data values for 
question-answering purposes, is widely accepted as a multi-dimensional and a hierar-
chical concept [23,13,3]. More than a dozen proposals have been made to characterize 
and define various aspects of DQ (also called quality dimensions or quality attributes) 
in terms of a classification scheme. Examples of such schemes include (i) accessibil-
ity, interpretability, usefulness and believability DQ [23] (ii) intrinsic, contextual, 
representational, and accessibility DQ [24], and (iii) mandatory vs. desirable, primary 
vs. secondary, and direct vs. indirect DQ [5].  

Criticism of these approaches includes ambiguity, subjectiveness, and even circu-
larity of definitions within a single classification [4], and inconsistency across multi-
ple classifications [13]. As an example of circular definition, credibility in [23] is  
considered as a sub-attribute of believability, but it is itself defined as having suffi-
cient evidence to be believed; as an example of inconsistent definition, in [ X24] com-
pleteness and believability belong to two disjoint categories, while they are related 
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through a specialization link in [23]. This lack of precision and consistency in defin-
ing DQ attributes also prevents one from answering even the most basic questions 
about how DQ attributes relate. For example, does imprecision imply inaccuracy? 
Does our judgment of completeness presuppose the notion of relevance? Do concepts 
such as trust, believability and credibility refer to the same DQ attribute? If not, how 
do they differ?  

The objective of this paper is to address these problems by offering a formal frame-
work for DQ. In particular, we consider a DQ attribute as a complex expression, where 
the meaning of the attribute is captured in terms of the meaning of its constituents and the 
structure of the expression. Instead of defining each DQ attribute separately, we seek to 
answer the following questions: (i) what are the primitive constituents from which DQ 
attributes can be expressed and (ii) how can these constituents be combined in a mean-
ingful way. The concept of “sign” provides such a primitive notion for the investigation 
of these questions. Data values in a database are above all linguistic signs that convey 
meaning from their producer to their user; DQ issues arise when discrepancies occur 
during this communication. Based on these observations, we propose a novel, composi-
tional approach to understand and define DQ attributes in terms of a variety of primitive 
relationships between values and their senses. We evaluate our approach by accounting 
for DQ attributes in other frameworks proposed in the literature. This exercise allows us 
to (i) reveal and differentiate multiple, sometimes conflicting, definitions of a quality 
attribute; (ii) accommodate competing views on how these attributes should be related; 
and (iii) point to possible new definitions. 

The rest of paper is structured as follows. We motivate our discussion with some 
examples where traditional views on DQ are unsatisfactory in determining whether 
data is defective (Section 2). We then describe our view of data quality based on a 
triadic model of signs (Section 3), and sketch a theory of senses for individual values 
in a relational table based on its semantics expressed using some ontology (Section 4). 
Next, we present the compositional approach to DQ and its evaluation (Section 5 and 
6). Finally, we review related work (Section 7), and concluded and point to our future 
research plan (Section 8).    

2   Motivating Examples 

Consider a Patient table (XTable 1X) that records body temperatures for patients in a hospi-
tal. Suppose that each row shown here records the temperature of a particular patient at 
different time points (other rows are omitted). First, let us consider accuracy, one of the 
most studied DQ attributes. It has been defined as a measure of “the closeness between a 
value v and a value v', considered as the correct representation of the real-life phenome-
non v aims to represent” [22,3X]. For example, if the patient’s real name is v' = 'Ben 
Cheung', but was recorded as v = 'Ben Franklin' instead, we may conclude that v is inac-
curate.  

Example 1. In some cases, our judgment of accuracy does not rely on syntactic prox-
imity of data values, but is affected instead by our interpretation of their meanings. For 
example, it would have been no less accurate to have '98.6°F' instead of '37.0°C' in 
the last row, as long as we understand that these two values represent the same tem-
perature reading using different scales.  
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Table 1. The Patient table 

Name Temperature Time 
Ben Cheung 37.2°C 2007/11/05 13:05 

Ben Cheung 38.5°C 2007/11/06 12:00 

Ben Cheung 37.0°C 2007/11/07 11:55 

 
Example 2. Moreover, whether a data value is considered accurate often depends on 
both its interpreted and intended meaning. For example, if there is no agreement on 
how the temperature should to be measured, we may interpret '37.2°C' in the first row 
as Ben’s temperature measured under normal conditions, while it really represents his 
temperature after aspirin was administered. Inaccuracy caused by such a mismatch 
cause no less a problem than a typographical error (e.g., entering '36.2°C' instead of 
'37.2°C').  
 
