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The first theme of this thesis investigates the complexity class CC and its associated bounded-arithmetic

theory. Subramanian defined CC as the class of problems log-space reducible to the comparator circuit

value problem (Ccv). Using the Cook-Nguyen method we define the two-sorted theory VCC whose

provably-total functions are exactly the CC functions. To apply this method, we show CC is the same

as the class of problems computed by uniform AC0 circuits with unbounded Ccv oracle gates. We

prove that VNL ⊆ VCC ⊆ VP, where VNL and VP are theories for the classes NL and P respectively.

We strengthen Subramanian’s work by showing that the problems in his paper are indeed complete for

CC under many-one AC0 reductions. We then prove the correctness of these reductions in VCC.

The second theme of this thesis is formalizing probabilistic proofs in bounded arithmetic. In a

series of papers, Jeřábek argued that the universal polynomial-time theory VPV augmented with

the surjective weak pigeonhole principle sWPHP(LFP) for all VPV functions is the ‘right’ theory for

randomized polynomial-time reasoning in bounded arithmetic.

Motivated from the fact that no one had used Jeřábek’s framework for feasible reasoning about

specific interesting randomized algorithms in classes such as RP and RNC2, we formalize in VPV the

correctness of two fundamental RNC2 algorithms for testing if a bipartite graph has a perfect matching

and for finding a bipartite perfect matching.

Using Moser’s recent constructive proof technique for the Lovász Local Lemma, we show that

VPV + sWPHP(LFP) proves the existence of a satisfying assignment for every instance of k-SAT in

which every clause shares a variable with up to 2k−3 other clauses. This result implies the existence of

a randomized polynomial-time algorithm for find satisfying assignments such k-SAT instances.

The remainder of this thesis was motivated by the lack of fundamental probability concepts like

random variables, expectation and variance in Jeřábek’s work, which means basic yet useful theorems

like Markov’s inequality, Chebyshev’s inequality, linearity of expectation, etc were not available in his

work. By choosing suitable definitions of random variables, approximate probability and approximate

expectation, we are able prove these theorems and utilize them to prove the Goldreich-Levin theorem

within the conservative extension HARDA of VPV + sWPHP(LFP).
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Chapter 1

Introduction

The field of proof complexity studies different complexity measures of proofs. In the context of
propositional logic, we would like to understand whether there exists a proof system in which every
tautology has a short proof, i.e., the length of the proof is bounded by some polynomial in the length
of the formula. With the right definition of proof systems [17], this question is equivalent to asking
if NP is closed under complementation. In the context of first-order logic, we study what theorems
can or cannot be proven in a given first-order theory when the scheme of induction is restricted to
predicates that belong to a particular computational complexity class. First-order theories mentioned in
the latter context are called theories of bounded arithmetic [10, 33, 14]. These two approaches of proof
complexity are closely related since propositional proof systems can be seen as nonuniform versions of
bounded arithmetic theories.

My work has been mainly inspired by a recent research program proposed Cook and Nguyen called
bounded reverse mathematics [49, 14], which studies questions of the type:

Given a finite combinatorial theorem,
what is the weakest bounded arithmetic theory required to prove it?

Bounded reverse mathematics bears some similarity to the reverse mathematics research program
proposed by Friedman and Simpson (cf. [57]); however reverse mathematics considers theories that can
define all primitive recursive functions, while here we focus on functions contained in the polynomial
hierarchy.

1.1 The complexity class CC and its two-sorted theory

Comparator networks were originally introduced as a method of sorting numbers (as in Batcher’s
even-odd merge sort [7]), but they are still interesting when the numbers are restricted to the Boolean
values {0, 1} (in fact, a sorting network made from comparators is valid if and only if it works on
Boolean inputs). A comparator gate has two inputs p, q and two outputs p′, q′, where p′ = min(p, q)
and q′ = max(p, q). In the Boolean case (which is the one we consider) p′ = p ∧ q and q′ = p ∨ q. A
comparator circuit (i.e. network) is presented as a set of m horizontal lines in which the m inputs are
presented at the left ends of the lines and the m outputs are presented at the right ends of the lines, and
in between there is a sequence of comparator gates, each represented as a vertical arrow connecting
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Chapter 1. Introduction 3

1 w0 • 0 • 0 0
1 w1 • 0 N 1
1 w2 1
0 w3 H 1 • 0
0 w4 H 1 1
0 w5 H 0 0

Figure 1.1

some wire wi with some wire wj as shown in Figure 1.1. These arrows divide each wire into segments,
each of which gets a Boolean value. The values of wires wi and wj after the arrow are the comparator
outputs of the values of wires wi and wj right before the arrow, with the tip of the arrow representing
the maximum.

The comparator circuit value problem (Ccv) is: given a comparator circuit with specified Boolean
inputs, determine the output value of a designated wire. Subramanian [40, 61] defined CC as the class
of problems log-space reducible to the comparator circuit value problem.

