
A Characterization of Combined Traces using
Labeled Stratified Order Structures

Dai Tri Man Lê

Department of Computer Science
University of Toronto

Canada

Petri Nets 2010

Dai Lê (University of Toronto) 1 / 22



Outline

1 Background
Mazurkiewicz Traces
Combined Traces (Comtraces)

2 Comtraces as Labeled Stratified Order Structures
Motivation
Construction
Representation Theorems

3 Conclusion

Dai Lê (University of Toronto) 2 / 22



Mazurkiewicz Traces (Mazurkiewicz 1977)

(E , ind): an alphabet with an independence relation
Independent symbols can be commuted.

If (a,b) ∈ ind , then xaby ≡ xbay .
A trace is an equivalence class of words.

Each equivalence class describes a partial order run of the system
Simple and elegant algebraic tool providing “true concurrency”
semantics for concurrent systems with a static architecture.

E.g., elementary net systems, 1-safe Petri nets. . .

Dai Lê (University of Toronto) 3 / 22



Combined Traces (Comtraces)

Limitation of Traces
1 as a special class of labeled partial order, traces cannot model

more complicated causality relationships
2 elements of trace alphabet have no visible internal structure

Main Ideas
comtraces (combined traces) [Janicki and Koutny 1995]

1 quotient of step sequence monoid
2 formal-linguistic representation of stratified order structures

[Gaifman and Pratt 1987] [Janicki and Koutny 1991]
3 capture so-structure runs of the system

Dai Lê (University of Toronto) 4 / 22



Combined Traces (Comtraces)

Limitation of Traces
1 as a special class of labeled partial order, traces cannot model

more complicated causality relationships
2 elements of trace alphabet have no visible internal structure

Main Ideas
comtraces (combined traces) [Janicki and Koutny 1995]

1 quotient of step sequence monoid
2 formal-linguistic representation of stratified order structures

[Gaifman and Pratt 1987] [Janicki and Koutny 1991]
3 capture so-structure runs of the system

Dai Lê (University of Toronto) 4 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

c b

Equivalent step sequence runs
1

2

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 5 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

a

c b

Equivalent step sequence runs
1 {a}
2

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 5 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

c

b

b

Equivalent step sequence runs
1 {a}{b}
2

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 5 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

c

c b

Equivalent step sequence runs
1 {a}{b}{c}
2

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 5 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

c b

Equivalent step sequence runs
1 {a}{b}{c}
2

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 6 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

a

c b

Equivalent step sequence runs
1 {a}{b}{c}
2 {a}

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 6 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

c

c b

Equivalent step sequence runs
1 {a}{b}{c}
2 {a}

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 6 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

c

c

b

b

Equivalent step sequence runs
1 {a}{b}{c}
2 {a}

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 6 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

c

c

b

b

Equivalent step sequence runs
1 {a}{b}{c}
2 {a}{b, c}

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 6 / 22



Elementary Net with Inhibitor Arcs [JK ’95]

a

c

c

b

b

Equivalent step sequence runs
1 {a}{b}{c}
2 {a}{b, c}

But NOT equivalent to {a}{c}{b}

“a-priori semantics”: event completion takes some time.

Dai Lê (University of Toronto) 6 / 22



Comtrace

Comtrace Concurrent Alphabet
a tuple (E , sim, ser), where

sim and ser model pairwise simutaneity and serializability
ser ⊆ sim ⊆ E × E
sim is irreflexive and symmetric

defines the valid steps =⇒ valid step sequences.

Comtrace Equivalence
the least congruence ≡ satisfying for all steps A, B and C,

if A× B ⊆ ser and C = A ∪ B then uCv ≡ uABv

Each equivalence class of ≡ is called a comtrace.