Example 3. Furthermore, accuracy cannot be considered in isolation: our judgment on 
accuracy of a value depends on the judgment of that of its related values. For exam-
ple, consider '38.5°C' and '2007/11/06 12:00' in the second row. If we know that 
Ben’s temperature was U39 U degree Celsius on Nov. 6, 2007 at 12:00, we may want to 
conclude that '38.5°C' represents the real-world phenomenon (i.e., 39 degree Celsius) 
inaccurately. But, in doing so we have already made an assumption that '2007/11/06 
12:00' is accurate! What if we instead know that Ben’s temperature was 38.5 degree 
Celsius on Nov. 6, 2007 at U11:45U? In this case, are we willing to believe that it is the 
time not the temperature value that was inaccurately recorded?  

Consider next completeness, another commonly studied DQ attribute, which has 
been defined as the percentage of all tuples satisfying the relational schema of a table 
(i.e., tuples in the true extension of the schema) which are actually presented in the 
table [3X]. 

 
Example 4. Actually, it is impossible to talk about the “true” extension of a relational 
schema without knowing what the user’s requirements are. Accordingly, the above 
data about Ben Cheung could be complete or incomplete depending on whether Ben’s 
temperature is required to be measured only once or twice a day.  

3   Nature of Data Quality 

In this section, we describe our view of DQ, founded on the notion of signs [17]. 
Generally speaking, a sign is something that stands to someone for something else. 
Accordingly, we see values (together with their metadata) in databases as primarily 
linguistic signs standing for real world phenomena. Information processing is a form 
of communication realized by creating, passing and utilizing signs [12]; DQ issues 
arise when discrepancies occur during this communication.  
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In the meaning triad [12], a triadic sign model, a symbol (e.g., 'Ben Cheung') is con-
nected to a referent (e.g., a particular person in the world), and a sense understood by its 
interpreter (e.g., the concept of that person in the interpreter’s mind). The difference 
between the referent and sense of a symbol could be understood in analogy to that of the 
extensional and intensional definitions of a term. Moreover a symbol may have more 
than one “valid” sense (and referent), under different circumstances, according to differ-
ent interpreters.  

We find it useful to distinguish four kinds of senses/referents of a symbol:     
 

• The intended sense/referent is the sense/referent of the symbol according to its 
producer. It is the meaning the producer intends to communicate, and is deter-
mined exclusively by the producer. 

• The interpreted sense/referent is the sense/referent of the symbol according to its 
user. It is the meaning the user recognizes, and is determined exclusively by the 
user.  

• The supposed sense/referent is the sense/referent, determined exclusively by the 
requirements for production of the symbol, such as conventions and regulations the 
producer has to comply with, ethical and social norms, etc. 

• The expected sense/referent is the sense/referent, determined exclusively by the 
conditions for use of the symbol, such as the tasks, purposes and goals of the user.  

 

To illustrate this distinction, consider the temperature value '37.2°C' in XTable 1X. 
Suppose Sudha, the doctor of Ben, needs to know his temperature, not lowered by an 
antipyretic, and measured around noon every day (because he is plotting a graph with 
X-axis points every 24 hours). She also expects the measurement to be taken using a 
thermometer in the mouth. A new nurse, Catherine, running late, measured Ben’s 
temperature at 13:05, with a thermometer in the ear. Moreover, Catherine is unaware 
of the fact that Ben had taken an antipyretic at 12:40. As a result, by recording 
'37.2°C', Catherine intended to say “Ben’s temperature UwithoutU antipyretic, measured 
Uat 13:05U with a UtympanalU thermometer”. If Catherine had been more careful, this 
value’s supposed meaning would be “Ben’s temperature Uafter U antipyretic, measured Uat 
13:05U with Usome U thermometer”. On the other hand, Sudha may interpret this value as 
“Ben’s temperature UwithoutU antipyretic, measured Uat 13:05U (because he saw the time 
value in the table) with an Uoral U thermometer”, which is different from what he ex-
pected: “Ben’s temperature UwithoutU antipyretic, measured Uaround noonU with an Uoral U 
thermometer”.  