The class CC has several disparate complete problems. As shown in [40, 61] both the lexicographical
first maximal matching problem (Lfmm) and the stable marriage problem (Sm) are complete for CC

under log-space reductions. The Sm problem introduced by Gale and Shapley in 1962 [20] is especially
interesting: Given n men and n women, each with a complete ranking according to preference of all n
members of the opposite sex, find a complete matching of the men and women such that there are
no two people of opposite sex who would both rather have each other than their current partners.
Gale and Shapley proved that such a ‘stable’ matching always exists, although it may not be unique.
Subramanian [61] showed that Sm treated as a search problem (i.e. find any stable marriage) is complete
for CC under log-space reducibility. Other natural and interesting complete problems include: the stable
roommate problem [61], the telephone connection problem [54], the problem of predicting internal
diffusion-limited aggregation clusters from theoretical physics [43], and the decision version of the
hierarchical clustering problem [25].

Since Ccv is a special case of the monotone circuit value problem, CC is contained in P. A result
in [40] (attributed to Feder) also shows that NL ⊆ CC. It is worth noting that CC is among a very
few classes between NL and P that are not known to be contained in NC. It is conjectured that CC is
incomparable with NC. For example, the CC-complete problem Lfmm seems inherently sequential, and
thus is not believed to be contained in NC. On the other hand, computing integer matrix powering is in
the function class of NC, but is not believed to be in the function class of CC due to the fanout restriction
of comparator circuits. The reader is referred to the work by Cook, Filmus and Lê [16], which provided
evidence for the conjecture by giving oracle settings in which relativized CC and relativized NC are
incomparable. We will not discuss these oracle separation results in this thesis.

Let SucCC be the class of problems p-reducible to succinct CC (where a description of an exponential
size comparator circuit is given using linear size Boolean circuits). It is easy to show that SucCC lies
between PSPACE and EXPTIME, but we we are unable to show that it is equal to either class1. We are
not aware of other complexity classes which appear to lie properly between PSPACE and EXPTIME.

In Chapter 3, we will study the complexity-theoretic questions related to the complexity CC from the
proof-complexity theoretic point of view. We want to define a two-sorted theory that characterizes the

1Thanks to Scott Aaronson for pointing this out.
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complexity class CC using the method developed by [14, Chapter 9]. In general this method associates
a theory VC with a suitable complexity class C in such a way that a function is in the function class FC

associated with C if and only if it is provably total in VC. (A string-valued function is in FC iff it is
polynomially bounded and its bit-graph is in C.) However to apply this method, we need to show that
CC is the same as the class of problems AC0 ‘circuit’ reducible to Ccv (i.e. computed by uniform AC0

circuits with CCV gates). Note that AC0 ‘circuit’ reducibility is called simply AC0 reducibility in [14]; in
this thesis we will use “AC0 reducibility” as an abbreviation for AC0 ‘circuit’ reducibility.

We will start out by defining CC using the even weaker AC0 many-one reducibility. We will show in
Section 3.4 that CC is closed under AC0 reductions, and in Section 3.5 that CC is closed under log-space
many-one reductions, which implies that these three types of reducibility define the same complexity
class CC. Our key technical tool is an elegant construction of universal comparator circuits due to
Yuval Filmus. Using universal comparator circuits, in Section 3.4 we also characterize CC as the class
of problems computed by AC0-uniform polynomial-size families of comparator circuits supplied with
copies of the input and its negation, which tells us that CC can be characterized in terms of uniform
circuit families, as in the definitions of the complexity classes NCk and ACk.

Chapter 3 contributes to the complexity theory of CC by sharpening these early results and
simplifying their proofs. For example we prove that the three problems Ccv, Lfmm, and Sm are
inter-reducible under AC0 many-one reductions as opposed to log-space many-one reductions. Also we
introduce a three-valued logic version of Ccv to facilitate its reduction to Sm.

Chapter 3 contributes to the proof complexity of CC by introducing a two-sorted formal theory
VCC which captures the class CC and which can formalize the proofs of the above results. Analogous
to the complexity-theoretic relationship NL ⊆ CC ⊆ P, we will also show that VNL ⊆ VCC ⊆ VP. To
show the containment VNL ⊆ VCC, we will give a simplified construction of comparator circuits that
simulates the depth-first search algorithm on directed acyclic graphs. However it is nontrivial to talk
about this depth-first search algorithm directly since it would require VNL reasoning. It turns out we
can show that VTC0 ⊆ VNC1 ⊆ VCC and use the counting ability of VTC0 to analyze the computation
of the comparator circuits in the above construction

1.2 Formalizing probabilistic reasoning

The second theme of my thesis has to do with formalizing probabilistic proofs in bounded arithmetic.
One reason of choosing this research direction is due to my fascination of the unusual effectiveness of
the probabilistic method in theoretical computer science (cf. [3, 46, 42]). But a more important reason is
that techniques for formalizing probabilistic proofs have not been explored or understood as much in
bounded arithmetic.