Dai Lê (University of Toronto) 7 / 22



Comtrace example

From the previous example

Define sim =
{
(b, c), (c,b)

}
and ser =

{
(b, c)

}
The equivalent runs

1 {a}{b}{c}
2 {a}{b, c}

can be grouped together into a comtrace (an equivalence class)

[{a}{b}{c}] =
{
{a}{b}{c}, {a}{b, c}

}

Dai Lê (University of Toronto) 8 / 22



Motivations

Main research direction
Lift results and techniques from Mazurkiewicz traces to comtraces

Dai Lê (University of Toronto) 9 / 22



Motivations

Among many interesting results on traces

1 Infinite traces and their applications
Gastin et al. (’90-’95) provides excellent theoretical foundation
Applications:

i. message sequence charts (Muscholl et al. ’98, ’99) (Mourin ’02)
(Kuske ’03) (Gazagnaire et al. ’09)

ii. static analysis of con. programs (Madhusudan et al. ’06-current)
2 Temporal logics for finite and infinite traces

(Thiagarajan ’94) (Mukund-Thiagarajan ’96)
(Thiagarajan-Walukiewicz ’97) (Walukiewicz ’98)
(Leucker ’02) (Diekert-Gastin ’00, ’02, ’04) (Diekert ’02)
(Gastin-Mukund ’02) (Gastin et al. ’03) (Gastin-Kuske ’03) . . .

Observation:
Most of the results above utilize labeled-poset definition of traces!

Dai Lê (University of Toronto) 10 / 22



Motivations

Among many interesting results on traces
1 Infinite traces and their applications

Gastin et al. (’90-’95) provides excellent theoretical foundation
Applications:

i. message sequence charts (Muscholl et al. ’98, ’99) (Mourin ’02)
(Kuske ’03) (Gazagnaire et al. ’09)

ii. static analysis of con. programs (Madhusudan et al. ’06-current)

2 Temporal logics for finite and infinite traces
(Thiagarajan ’94) (Mukund-Thiagarajan ’96)
(Thiagarajan-Walukiewicz ’97) (Walukiewicz ’98)
(Leucker ’02) (Diekert-Gastin ’00, ’02, ’04) (Diekert ’02)
(Gastin-Mukund ’02) (Gastin et al. ’03) (Gastin-Kuske ’03) . . .

Observation:
Most of the results above utilize labeled-poset definition of traces!

Dai Lê (University of Toronto) 10 / 22



Motivations

Among many interesting results on traces
1 Infinite traces and their applications

Gastin et al. (’90-’95) provides excellent theoretical foundation
Applications:

i. message sequence charts (Muscholl et al. ’98, ’99) (Mourin ’02)
(Kuske ’03) (Gazagnaire et al. ’09)

ii. static analysis of con. programs (Madhusudan et al. ’06-current)
2 Temporal logics for finite and infinite traces

(Thiagarajan ’94) (Mukund-Thiagarajan ’96)
(Thiagarajan-Walukiewicz ’97) (Walukiewicz ’98)
(Leucker ’02) (Diekert-Gastin ’00, ’02, ’04) (Diekert ’02)
(Gastin-Mukund ’02) (Gastin et al. ’03) (Gastin-Kuske ’03) . . .

Observation:
Most of the results above utilize labeled-poset definition of traces!

Dai Lê (University of Toronto) 10 / 22



Motivations

Among many interesting results on traces
1 Infinite traces and their applications

Gastin et al. (’90-’95) provides excellent theoretical foundation
Applications:

i. message sequence charts (Muscholl et al. ’98, ’99) (Mourin ’02)
(Kuske ’03) (Gazagnaire et al. ’09)

ii. static analysis of con. programs (Madhusudan et al. ’06-current)
2 Temporal logics for finite and infinite traces

(Thiagarajan ’94) (Mukund-Thiagarajan ’96)
(Thiagarajan-Walukiewicz ’97) (Walukiewicz ’98)
(Leucker ’02) (Diekert-Gastin ’00, ’02, ’04) (Diekert ’02)
(Gastin-Mukund ’02) (Gastin et al. ’03) (Gastin-Kuske ’03) . . .

Observation:
Most of the results above utilize labeled-poset definition of traces!

Dai Lê (University of Toronto) 10 / 22



Traces as Labeled Posets

Question:
Given a trace alphabet (E , ind), how to decide if a labeled poset
represents a trace?

b

a a

c

a

Hasse diagram

Two main conditions:
1 Non-connected nodes are labeled

with independent events
2 Adjacent nodes are labeled with

dependent events

Our goal
To give a similar order-theoretic characterization for comtraces!

Dai Lê (University of Toronto) 11 / 22



Traces as Labeled Posets

Question:
Given a trace alphabet (E , ind), how to decide if a labeled poset
represents a trace?

b

a a

c

a

Hasse diagram

Two main conditions:
1 Non-connected nodes are labeled

with independent events
2 Adjacent nodes are labeled with

dependent events

Our goal
To give a similar order-theoretic characterization for comtraces!