Ideally, total data quality means that the four types of senses must match for each 
data value individually, and certain constraints must hold among the same types of 
senses for related values, especially ones in different fields of the same row. DQ is-
sues arise when this does not hold. For example, when Sudha expects oral measure-
ments, but this requirement is not specified explicitly, discrepancy is likely to exist 
between the expected and supposed senses. More generally, if some sources of vari-
ability (e.g., the type of thermometer used and patient conditions) are not captured in 
the data (or metadata), the communication between the producer and user will be am-
biguous. Of course, whether or not such ambiguity is considered problematic depends 
on the purpose for which the data is to be used, and it is the role of the requirements 
specification to eliminate these problems.    
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4   Nature of Senses 

Before using the preceding distinctions in a theory of DQ, it helps to flesh out a bit 
the notion of “sense” we have in mind. In this paper we concentrate on data values 
concerning object properties (e.g., length, temperature and color), rather than general 
relationships between objects. For this purpose, we follow the DOLCE ontology [14] 
in viewing the world as populated by entities, which include concrete physical objects 
(e.g., persons) as well as abstract regions (e.g., distance values); the latter can appear 
as the values of properties1

F, called qualia, for objects. To help communication, enti-
ties have names that allow them to be uniquely identified within some more or less 
restricted context: 'Ben Cheung' is presumably sufficient to identify the patient cur-
rently in the hospital in the previous example. Naming qualia allows us, for example, 
to have the region named 'normal temperature' contain the region named '37°C', 
which in turn contains '37.2°C'. Qualia are associated with properties at specific times 
(which are also treated as qualia), allowing property values to change. In FOL, this 
might be written as temptrOf('Ben Cheung', '2007/11/05 13:05') = '37.2°C'; inten-
sional logics use other notations [7]. 

The fundamental premise of databases is that one can associate a semantics with a 
relational table such as Patient(NM, TPTR, TM) along the lines of “the unique person 
named NM has temperature property value TPTR at time TM”, a semantics that must 
be shared by data producer and user for proper communication. Given a shared ontol-
ogy, this might be written in FOL as 

 

      Patient(NM, TPTR, TM)  →  
            ∃!p: Person . hasName(p, NM) ∧ temptrOf (p, TM) = TPTR 
 

where we simplify matters by omitting additional variables for qualia to be “named” 
by TM and TPTR. 

Based on this, the interpreted senses of the values in Patient('Ben Cheung', 
'37.2°C', '2007/11/05 13:05') could be m = “the unique person named Ben Cheung”, 
m' = “the temperature quale for the unique person named Ben Cheung at time quale 
2007/11/05 13:05”, and m'' = “the time quale when the temperature quale 37.2°C was 
measured for the unique person named Ben Cheung”. Note that the senses of these 
values, and their derivation from the table semantics accounts for the situations we 
encountered in motivating examples in Section 2 (e.g., Example 3 concerns violation 
of the constraint that m' and m'' must refer to the same temperature and time quale). 

The above account is idealized, since it is usually necessary to observe or measure 
properties. This introduces a process of measurement, which allows the semantic 
specification to capture additional requirements. For example, the following formula 
specifies the kind of instrument to measure the temperature with, and a constraint on 
the time when measurements are to be taken: 

 

      Patient(NM, TPTR, TM)  →  
            ∃!p: Person, instr: OralThermometer . hasName(p, NM)  
                 ∧ measures(temptrOf (p, TM), TPTR, instr, TM) ∧ closeToNoon(TM) 

                                                           
1 DOLCE calls properties “qualities”, but we find this too confusing in our context, where we 

are talking about data UqualityU. Also, DOLCE reifies properties into entities that “inhere” in 
objects -- a complication that is unnecessary in our context. 
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Moreover, measurements are almost never exact, so the precise semantics may need 
to talk about accuracy and precision errors for measurements or the instruments in-
volved, the subject of metrology. 