It is worth noting that we cannot hope to find theories that exactly capture probabilistic complexity
classes such as ZPP, RP and BPP because these are ‘semantic’ classes which we suppose are not
recursively enumerable (cf. [62]). Nevertheless there has been significant progress toward developing
tools in weak theories that might be used to describe some of the algorithms in these classes.

The difficulty of formalizing the probabilistic proofs can be summarized as follows. Since the notion
of probability can be essentially reduced to the cardinality ratio of definable sets, it seems natural
to require the ability to count definable-sets that are exponentially large. This is problematic since
Toda’s theorem [63] implies that if exact counting of polynomial-time definable sets is expressible by a
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bounded formula of bounded arithmetic, then the polynomial hierarchy collapses.

Paris, Wilkie and Woods [52] and later Pudlak [53] observed that in many cases exact counting is
not needed to formalize probabilistic arguments; in other words, we can utilize approximate counting by
applying variants of the weak pigeonhole principle. It seems unlikely that any of these variants can
be proven in the theories for polynomial-time reasoning, but they can be proven in Buss’s theory S2

or T2 for the polynomial hierarchy. The first connection between the weak pigeonhole principle and
randomized algorithms was noticed by Wilkie (cf. [33]), who showed that randomized polynomial-time
functions witness ΣB

1 -consequences of V1 + sWPHP(LFP), where V1 is the two-sorted version of Buss’s
theory S1

2 for polynomial-time reasoning, and sWPHP(LFP) denotes the surjective weak pigeonhole
principle for all VPV functions (i.e. polynomial-time functions).

Building on these early results, Jeřábek [28] showed that we can “compare” the sizes of two
bounded P/poly definable sets within VPV by constructing a surjective mapping from one set onto
another. Using this method, Jeřábek developed tools for describing algorithms in ZPP and RP. He also
showed in [28, 29] that the theory VPV + sWPHP(LFP) is powerful enough to formalize proofs of very
sophisticated derandomization results, e.g. the Nisan-Wigderson theorem [50] and the Impagliazzo-
Wigderson theorem [27]. (Note that Jeřábek actually used the single-sorted theory PV1 + sWPHP(PV),
but these two theories are isomorphic.)

In [30], Jeřábek developed an even more systematic approach by showing that for any bounded
P/poly definable set, there exists a suitable pair of surjective “counting functions” in a suitable
conservative extension of VPV+ sWPHP(LFP) which can approximate the cardinality of the set up to a
polynomially small error. From this and other results he argued convincingly that VPV + sWPHP(LFP)
is the “right” theory for reasoning about probabilistic polynomial-time algorithms. However so far no
one has used his framework for feasible reasoning about specific interesting randomized algorithms in
classes such as RP and RNC2.

1.2.1 Formalizing randomized matching algorithms

In Chapter 4 we analyze in VPV two randomized algorithms using Jeřábek’s framework. The first one
is the RNC2 algorithm for determining whether a bipartite graph has a perfect matching, based on the
Schwartz-Zippel Lemma [55, 65] for polynomial identity testing applied to the Edmonds polynomial
[18] associated with the graph. The second algorithm, due to Mulmuley, Vazirani and Vazirani [47], is in
the function class associated with RNC2, and uses the Isolating Lemma to find such a perfect matching
when it exists. Proving correctness of these algorithms involves proving that the probability of error is
bounded above by 1/2. We formulate this assertion in a way suggested by Jeřábek’s framework (see
Definition 57). This involves defining polynomial-time functions from {0, 1}n onto {0, 1} × Bn, where
Bn is the set of “bad” random bit strings of length n which cause an error in the computation. We then
show that VPV proves that the function is a surjection.

Our proofs are carried out in the theory VPV for polynomial-time reasoning, without the surjective
weak pigeonhole principle sWPHP(LFP). Jeřábek used the sWPHP(LFP) principle to prove theorems
justifying the above definition of error probability, but we do not need it to apply his definition in this
chapter.

Many proofs concerning determinants are based on the Lagrange expansion (also known as the
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Leibniz formula)

Det(A) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

A(i, σ(i))

where the sum is over exponentially many terms. Since our proofs in VPV can only use polynomial-time
concepts, we cannot formalize such proofs, and must provide alternative proofs.

In the same vein, the standard proof of the Schwartz-Zippel Lemma assumes that a multivariate
polynomial given by an arithmetic circuit can be expanded to a sum of monomials. But this sum in
general has exponentially many terms so again we cannot directly formalize this proof in VPV. Thus
we have to provide a new proof for a special case Schwartz-Zippel Lemma that is sufficient for testing
if a bipartite graph has a perfect matching.

