A Characterization of Combined Traces using Labeled Stratified Order Structures

Dai Tri Man Lê

Department of Computer Science University of Toronto Canada

Petri Nets 2010

Outline

Background

- Mazurkiewicz Traces
- Combined Traces (Comtraces)

2 Comtraces as Labeled Stratified Order Structures

- Motivation
- Construction
- Representation Theorems

3 Conclusion

- (*E*, *ind*): an alphabet with an independence relation
- Independent symbols can be commuted.
 - If $(a, b) \in ind$, then $xaby \equiv xbay$.
- A trace is an equivalence class of words.
 - Each equivalence class describes a partial order run of the system
- Simple and elegant algebraic tool providing "true concurrency" semantics for concurrent systems with a static architecture.
 - E.g., elementary net systems, 1-safe Petri nets...

Limitation of Traces

- as a special class of labeled partial order, traces cannot model more complicated causality relationships
- elements of trace alphabet have no visible internal structure

Limitation of Traces

- as a special class of labeled partial order, traces cannot model more complicated causality relationships
- elements of trace alphabet have no visible internal structure

Main Ideas

comtraces (combined traces) [Janicki and Koutny 1995]

- quotient of step sequence monoid
- formal-linguistic representation of stratified order structures [Gaifman and Pratt 1987] [Janicki and Koutny 1991]
- 3 capture so-structure runs of the system

Equivalent step sequence runs {a}{b}{c}

Equivalent step sequence runs {a}{b}{c} {a}

Equivalent step sequence runs {a}{b}{c} {a}

Comtrace Concurrent Alphabet

a tuple (*E*, *sim*, *ser*), where

- sim and ser model pairwise simutaneity and serializability
- ser \subseteq sim \subseteq $E \times E$
- sim is irreflexive and symmetric
 - defines the valid steps \Longrightarrow valid step sequences.

Comtrace Equivalence

the least congruence \equiv satisfying for all steps A, B and C,

if $A \times B \subseteq ser$ and $C = A \cup B$ then $uCv \equiv uABv$

Each equivalence class of \equiv is called a *comtrace*.

From the previous example

- Define $sim = \{(b, c), (c, b)\}$ and $ser = \{(b, c)\}$
- The equivalent runs
 - {a}{b}{c}
 {a}{b,c}

can be grouped together into a comtrace (an equivalence class)

 $[{a}{b}{c}] = \{{a}{b}{c}, {a}{b}, {c}\}$

Main research direction

Lift results and techniques from Mazurkiewicz traces to comtraces

Among many interesting results on traces

Motivations

Among many interesting results on traces

Infinite traces and their applications

- Gastin et al. ('90-'95) provides excellent theoretical foundation
- Applications:
 - i. message sequence charts (Muscholl et al. '98, '99) (Mourin '02) (Kuske '03) (Gazagnaire et al. '09)
 - ii. static analysis of con. programs (Madhusudan et al. '06-current)

Motivations

Among many interesting results on traces

Infinite traces and their applications

- Gastin et al. ('90-'95) provides excellent theoretical foundation
- Applications:
 - i. message sequence charts (Muscholl et al. '98, '99) (Mourin '02) (Kuske '03) (Gazagnaire et al. '09)
 - ii. static analysis of con. programs (Madhusudan et al. '06-current)
- Temporal logics for finite and infinite traces
 - (Thiagarajan '94) (Mukund-Thiagarajan '96)
 - (Thiagarajan-Walukiewicz '97) (Walukiewicz '98)
 - (Leucker '02) (Diekert-Gastin '00, '02, '04) (Diekert '02)
 - (Gastin-Mukund '02) (Gastin et al. '03) (Gastin-Kuske '03) ...

Motivations

Among many interesting results on traces

- Infinite traces and their applications
 - Gastin et al. ('90-'95) provides excellent theoretical foundation
 - Applications:
 - i. message sequence charts (Muscholl et al. '98, '99) (Mourin '02) (Kuske '03) (Gazagnaire et al. '09)
 - ii. static analysis of con. programs (Madhusudan et al. '06-current)
- Temporal logics for finite and infinite traces
 - (Thiagarajan '94) (Mukund-Thiagarajan '96)
 - (Thiagarajan-Walukiewicz '97) (Walukiewicz '98)
 - (Leucker '02) (Diekert-Gastin '00, '02, '04) (Diekert '02)
 - (Gastin-Mukund '02) (Gastin et al. '03) (Gastin-Kuske '03) ...

Observation:

Most of the results above utilize labeled-poset definition of traces!

Traces as Labeled Posets

Question:

Given a trace alphabet (E, ind), how to decide if a labeled poset represents a trace?

Question:

Given a trace alphabet (E, ind), how to decide if a labeled poset represents a trace?

Two main conditions:

- Non-connected nodes are labeled with independent events
- Adjacent nodes are labeled with dependent events

Question:

Given a trace alphabet (E, ind), how to decide if a labeled poset represents a trace?