The above considerations allow us to see a basis for distinguishing different de-
grees of match between two senses m1 and m2 of a data value s, which will be impor-
tant for our development of a theory of DQ. On the one hand, we have the ideal exact 
match matchexact(m1, m2) when the senses are identical. At the other extreme, we have 
a total mismatch matchmismatch(m1, m2) in cases such as when m1 is a temperature 
quale while m2 is a person. In between, we admit partial matches matchattr

partial(m1 ,m2) 
where attr is the attribute, of which s is a value; for example, the four senses of Ben’s 
temperature value '37.2°C' discussed in the previous section would match partially. 
The precise details of partial match are under study, but are not important here; some 
of its properties include 

 

• there is a reasoning process for deciding it, allowing for differing background 
knowledge (thus allowing one to discover that "37.0°C" and "98.6°F" refer to the 
same quale (or not)); 

• the arguments must agree on certain predicates and the identity of certain central 
entities (e.g., it is the same person's temperature that is being talked about);  

• aspects concerning other predicates and entities (such as those dealing with meas-
uring and its circumstances) are less crucial, and will lead to partial matches; the 
precise details of how these are to be weighted in a comparison are application 
goal-dependent; 

• all other things being equal, the geometry of quale regions is used to compare simi-
larity.  

 

We also find useful a more precise variant of partial match, called closerattr(m,m1,m2), 
which indicates that m1 is conceptually closer to m than m2 is; it allows us to find that, 
all other things being equal, a 13:05 measurement of a particular property is closer to 
a noon one than a 14:30 measurement. 

5   Defining Data Quality 

We characterize data quality considering four DQ aspects, each of which contains a 
collection of theoretical DQ predicates. These predicates are defined in terms of the 
relationships among symbols and their senses from a single viewpoint, therefore provid-
ing primitive constituents from which DQ attributes can be expressed. A DQ attribute in 
practice (e.g., accuracy, completeness) normally correspond to predicates in more than 
one aspect. In what follows, we discuss a few important DQ predicates in each aspect. 
This is, however by no means an exhaustive list of possible predicates in these aspects.  

5.1   Symbol Aspect 

The first DQ aspect concerns the relationships involving symbols only, without explic-
itly mentioning their senses. Let S be a set of symbols of interest. First we may be inter-
ested in the membership of a symbol s∈ S in a subset Saccept of S. Let us denote this  
using the predicate symmember(s, Saccept) ⇔ s∈Saccept. For example, symmember('50°C', Sbody-

temp) does not hold, assuming Sbody-temp is the set of symbols representing the acceptable 
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human body temperatures. For acceptable symbols, we may now consider a variety of 
relationships between them. The simplest such relationship is sameness: let symmatch(s1, 
s2) hold whenever s1 and s2 have exactly the same syntactic form. When two symbols do 
not match exactly, we may consider which are closer syntactically, based on some dis-
tance function distancef (such as edit distance [3]). Let us write this using symcloser(s, s1, 
s2) ⇔  distancef(s, s1) < distancef(s, s2).  For example, symcloser('Cheng', 'Cheung', 
'Chiang') is true because changing from 'Cheng' to 'Cheung' requires fewer edits than to 
'Chiang'. Another interesting relationship, symmore-detail(s1, s2), concerns level of detail; 
for real numbers we might have symmore-detail('3.1415926', '3.14') indicating that, in nor-
malized scientific notation, (i) the two arguments have the same exponent, (ii) the first 
argument has as least as many digits as the second one in the coefficient, and (iii) the 
coefficients agree in the digits presented.   

5.2   The Meaning Aspect 

This DQ aspect deals with the relationships involve the interpreted and intended senses 
of a symbol. According to H.P. Grice’s classical account of speaker meaning, we rely on 
the recognition of our intention to communicate and we use that very recognition to get 
our message across [20]. In the context of data quality, this implies that in an ideal com-
munication, there should be an exact match between intended and interpreted senses.  

Let M be the set of senses to which the symbols in S may refer. First of all, we need 
to know whether for each symbol there is an interpreted (or intended) sense assigned 
to it by its user (or producer). Let us use meahas-intp(s, m) (respectively, meahas-intd(s, 
m)) to indicate that a sense m∈ M is an interpreted (respectively, intended) sense of a 
symbol s∈ S F

2
F. For example, ∃m∈ M. meahas-intp('37.2°C', m) probably does not hold 

for a physician who doesn’t work in Ben’s hospital, because she will not have a way 
to identify the person named Ben Cheung at that hospital.  