1.2.2 Formalizing Moser’s constructive proof of the Lovász Local Lemma

The Lovász Local Lemma is a powerful combinatorial result used in many applications to show
that a particular event happens with positive probability. It is well-known that if a large number of
independent events each happen with positive probability, then there is positive (possibly exponentially
small) probability that they all happen at the same time. The Lovász Local Lemma, first proved by Erdős
and Lovász [19], extends this result to the case when the events only have some limited dependencies.
We will be particularly interested in the application of this lemma to the k-SAT problem. Then by this
lemma, it follows that if every clause of a k-CNF formula F shares a variable with at most 2k/e other
clauses (e is the base of the natural logarithm), then F is satisfiable. However the Lovász Local Lemma
is non-constructive and does not provide an efficient algorithm to find a satisfying assignment for such
a formula. In the breakthrough work [8], Beck demonstrated that if every clause shares a variable
with at most O(2k/48) other clauses, then we can find a satisfying assignment in polynomial time.
Alon [2] simplified and randomized Beck’s algorithm and improved the bound to O(2k/8). Srinivasan
presented in [59] a variant that achieves a bound of essentially O(2k/4). In [44], Moser gave an elegant
constructive proof of the Lovász Local Lemma for k-SAT, which not only is simpler than the previous
approaches, but also achieves a better bound of 2k/8. Moser’s proof technique was later generalized
by Moser and Tardos to give a constructive proof for a general (not necessarily symmetric) version of
the Lovász Local Lemma [45], which they claimed to be sufficient for almost all known applications of
the lemma. As a corollary, their constructive proof gives a randomized polynomial-time algorithm for
k-SAT, where every clause shares a variable with up to 2k/e other clauses.

It is worth emphasizing that the proofs given by Alon, Srinivasan, Moser, and Moser-Tardos
are constructive in the sense that randomized polynomial-time algorithms are provided for finding a
satisfying assignment. This notion of “randomized constructivity” has recently been elaborated by
Gasarch and Haeupler [21].

In Chapter 5, using Moser’s technique in [44], we show that if every clause of a k-CNF formula F
shares a variable with at most 2k/8 other clauses, then VPV + sWPHP(LFP) proves the existence of a
satisfying assignment for F. By Wilkie’s Witnessing Theorem, this implies that there exists randomized
polynomial-time algorithm that outputs a satisfying assignment for such a formula F with probability at
least 1/2. The work of this chapter is my first attempt to characterize the class of Moser’s “randomized
constructive” proofs, which can be formalized in VPV + sWPHP(LFP).
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1.2.3 Formalizing the proof of the Goldreich-Levin theorem

In Chapter 6 we will analyze the Goldreich-Levin theorem, a fundamental theorem in cryptography
stating that every one-way permutation F can be used to construct another one-way permutation F′

that has a hardcore predicate. The Goldreich-Levin theorem is an important building block in modern
cryptography. For example, together with Yao’s theorem, it is not hard to use a hybrid argument to
construct pseudorandom generators from one-way permutations. Recall that Yao’s theorem gives an
equivalence between the indistinguishability of a pseudorandom generator and the unpredictability of
the next bit given the earlier bits of a sequence.

Although the proof of the Goldreich-Levin theorem and many other theorems in cryptography
are constructive in nature, we often need some nontrivial probabilistic tools, e.g. Markov’s inequality,
Chebyshev’s inequality, linearity of expectation, or linearity of variance for pairwise-independent
random variables. None of these concepts was formalized in Jeřábek’s work [28, 29, 30] because he
did not define the notion of expectation E[•] in probability. Thus it was not clear how to formalize the
proof of the Goldreich-Levin theorem in Jeřábek’s approximate counting framework.

We will show in this chapter how to extend Jeřábek’s approximate counting framework in [30] so
that we can talk about basic concepts of finite probability theory more easily. The starting point of our
work was an observation due to Jeřábek [28]: by working in a suitable conservative extension HARDA of
VPV + sWPHP(LFP), we can define an integer valued function Size(C, n, ε), where C : {0, 1}n → {0, 1}
is a circuit and ε = 1/poly(n), that gives the approximate size of the set

{
X ∈ {0, 1}n | C(X) = 1

}
within error at most ε · 2n. The basic idea is that the theory HARDA contains oracle function symbols
for appropriate hard-in-average functions to construct the Nisan-Wigderson generators, which can then
be used to generate the random samples to approximate the probability

PX∈{0,1}n [C(X) = 1]

within any error ε = 1/poly(n). From there, we can easily define the notion approximate probability of
the event C(X) = 1 as

Pε
X∈{0,1}n [C(X)] =

Size(C, n, ε)

2n .

Informally, Pε
X∈{0,1}n [C(X)] approximates the usual probability notion PX∈{0,1}n [C(X)] within

ε-error since it follows from the definition of approximate counting that

PX∈{0,1}n [C(X)]− ε ≤ Pε
X∈{0,1}n [C(X)] ≤ PX∈{0,1}n [C(X)] + ε.