Dai Lê (University of Toronto) 11 / 22



Traces as Labeled Posets

Question:
Given a trace alphabet (E , ind), how to decide if a labeled poset
represents a trace?

b

a a

c

a

Hasse diagram

Two main conditions:
1 Non-connected nodes are labeled

with independent events
2 Adjacent nodes are labeled with

dependent events

Our goal
To give a similar order-theoretic characterization for comtraces!

Dai Lê (University of Toronto) 11 / 22



Stratified Order Structures

Stratified order structure (so-structure) [Janicki-Koutny ’91]
a triple S = (X ,≺,@) and binary relations ≺,@ ⊆ X × X satisfying

1 a 6@ a
2 a ≺ b =⇒ a @ b
3 a @ b @ c ∧ a 6= c =⇒ a @ c
4 a @ b ≺ c ∨ a ≺ b @ c =⇒ a ≺ c

Intuitively, ≺ means “earlier than” , and @ means “not later than”

“not later than” = “earlier than” or “simultaneous”

Dai Lê (University of Toronto) 12 / 22



Example of so-structure

1

3

2

4 5

“earlier than” ∩ “not later than”:
“not later than”:

Theorem (JK ’95)
Every comtrace uniquely
defines a labeled so-structure.

Dai Lê (University of Toronto) 13 / 22



Comtraces as labeled so-structures

Question:
Given a comtrace alphabet ({a,b, c}, sim, ser), how to decide if a
labeled so-structure represents a comtrace?

a

c

c

c b

“earlier than” ∩ “not later than”:
“not later than”:

Obstacles
1 complication of having both
→ and→

2 complication of having both
sim and ser

3 cycles make things less
intuitive

Dai Lê (University of Toronto) 14 / 22



Comtraces as labeled so-structures

Question:
Given a comtrace alphabet ({a,b, c}, sim, ser), how to decide if a
labeled so-structure represents a comtrace?

a

c

c

c b

“earlier than” ∩ “not later than”:
“not later than”:

Obstacles
1 complication of having both
→ and→

2 complication of having both
sim and ser

3 cycles make things less
intuitive

Dai Lê (University of Toronto) 14 / 22



Stratified Order Structures

Stratified order structure (so-structure) [Janicki-Koutny ’91]
a triple S = (X ,≺,@) and binary relations ≺,@ ⊆ X × X satisfying

1 a 6@ a
2 a ≺ b =⇒ a @ b
3 a @ b @ c ∧ a 6= c =⇒ a @ c
4 a @ b ≺ c ∨ a ≺ b @ c =⇒ a ≺ c

Intuitively, ≺ means “earlier than” , and @ means “not later than”

Observation
The “not later than” relation @ is a strict pre-order!

Dai Lê (University of Toronto) 15 / 22



Stratified Order Structures

Stratified order structure (so-structure) [Janicki-Koutny ’91]
a triple S = (X ,≺,@) and binary relations ≺,@ ⊆ X × X satisfying

1 a 6@ a
2 a ≺ b =⇒ a @ b
3 a @ b @ c ∧ a 6= c =⇒ a @ c
4 a @ b ≺ c ∨ a ≺ b @ c =⇒ a ≺ c

Intuitively, ≺ means “earlier than” , and @ means “not later than”

Observation
The “not later than” relation @ is a strict pre-order!

Dai Lê (University of Toronto) 15 / 22



Quotient construction

Definition (@-cycle equivalence relation)
Vertices α and β are @-cycle equivalent if and only if α @ β and β @ α.

a

c

c

c b

quotient
construction

{a}

{c} {c,b}

{c}

Dai Lê (University of Toronto) 16 / 22



Quotient construction

Definition (@-cycle equivalence relation)
Vertices α and β are @-cycle equivalent if and only if α @ β and β @ α.

a

c

c

c b

quotient
construction

{a}

{c} {c,b}

{c}

Dai Lê (University of Toronto) 16 / 22



Comtraces as labeled so-structures

Question:
Given a comtrace alphabet ({a,b, c}, sim, ser), how to decide if a
labeled so-structure is a comtrace?