Once we know that the interpreted and intended senses exist, we can then consider 
whether their existence is unique. Formally, let’s define   

 

meahas-uni-inp(s) ⇔ ∀ m1, m2∈M. meahas-intp(s, m1) ∧ meahas-intp(s, m2) → matchex-

act(m1, m2), 
meahas-uni-int(s) ⇔ ∀ m1, m2∈M. meahas-intd(s, m1) ∧ meahas-intd(s, m2) → matchex-

act(m1, m2). 
Conversely, we may also be interested in whether two symbols are synonyms from 

the user’s or producer’s perspective (i.e., sharing their interpreted or intended senses):  
measynonym-u(s1, s2) ⇔ ∃m∈M. meahas-intp(s1, m) ∧ meahas-intp(s2, m) ∧ ¬symmatch(s1, 

s2) 
measynonym-p(s1, s2) ⇔ ∃m∈M. meahas-intd(s1, m) ∧ meahas-intd(s2, m) ∧ ¬ symmatch(s1, 

s2) 
 

When a symbol has an interpreted and intended sense, we are mostly interested in 
whether there is a match between them. First we want to know if they match exactly  

meamatch(s, m1, m2) ⇔ meahas-intp(s, m1) ∧ meahas-intd(s, m2) ∧ matchexact(m1, m2).  

                                                           
2 Throughout the rest of the paper, when we mention symbol s, we mean a symbol token - its 

occurrence in a field of a particular table tuple. So '37.2°C' is the occurrence of this symbol in 
row 1, column 2 of Table 1. 
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For example, meamatch('37.2°C', m1, m2) does not hold when m1 and m2 are tem-
peratures of a patient measured at different time points. In general, we may want to 
know, for partially matched senses, how closely they match. For example, when two 
symbols s1 and s2 share their intended senses (e.g., because people recorded the same 
value with different precision), we can state the fact that “the interpreted sense of s1 is 
closer than that of s2 to their shared intended sense” as    

meacloser(s1, s2, m, m1, m2) ⇔ meahas-intd(s1, m) ∧ meahas-intd(s2, m) ∧ meahas-intp(s1, 
m1) ∧ meahas-intp(s2, m2) ∧ matchattr

partial(m1, m) ∧ matchattr
partial(m2, m) ∧ closerattr(m, 

m1, m2).  

5.3   The Purpose Aspect 

This DQ aspect deals with the relationships involve the interpreted and expected 
senses of a symbol from the user perspective. As we have mentioned, an ultimate cri-
terion for data quality is fitness for purpose. In our framework, the intended use of 
data values is captured through their expected senses. Therefore, quality issues arise 
when the interpreted and expected senses of a data value do not match exactly.  

We are interested in a variety of relationships involving expected senses. Predicates 
such as purmatch(s, m1, m2), for indicating the interpreted sense m1 and expected sense m2 
of the symbol s match exactly, and purcloser(s1, s2, m, m1, m2), for indicating the inter-
preted sense m1 of s1 is closer than the interpreted sense m2 of s2 to their shared in-
tended sense m, are defined in a similar way to their counterparts in the meaning aspect. 
The existence of expected sense, however, deserves more discussion.  

Unlike the interpreted sense which is determined by the user directly, the expected 
sense is determined by a particular application. If a doctor is only interested in study-
ing the effect of psychotherapy on the temperature of the patient, we’ll say that the 
blood pressure (or more obviously the number of chairs in the room) have no ex-
pected senses to that doctor. To formalize this, let Me denote a subset of M, deter-
mined by the tasks and goals the user has to fulfill. In our example, M might have 
temperatures and blood pressures taken at any time, while Me might only have tem-
peratures taken around noon. We say m ∈ Me is an expected sense of a symbol s if m 
matches, at least partially, with the interpreted sense of s. This can be stated as  

purhas-exp(s, m) ⇔ m∈Me  ∧ ∃m'∈M. meahas-intp (s, m') ∧ 
(matchattr

partial(m, m') ∨ matchexact(m, m')). 

This also allows us to consider the existence of a symbol, given partial knowledge 
about its expected sense. For example, we cannot find a symbol s in XTable 1 X with the 
property purhas-exp(s, “Ben’s cholesterol level on Nov. 5, 2007 at 13:05”).  