Next we define a suitable notion of approximate expectation using approximate probability. From these
definitions we are able to formalize standard properties of approximate probability and approximate
expectation including suitable versions of Markov’s inequality, Chebyshev’s inequality, linearity of
expectation, and linearity of variance for pairwise-independent random variables.

Note that when computing the function Size(C, n, ε) that approximates the size of of the set

{
X ∈ {0, 1}n | C(X) = 1

}
,
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Jeřábek’s method chooses a unique Nisan-Wigderson generator based on parameters n, the approx-
imation error ε = 1/poly(n) and the size of circuit C. We make a simple but useful observation
(see Corollary 82 for the detailed statement) that when ε is sufficiently small, the choice of a Nisan-
Wigderson generator in Jeřábek’s method only depends on n and ε. Thus if we let X1, . . . ,Xk be sets
defined as

Xi =
{

X ∈ {0, 1}n | Ci(X) = 1
}

for some circuits Ci, then from this observation we know that when ε is sufficiently small, the same
Nisan-Wigderson will be used to approximate the sizes of X1, . . . ,Xk for a given ε.

An example application of this observation is the following. Assume that

Ck(X) = C1(X) ∨ . . . ∨ Ck−1(X).

Then by this observation we can show that for sufficiently small ε = 1/poly(n), we get the following
version of “union-bound”

Pε
X∈{0,1}n [Ck(X) = 1] ≤ Pε

X∈{0,1}n [C1(X) = 1] + . . . + Pε
X∈{0,1}n [Ck−1(X) = 1].

Without this careful choice of ε, because of the nature of approximate counting, we can only guarantee
that

Pε
X∈{0,1}n [Ck(X) = 1] ≤ Pε

X∈{0,1}n [C1(X) = 1] + . . . + Pε
X∈{0,1}n [Ck−1(X) = 1] + δ,

where the error δ depends on ε and k. We use Corollary 82 extensively to reduce approximation errors
and simplify many proofs when formalizing Markov’s inequality, Chebyshev’s inequality, linearity of
expectation, and linearity of variance for pairwise-independent random variables.

Finally we show that these properties of approximate probability, approximate expectation and
approximate variance are sufficient for proving the Goldreich-Levin theorem in the conservative
extension HARDA of VPV + sWPHP(LFP).

1.3 Organization of the thesis

In Chapter 2 we cover the necessary background on bounded arithmetic and notation needed to
understand this thesis.

Chapter 3 is dedicated to the complexity class CC, its two-sorted theory VCC, and our analysis of
several CC-complete problems in the theory VCC. This chapter is based on as the joint work with Cook
and Ye [38] and a portion of the joint work with Cook and Filmus [16].

In Chapter 4 we formalize in the theory VPV two RNC2 randomized algorithms. The first algorithm
is for testing if a bipartite graph has a perfect matching, and and the second is for finding a perfect
matching in a bipartite graph. The content of this chapter is based on the joint work with Cook [36, 37].

In Chapter 5 we formalize Moser’s constructive proof of the Lovász Local Lemma for k-SAT in the
theory VPV + sWPHP(LFP).

In Chapter 6 we show how to extend Jeřábek’s approximate counting framework [30] to formalize
the Goldreich-Levin Theorem. This chapter is based on unpublished joint work with Wesley George.

Chapter 7 contains our final remarks and discusses some open problems.



Chapter 2

Preliminaries

2.1 Background on bounded arithmetic

The area of bounded arithmetic was pioneered by Parikh [51], where he defined the theory now known
as I∆0, whose definable functions by bounded formulas are precisely those in the Linear Time Hierarchy.
A milestone in this line of research was Buss’s PhD thesis [10], which introduced the hierarchies of
bounded theories

S1
2 ⊆ T1

2 ⊆ S2
2 ⊆ T2

2 ⊆ . . . ⊆ Si
2 ⊆ Ti

2 ⊆ . . .

These theories, whose definable functions by bounded formulas are those in the polynomial hierarchy,
are of central importance in the study of bounded arithmetic. In this thesis we will follow the two-sorted
treatment of bounded theories by Cook and Nguyen [14]. One main advantage is that two-sorted
theories are more appropriate when working with “small” complexity classes within P.

2.1.1 Two-sorted vocabularies

We use two-sorted vocabularies for our theories as described by Cook and Nguyen [14]. Two-sorted
languages have variables x, y, z, . . . ranging over N and variables X, Y, Z, . . . ranging over finite subsets
of N, interpreted as bit strings. Two sorted vocabulary L2

A includes the usual symbols 0, 1,+, ·,=,≤ for
arithmetic over N, the length function |X| for strings (|X| is zero if X is empty, otherwise 1 + max(X)),
the set membership relation ∈, and string equality =2 (subscript 2 is usually omitted). We will use the
notation X(t) for t ∈ X, and think of X(t) as the tth bit in the string X.