Two main conditions:

- Non-connected nodes are labeled with independent events
- Adjacent nodes are labeled with dependent events

Our goal

To give a similar order-theoretic characterization for comtraces!

Stratified order structure (so-structure) [Janicki-Koutny '91]

a triple $S = (X, \prec, \Box)$ and binary relations $\prec, \Box \subseteq X \times X$ satisfying

🚺 a ⊄ a

$$\mathbf{2} a \prec b \implies a \sqsubset b$$

Intuitively, \prec means "earlier than", and \square means "not later than"

"not later than" = "earlier than" or "simultaneous"

Example of so-structure

Theorem (JK '95)

Every comtrace uniquely defines a labeled so-structure.

"earlier than" \cap "not later than": \rightarrow "not later than": \rightarrow

Question:

Given a comtrace alphabet $(\{a, b, c\}, sim, ser)$, how to decide if a labeled so-structure represents a comtrace?

"earlier than" \cap "not later than": \rightarrow "not later than": \rightarrow

Question:

Given a comtrace alphabet $(\{a, b, c\}, sim, ser)$, how to decide if a labeled so-structure represents a comtrace?

"earlier than" \cap "not later than": \rightarrow "not later than": \rightarrow

Obstacles

- complication of having both \rightarrow and \rightarrow
- complication of having both sim and ser
- cycles make things less intuitive

Stratified order structure (so-structure) [Janicki-Koutny '91]

a triple $\mathcal{S} = (X,\prec,\sqsubset)$ and binary relations $\prec,\sqsubset\subseteq X\times X$ satisfying

- **①** a ⊄ a
- $\mathbf{2} \ \mathsf{a} \prec \mathsf{b} \implies \mathsf{a} \sqsubset \mathsf{b}$

Intuitively, ≺ means "earlier than", and □ means "not later than"

Stratified order structure (so-structure) [Janicki-Koutny '91]

a triple $\mathcal{S} = (X,\prec,\sqsubset)$ and binary relations $\prec,\sqsubset\subseteq X\times X$ satisfying

- **①** a ⊄ a
- $\mathbf{2} \ \mathsf{a} \prec \mathsf{b} \implies \mathsf{a} \sqsubset \mathsf{b}$

Intuitively, \prec means "earlier than", and \square means "not later than"

Observation

The "not later than" relation \square is a strict pre-order!

Definition (□-cycle equivalence relation)

Vertices α and β are \Box -cycle equivalent if and only if $\alpha \sqsubset \beta$ and $\beta \sqsubset \alpha$.

Definition (□-cycle equivalence relation)

Vertices α and β are \Box -cycle equivalent if and only if $\alpha \sqsubset \beta$ and $\beta \sqsubset \alpha$.

Comtraces as labeled so-structures

Question:

Given a comtrace alphabet $(\{a, b, c\}, sim, ser)$, how to decide if a labeled so-structure is a comtrace?

Comtraces as labeled so-structures

Question:

Given a comtrace alphabet $(\{a, b, c\}, sim, ser)$, how to decide if a labeled so-structure is a comtrace?

Conditions (Definition 10)

 λ denotes the labeling function

- adjacent nodes [α]→[β] satisfies
 λ([α]) × λ([β]) ⊈ ser
- 2 adjacent nodes [α]→[β] satisfies λ([β]) × λ([α]) ⊈ ser
- Iabel set of a node [α] can't be serializable w.r.t. ser

Representation Theorems

Theorem 3

Given a comtrace alphabet θ , let

- $\mathbb{S}^* / \equiv_{\theta}$: comtraces over θ ,
- LCT(θ): Isos-comtraces over θ .

Then the following diagram commutes

• This is the converse of the main theorem in [JK '95].

Representation Theorems

Theorem 4

Given a comtrace alphabet θ , let

- LCT(θ): Isos-comtraces over θ
- $CDG(\theta)$: combined dependency graphs [Kleijn-Koutny '08] over θ
 - analogous to dependency graphs for Mazurkiewicz traces

Then the following diagram commutes

Representation Theorems

• Theorems 3 and 4: the following diagram commutes

• Theorems 5 and 6: these mappings are monoid isomorphisms.

Conclusion

Summary

- We formally show that comtraces and lsos-comtraces and combined dependency graphs are equivalent models.
- Pormal-linguistic, order-theoretic and graph-theoretic respectively.

Conclusion

Summary

- We formally show that comtraces and lsos-comtraces and combined dependency graphs are equivalent models.
- Pormal-linguistic, order-theoretic and graph-theoretic respectively.
- More generalized trace languages using step sequences, where "congruence" is defined from interactions of steps.

Conclusion

Summary

- We formally show that comtraces and lsos-comtraces and combined dependency graphs are equivalent models.
- Pormal-linguistic, order-theoretic and graph-theoretic respectively.
- More generalized trace languages using step sequences, where "congruence" is defined from interactions of steps.

Future Works

- Similar results for generalized combined traces [JL '08] [JL '09]
- Infinite comtraces?
- Linear temporal logics for comtraces?
- Applications of comtraces?

Thank you very much for your attention!