When more than one expected sense exists, we may want to know if they are all 
comparable with respect to the interpreted sense of the symbol (so that later we can 
pick the closest one): 

purcomparable-exp(s) ⇔ ∃m∈ M. meahas-intp(s, m) ∧ ∀m1, m2 ∈ Me.  
purhas-exp(s, m1) ∧ purhas-exp(s, m2) → closerattr(m, m1, m2) ∨ closerattr(m, m2, m1) 

For example, given a temperature value '37.2°C' with its interpreted sense “the tem-
perature quale of Ben measured at 13:05 with some thermometer”, and two expected 
senses “temperature qualia of Ben measured at 13:05 with an oral/tympanal thermome-
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ter”, then these two expected senses are probably not comparable, unless we have a the-
ory on how different types of thermometers affect temperature measurement.  

5.4   The Trust Aspect 

This DQ aspect deals with the relationships involve the intended and supposed senses 
of a symbol from the producer perspective. According to [20], in order to establish 
audience trust, both the sincerity and authority conditions have to hold. In the context 
of our framework, this means the user has to believe that the producer is neither a liar 
(i.e., no discrepancy caused intentionally, e.g., due to falsification) nor a fool (i.e., no 
discrepancy caused unintentionally, e.g., due to observation bias). Trust issues arise 
therefore when there is discrepancy between intended and supposed sense. Predicates 
in the aspects, such as truhas-sup, trucomparable-sup and trumatch are defined in the similar 
way as their counterparts in the purpose aspect. For lack of space, we do not elaborate 
them here.  

6   Mapping Data Quality Attributes  

We evaluate our approach by expressing quality attributes defined in the literature in our 
framework. One observation from this exercise will be that a single quality attribute 
often has multiple, sometimes conflicting, definitions. We differentiate these definitions 
by expressing them in terms of different (combinations of) theoretical quality predicates 
we have defined. This also allow us to accommodate competing views on how these 
attributes should be related, by making explicit the exact meaning of the attributes in-
volved, and by distinguishing relationships that exist by definition and those that exist 
based on assumptions. Finally, this exercise also allows us to point out possibly new 
definitions.  

6.1   Accuracy, Precision and Currency 

Accuracy is normally understood as free of defects or correspondence to reality [24,13]. 
In [32], it is defined formally as the closeness between two representations s and s', 
where s' is the correct representation of the real-life phenomenon s aims to represent. If 
we accept that “correctness” here means “justified by some accepted standards or con-
ventions”, and make “closeness” be “identity” to get a Yes/No predicate, then this defi-
nition can be stated in terms of our symbol, meaning and trust aspects  

accuracysymbol(s) ⇔ ∃ m∈ M, s'∈ S. meahas-intd(s, m) ∧  truhas-sup(s', m) ∧ symmatch(s, 
s'). 

According to this definition, we cannot have synonyms such as '37.0°C' and '98.6°F', 
which may have been desired. To accommodate this, we can change the perspective 
from a fixed phenomenon to a fixed representation [25]; it defines accuracy as the 
closeness between two real-life phenomena m and m', where m is what a symbol s 
aims to represent and m' is what s appears to represent. This view requires only the 
meaning aspect 
 

accuracymeaning(s) ⇔ ∃m1, m2∈ M. meamatch(s, m1, m2). 
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The fact that s1 is more accurate than s2 can then be represented in this view as  
accuracymeaning-compare(s1, s2) ⇔ ∃m, m1, m2∈ M. meacloser(s1, s2, m, m1, m2). 

 

A typical understanding of precision as a quality attribute is the degree of details 
data values exhibit. For example, precision of numeric values is often measured by 
the number of significant digits used [5]. A number (e.g., '3.1415926') is more precise 
than another one (e.g., '3.14'), assuming both represent the same phenomenon (e.g., 
the mathematical constant π),  can be stated as  

 

precisionsymbol(s1, s2) ⇔ symmore-detail(s1, s2) ∧ ∃m1, m2 ∈ M.  
meahas-intd(s1, m1) ∧ meahas-intd(s2, m2) ∧  matchexact(m1, m2)  

 

Precision is often considered in close relation to accuracy. A typical intuition is that 
low precision leads to inaccuracy [25,5], which however cannot be accommodated by 
precisionsymbol alone. This is because having greater degree of details doesn’t guaran-
tee a better interpretation towards the intended meaning. In order to support this intui-
tion, we need a strengthened notion of precision  

precisionstrengthened(s1, s2) ⇔ precisionsymbol(s1, s2) ∧ accuracymeaning-compare(s1, s2). 