The number terms in the base language L2
A are built from the constants 0, 1, variables x, y, z, . . . and

length terms |X| using + and ·. The only string terms are string variables, but when we extend L2
A

by adding string-valued functions, other string terms will be built as usual. The atomic formulas are
t = u, X = Y, t ≤ u, t ∈ X for any number terms t, u and string variables X, Y. Formulas are built
from atomic formulas using ∧,∨,¬ and ∃x, ∃X, ∀x, ∀X. Bounded number quantifiers are defined as
usual, and bounded string quantifier ∃X ≤ t, ϕ stands for ∃X(|X| ≤ t ∧ ϕ) and ∀X ≤ t, ϕ stands for
∀X(|X| ≤ t→ ϕ), where X does not appear in term t.

The class ΣB
0 consists of all L2

A-formulas with no string quantifiers and only bounded number
quantifiers. The class ΣB

1 consists of formulas of the form ∃~X <~t ϕ, where ϕ ∈ ΣB
0 and the prefix of

the bounded quantifiers might be empty. These classes are extended to ΣB
i (and ΠB

i ) for all i ≥ 0, in

9
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the usual way. More generally we write ΣB
i (L) to denote the class of ΣB

i -formulas which may have
function and predicate symbols from L ∪ L2

A.

2.1.2 Two-sorted complexity classes and reductions

Two-sorted complexity classes contain relations R(~x, ~X), where ~x are number arguments and ~X are
string arguments. (In the sequel we refer to a relation R(~x, ~X) as a decision problem: given (~x, ~X)

determine whether R(~x, ~X) holds.) In defining complexity classes using machines or circuits, the
number arguments are represented in unary notation and the string arguments are represented in
binary. The string arguments are the main inputs, and the number arguments are auxiliary inputs that
can be used to index the bits of strings. Using these input conventions, we define the two-sorted version
of AC0 to be the class of relations R(~x, ~X) such that some alternating Turing machine accepts R in time
O(log n) with a constant number of alternations. Then the descriptive complexity characterization of
AC0 gives rise to the following theorem [14, Chapter IV].

Theorem 1. A relation R(~x, ~X) is in AC0 if and only if it is represented by some ΣB
0 -formula ϕ(~x, ~X).

Given a class of relations C, we associate a class FC of string-valued functions F(~x, ~X) and number
functions f (~x, ~X) with C as follows. We require these functions to be p-bounded, i.e., |F(~x, ~X)| and
f (~x, ~X) are bounded by a polynomial in ~x and |~X|. Then we define FC to consist of all p-bounded
number functions whose graphs are in C and all p-bounded string functions whose bit graphs are in C.
(Here the bit graph of F(~x, ~X) is the relation BF(i,~x, ~X) which holds iff the ith bit of F(~x, ~X) is 1.)

Most of the computational problems we consider here can be nicely expressed as decision problems
(i.e. relations), but the stable marriage problem Sm is an exception, because in general a given instance
has more than one solution (i.e. there is more than one stable marriage). Thus Sm is properly described
as a search problem. Following [14, Section VIII.5] we define a two-sorted search problem QR to be a
multivalued function with graph R(~x, ~X, Z), so

QR(~x, ~X) =
{

Z | R(~x, ~X, Z)
}

(2.1)

The search problem is total if the set QR(~x, ~X) is non-empty for all ~x, ~X. The search problem is a function
problem if |QR(~x, ~X)| = 1 for all ~x, ~X. A function F(~x, ~X) solves QR if

F(~x, ~X) ∈ QR(~x, ~X)

for all ~x, ~X. Here we will be concerned only with total search problems.

Definition 2. Let C be a complexity class. A relation R1(~x, ~X) is C many-one reducible to a relation
R2(~y,~Y) (written R1 ≤C

m R2) if there are functions ~f ,~F in FC such that

R1(~x, ~X)↔ R2(~f (~x, ~X),~F(~x, ~X)).

A search problem QR1(~x, ~X) is C many-one reducible to a search problem QR2(~y,~Y) if there are
functions G, ~f ,~F in FC such that

G(~x, ~X, Z) ∈ QR1(~x, ~X) for all Z ∈ QR2(
~f (~x, ~X),~F(~x, ~X)).
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Here we are mainly interested in the cases that C is either AC0 or L (log space). We also need a
generalization of AC0 many-one reducibility called simply AC0 reducibility in [14, Definition IX.1.1].
Roughly speaking a function or relation is AC0-reducible to a collection L of functions and relations
if it can be computed by a uniform polynomial size constant depth family of circuits which have
unbounded fan-in gates computing functions and relations from L (i.e. ‘oracle gates’), in addition to
Boolean gates. Formally:

Definition 3. A string function F is AC0-reducible to a collection L of relations and functions (written
F ≤AC0 L) if there is a some constant d and a sequence of string functions F1, . . . , Fd = F such that each
Fi is p-bounded and its bit graph is represented by a ΣB

0 (L, F1, . . . , Fi−1)-formula.
A number function f is AC0-reducible to L if f = |F| for some string function F which is AC0-

reducible to L. A relation R is AC0-reducible to L if its characteristic function is AC0-reducible to
L.