{a}

{c} {c,b}

{c}

Hasse diagram

Conditions (Definition 10)
λ denotes the labeling function

1 adjacent nodes [α]→[β] satisfies
λ([α])× λ([β]) 6⊆ ser

2 adjacent nodes [α]→[β] satisfies
λ([β])× λ([α]) 6⊆ ser

3 label set of a node [α] can’t be
serializable w.r.t. ser

4 . . .

5 . . .

Dai Lê (University of Toronto) 17 / 22



Comtraces as labeled so-structures

Question:
Given a comtrace alphabet ({a,b, c}, sim, ser), how to decide if a
labeled so-structure is a comtrace?

{a}

{c} {c,b}

{c}

Hasse diagram

Conditions (Definition 10)
λ denotes the labeling function

1 adjacent nodes [α]→[β] satisfies
λ([α])× λ([β]) 6⊆ ser

2 adjacent nodes [α]→[β] satisfies
λ([β])× λ([α]) 6⊆ ser

3 label set of a node [α] can’t be
serializable w.r.t. ser

4 . . .

5 . . .

Dai Lê (University of Toronto) 17 / 22



Representation Theorems

Theorem 3
Given a comtrace alphabet θ, let

S∗/ ≡θ: comtraces over θ,
LCT(θ): lsos-comtraces over θ.

Then the following diagram commutes

S∗/ ≡θ LCT(θ)

ct2lct

idS∗/≡θ

lct2ct

idLCT(θ)

This is the converse of the main theorem in [JK ’95].

Dai Lê (University of Toronto) 18 / 22



Representation Theorems

Theorem 4
Given a comtrace alphabet θ, let

LCT(θ): lsos-comtraces over θ
CDG(θ): combined dependency graphs [Kleijn-Koutny ’08] over θ

analogous to dependency graphs for Mazurkiewicz traces

Then the following diagram commutes

LCT(θ) CDG(θ)

lct2dep

idLCT(θ)

dep2lct

idCDG(θ)

Dai Lê (University of Toronto) 19 / 22



Representation Theorems

Theorems 3 and 4: the following diagram commutes

S∗/ ≡θ LCT(θ)

CDG(θ)

ct2lct

lct2ct
idS∗/≡θ

lct2dep

dep2lct

idLCT(θ)

idCDG(θ)

Theorems 5 and 6: these mappings are monoid isomorphisms.

Dai Lê (University of Toronto) 20 / 22



Conclusion

Summary
1 We formally show that comtraces and lsos-comtraces and

combined dependency graphs are equivalent models.
2 Formal-linguistic, order-theoretic and graph-theoretic respectively.

3 More generalized trace languages using step sequences, where
“congruence” is defined from interactions of steps.

Future Works
1 Similar results for generalized combined traces [JL ’08] [JL ’09]
2 Infinite comtraces?
3 Linear temporal logics for comtraces?
4 Applications of comtraces?

Dai Lê (University of Toronto) 21 / 22



Conclusion

Summary
1 We formally show that comtraces and lsos-comtraces and

combined dependency graphs are equivalent models.
2 Formal-linguistic, order-theoretic and graph-theoretic respectively.
3 More generalized trace languages using step sequences, where

“congruence” is defined from interactions of steps.

Future Works
1 Similar results for generalized combined traces [JL ’08] [JL ’09]
2 Infinite comtraces?
3 Linear temporal logics for comtraces?
4 Applications of comtraces?

Dai Lê (University of Toronto) 21 / 22



Conclusion

Summary
1 We formally show that comtraces and lsos-comtraces and

combined dependency graphs are equivalent models.
2 Formal-linguistic, order-theoretic and graph-theoretic respectively.
3 More generalized trace languages using step sequences, where

“congruence” is defined from interactions of steps.

Future Works
1 Similar results for generalized combined traces [JL ’08] [JL ’09]
2 Infinite comtraces?
3 Linear temporal logics for comtraces?
4 Applications of comtraces?

Dai Lê (University of Toronto) 21 / 22



Thank you very much for your attention!

Dai Lê (University of Toronto) 22 / 22


	Background
	Mazurkiewicz Traces
	Combined Traces (Comtraces)

	Comtraces as Labeled Stratified Order Structures
	Motivation
	Construction
	Representation Theorems

	Conclusion