From the opposite view, one considers accuracy as a prerequisite for precision: in 
order to say s1 is a more precise than s1, both have to be accurate (i.e., have matching 
intended and interpreted senses). This view can be defined as  
 

precisionmeaning(s1, s2) ⇔ symmore-detail(s1, s2) ∧ ∃m11, m12, m21, m22∈ M.  
meamatch(s1, m11, m12) ∧ meamatch(s2, m21, m22) ∧  matchexact(m11, m21). 

 

Now we really have a theorem precisionmeaning(s1, s2) → accuracymeaning (s1) ∧ accuracymean-

ing(s2). 
Currency as a DQ attribute is normally understood as the degree to which data are 

up to date [3,22]. As a first try, we could represent this understanding as: 

currencynaive(s1, s2) ⇔ ∃m1, m2 ∈ M. meahas-intd(s1, m1) ∧ meahas-intd(s2, m2) ∧  t(m1) > t(m2) 

where t returns the time component of a sense. One might notices that this definition 
allows us to compare the currency of the temperatures of different patients. When this 
is not desired, we can strengthen it using the notion of partial match 
 

currencystrengthened(s1, s2) ⇔ ∃m1, m2 ∈ M. meahas-intd(s1, m1)  
∧ meahas-intd(s2, m2) ∧ matchattr

partial(m1, m2) ∧  t(m1) > t(m2) 
 

Currency defined in this way is orthogonal to accuracy. As with precision, some au-
thors consider a value s1 is more current than another one s2 only when both are accu-
rate at a certain point in time [X25]. This view can be captured by 
 

currencymeaning(s1, s2) ⇔ ∃m11, m12, m21, m22∈ M. meamatch(s1, m11, m12)  
∧ meamatch(s2, m21, m22) ∧ matchattr

partial(m11, m21) ∧  t(m11) > t(m21) 
 

A further complication, which will be discussed below, relates currency to relevance [5]. 

6.2   Relevance, Completeness and Timeliness 

Relevance considers how data fits its intended use [13]. In its simplest form, it can be 
defined on the purpose aspect alone (recall Me is a subset of M, determined by the tasks, 
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etc. the user of s has): relevancepurpose(s) ⇔ ∃m∈ Me. purhas-exp(s, m). This definition sup-
ports the view that relevance should evaluated before other quality attributes [5].  

Intuitively, completeness concerns whether data is missing with respect to some 
reference set. In the simplest case, value completeness [3,19] refers to the existence of 
null values in a reference column, row or table. This definition can therefore be un-
derstood as completenesssymbol(Sa) ⇔ ∃s∈ Sa. symmatch(s, “null”), where Sa is the set 
of data values of interest. In a more complicated situation, population completeness 
[19]  of Sa is defined as the existence of missing values with respect to the reference 
set Me: completenesspurpose(Sa) ⇔ ∀m∈Me ∃s∈Sa. purhas-exp(s, m). While the notion of 
completeness concerns whether every relevant data value is presented, we may also 
consider whether every presented value is relevant (the closest terms proposed in the 
literature for this attribute are “appropriate amount of data” [13] and “concise-
ness”[25]):  

completenesspurpose-reverse(Sa) ⇔ ∀s∈Sa ∃m∈Me. purhas-exp(s, m). 

When both conditions need to be enforced, we can define:   

completenesscomposite(Sa) ⇔ completenesspurpose(Sa) ∧ completenesspurpose-reverse(Sa). 

Some authors use timeliness to mean data is sufficiently up to date with respect to 
its intended use [3,21]. It can therefore be considered as another variant of currency 
[5]. The fact that a value s1 is timelier than s2 with respect to Me can be stated as  

currencypurpose(s1, s2) ⇔ currencymeaning(s1, s2) ∧ relevancepurpose(s1) ∧ relevancepur-

pose(s1). 