We note that standard small complexity classes including AC0, TC0, NC1, NL and P (as well as their
corresponding function classes) are closed under AC0 reductions.

2.1.3 Two-sorted theories

The theory V0 for AC0 is the basis for developing theories for small complexity classes within P in
[14]. V0 has the vocabulary L2

A and is axiomatized by the set of 2-BASIC axioms as given in Figure 2.1,
which express basic properties of symbols in L2

A, together with the comprehension axiom schema

ΣB
0 -COMP : ∃X ≤ y ∀z < y

(
X(z)↔ ϕ(z)

)
,

where ϕ ∈ ΣB
0 (L2

A) and X does not occur free in ϕ. Note that the axioms B1–B12 of 2-BASIC are based
on the 1-BASIC axioms of theory I∆0; the axioms L1 and L2 characterize |X|.

Although V0 has no explicit induction axiom, nevertheless, using ΣB
0 -COMP and the fact that |X|

produces the maximum element of the finite set X, the following schemes are provable in V0 for every
formula ϕ ∈ ΣB

0 (L2
A)

ΣB
0 -IND :

[
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x + 1)

)]
→ ∀xϕ(x),

ΣB
0 -MIN : ϕ(y)→ ∃x

(
ϕ(x) ∧ ¬∃z < x ϕ(z)

)
,

ΣB
0 -MAX : ϕ(0)→ ∃x ≤ y

[
ϕ(x) ∧ ¬∃z ≤ y

(
z > x ∧ ϕ(z)

)]
.

In [14, Chapter V], it was shown that V0 is finitely axiomatizable and a p-bounded function is in
FAC0 iff it is provably total in V0. A universally-axiomatized conservative extension V0 of V0 was also
obtained by introducing function symbols and their defining axioms for all FAC0 functions.

In general, we say that a string function F(~x, ~X) is ΣB
1 -definable (or provably total) in a two-sorted

theory T if there is a ΣB
1 formula ϕ(~x, ~X, Y) representing the graph Y = F(~x, ~X) of F such that

T ` ∀~x ∀~X∃!Yϕ(~x, ~X, Y).

Similarly for a number function f (~x, ~X).
In [14, Chapter IX], Cook and Nguyen develop a general method for associating a theory VC with

certain complexity classes C ⊆ P, where VC extends V0 with an additional axiom asserting the existence
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B1. x + 1 6= 0
B2. x + 1 = y + 1→ x = y
B3. x + 0 = x
B4. x + (y + 1) = (x + y) + 1
B5. x · 0 = 0
B6. x · (y + 1) = (x · y) + x
B7. (x ≤ y ∧ y ≤ x)→ x = y

B8. x ≤ x + y
B9. 0 ≤ x
B10. x ≤ y ∨ y ≤ x
B11. x ≤ y↔ x < y + 1
B12. x 6= 0→ ∃y ≤ x (y + 1 = x)
L1. X(y)→ y < |X|
L2. y + 1 = |X| → X(y)

SE.
(
|X| = |Y| ∧ ∀i < |X|

(
X(i) = Y(i)

))
→ X = Y

Figure 2.1: The 2-BASIC axioms

of a solution to a complete problem for C. In order for this method to work, the class C must be
closed under AC0-reducibility (Definition 3). The method shows how to define a universal conservative
extension VC of VC, where VC has string function symbols for precisely the string functions of FC, and
terms for precisely the number functions of FC. Further, VC proves the ΣB

0 (L)-IND and ΣB
0 (L)-MIN

schemes, where L is the vocabulary of VC. It follows from the Herbrand Theorem that the ΣB
1 -definable

functions of both VC and VC are precisely those in FC.
Using this framework Cook and Nguyen define specific theories for several complexity classes

and give examples of theorems formalizable in each theory. The theories of interest to us in this
thesis are VTC0, VNC1, VNL and VP for the complexity classes TC0, NC1, NL and P respectively. All
of these theories have vocabulary L2

A. Let 〈x, y〉 denote the pairing function, which is the L2
A term

(x + y)(x + y + 1) + 2y. The theory VTC0 is axiomatized by the axioms of V0 and the axiom:

NUMONES : ∃Z ≤ 1 + 〈n, n〉 , δNUM(n, X, Z), (2.2)

where the formula δNUM(n, X, Z) asserts that Z is a matrix consisting of n rows such that for every
y ≤ n, the yth row of Z encodes the number of ones in the prefix of length y of the binary string X.
Thus, the nth row of Z essentially “counts” the number of ones in X. Because of this counting ability,
VTC0 can prove the pigeonhole principle PHP(n, F) saying that if F maps a set of n + 1 elements to a set
of n elements, then F is not an injection.