6.3   Reliability and Believability 

There is no generally accepted notion of reliability as a DQ attribute: some definitions 
overlap with that of accuracy [1], others are linked to dependability of the data pro-
ducer [13], while still others are based on verifiability[16]. If we choose the last view 
-- that data is reliable if it can be verified (i.e., generated independently by different 
producers, possibly using different tools, methods, and etc.), we can define, given 
expect senses Me 

reliabilitytrust(s) ⇔ ∃m1∈M, m2∈ Me. trumatch(s, m1, m2). 

This means what is intended to be represented by s matches exactly with what is 
supposed to be represented by it, according to the obligations the producer has. A 
violation of this condition may be caused by bias (i.e., lack of objectivity [3,24]) or 
intention (i.e., intentional falsification [13]) of the producer, or limitation of instru-
mentation, method, etc. Notice that reliability defined in this way is independent of 
accuracy. On the contrary, believability defined in [3,24] as “the extent to which data 
are accepted or regarded as true, real, and credible”, clearly concerns both the mean-
ing and trust aspects 

believabilitymeaning-trust(s) ⇔ accuracymeaning(s) ∧ reliabilitytrust(s). 
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7   Related Work  

Some approaches to DQ share with ours the view that generic quality attributes (e.g., 
accuracy, completeness) may be understood in terms of more primitive quality con-
structs. In the Qurator project [15], such constructs (called quality characterizations or 
QC) are concrete, operational level quality attributes defined by scientists. For example, 
“accuracy” can be defined in terms of confidence QC, which can then be quantified 
using calculated number of experimental errors, or a function of the type of experimen-
tal equipment.  

While the Qurator project provides a flexible way for specifying user-definable and 
domain-specific QCs in the context of e-Science, we are focusing on identifying primi-
tive constructs that are reusable across domains. From a system-oriented view, [25]  
discusses various types of problematic correspondences (called of representation defi-
ciencies) between a real world system (RW) and an information system (IS). For exam-
ple, an incomplete representation means some RW phenomena are not (or cannot be) 
represented in IS, while an ambiguous representation means multiple RW phenomena 
have the same representation in IS. We also consider mismatches, but emphasize the role 
of producer and user, and mental representations (senses), abandoning the objectivist 
view of IS.  

We are also not alone in considering DQ from a semiotics perspective. Thus, [21] 
proposes to understand and classify quality attributes in terms of syntactic (i.e., confor-
mity to stored metadata), semantic (i.e., correspondence to external phenomena) and 
pragmatic (i.e., suitability for a given use) quality categories. Although these distinc-
tions are embedded in our definitions of “senses” and “DQ aspects”, they are only used 
in [21] to provide a conceptual framework to classify quality attributes. We also define 
quality attributes in terms of primitive constructs derived from these distinctions.  

8   Conclusion 

In this paper, we have proposed a novel, compositional framework for understanding 
and defining DQ attributes in a precise and comparable way, based on the notion of 
signs. We have also sketched a theory of senses for individual values in a relational 
table, based on its semantics expressed using some ontology. We have shown in our 
framework how multiple, sometimes conflicting, definitions of a DQ attribute could 
be differentiated, and how competing views on relating these attributes could be ac-
commodated.  

However, understanding DQ is just a means, not an end for us. Our ultimate goal in 
this quest is a methodology for “data quality by design”. We have proposed a general 
goal-oriented quality design process for databases [10,11]. This process starts with 
application-specific goals where application data requirements are elicited and organ-
ized into an ordinary conceptual schema; then quality goals are modeled and opera-
tionalized to introduce new and modify existing data requirements in the initial 
schema. An important step during this process is to identify potential risks that may 
compromise quality of application data. The theory of senses provides exactly such 
machinery for a risk-based analysis. During schema design, one has to decide which 
components of the senses of application data values need to be modeled as schema 
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elements (according to user’s goals and assumptions); such decisions eventually af-
fect the quality of the application data. For example, Doctor Sudha is able to under-
stand correctly the temperature value '37.2°C' with respect to “when” it was meas-
ured, exactly because there is a “time” attribute in the Patient schema. However, the 
design decision to leave out other components (such as how it was measured, with 
what type of thermometer and by whom) contributes to Sudha’s partially incorrect 
understanding of '37.2°C'. Our immediate next step is to refine the notion of senses 
and formalize partial match between senses, and use them to derive patterns of risk 
factors for database design.   
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