The theory VNC1 is axiomatized by the axioms of V0 and the axiom:

MFV : ∃Y ≤ 2n + 1, δMFV(n, F, I, Y), (2.3)

where F encodes a monotone Boolean formula presented as a binary tree with n distinct variables as
leaves, and I encodes the Boolean values of its variables, and the formula δMFV(n, G, I, Y) holds iff Y
correctly encodes the values of all nodes in the tree, including the value of the root, which is the value
of the formula with input I. Recall that the monotone Boolean formula value problem is complete for NC1

[11, 6].
The theory VP is axiomatized by the axioms of V0 and the axiom MCV, which is defined very

similarly to MFV, but the monotone circuit value problem is used instead.
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The theory VNL is axiomatized by the axioms of V0 and the axiom:

CONN : ∃U ≤ 〈n, n〉+ 1, δCONN(n, E, U), (2.4)

where E encodes the edge relation of a directed graph G with n vertices v0, . . . , vn−1, and the formula
δCONN(n, E, U) is intended to mean that U is a matrix of n rows, where each row has a Boolean value
for each vertex in G, and U(d, i) holds iff vertex vi has distance at most d from v0. More directly, the
formula δCONN(n, E, U) asserts

U(0, i) holds iff i = 0, and U(d + 1, i) holds iff either U(d, i) holds or
there is j such that U(d, j) holds and there is an edge in G from vj to vi.

(2.5)

Since we need some basic linear algebra in this thesis, we are interested in the two-sorted theory V#L
[13]. Recall that #L is usually defined as the class of functions F such that for some nondeterministic
logspace Turing machine M, F(X) is the number of accepting computations of M on input X. Since
counting the number of accepting paths of nondeterministic logspace is AC0-equivalent to matrix
powering, V#L is defined to be the extension of the base theory V0 with an additional axiom stating
the existence of powers Ak for every matrix A over Z. The closure of #L under AC0 reductions is called
DET. It turns out that computing the determinant of integer matrices is complete for DET under AC0

reductions since Berkowitz’s algorithm [9] can be used to reduce the determinant to matrix powering.
Moreover, V#L proves that the totality of the function Det, which computes the determinant of integer
matrices based on Berkowitz’s algorithm. It is an open question whether the theory V#L also proves
the cofactor expansion formula and other basic properties of determinants. However from results in [58]
it follows that V#L proves that the usual properties of determinants follow from the Cayley-Hamilton
Theorem (which states that a matrix satisfies its characteristic polynomial). Using the Cook-Nguyen
framework we can define the universally-axiomatized conservative extension V#L of the two-sorted
theory V#L [13]. As a consequence the theory V#L proves that the function Det is in the language of
V#L.

Similar to what is currently known about complexity classes, it was shown in [14, Chapter IX] that
the following inclusions hold:

V0 ( VTC0 ⊆ VNC1 ⊆ VNL ⊆ V#L ⊆ VP. (2.6)

2.1.4 Theories for polynomial-time reasoning

In this thesis we are particularly interested in the universal theory VPV for polynomial-time reasoning
[14, Chapter VIII.2] since we will use it extensively in this thesis. The universal theory VPV is based
on Cook’s single-sorted theory PV [15], which was historically the first theory designed to capture
polynomial-time reasoning. A nice property of PV (and VPV) is that their universal theorems translate
into families of propositional tautologies with polynomial size proofs in any extended Frege proof
system.

The vocabulary LFP of VPV extends that of V0 with additional symbols introduced based on
Cobham’s machine independent characterization of FP [12]. Let Z<y denote the first y bits of Z.
Formally the vocabulary LFP of VPV is the smallest set satisfying
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1. LFP contains the vocabulary of V0

2. For any two function G(~x, ~X), H(y,~x, ~X, ~Z) over LFP and a L2
A-term t = t(y,~x, ~X), if F is defined

by limited recursion from G, H and t, i.e.,

F(0,~x, ~X) = G(~x, ~X),

F(y + 1,~x, ~X) = H(y,~x, ~X, F(y,~x, ~X))<t(y,~x,~X),

then F ∈ LFP.

We will often abuse the notation by letting LFP denote the set of function symbols in LFP.
The theory VPV can then be defined to be the theory over LFP whose axioms are those of V0 together

with defining axioms for every function symbols in LFP. VPV proves the scheme ΣB
0 (LFP)-COMP and

the following schemes

ΣB
0 (LFP)-IND:

(
ϕ(0) ∧ ∀x

(
ϕ(x)→ ϕ(x + 1)

))
→ ∀xϕ(x)

ΣB
0 (LFP)-MIN: ϕ(y)→ ∃x

(
ϕ(x) ∧ ¬∃z < xϕ(z)

)
ΣB

0 (LFP)-MAX: ϕ(0)→ ∃x ≤ y
(

ϕ(x) ∧ ¬∃z ≤ y
(
z > x ∧ ϕ(z)

))
where ϕ is any ΣB

0 (LFP)-formula. It follows from Herbrand’s Theorem that the provably-total functions
in VPV are precisely the functions in LFP.

Observe that VPV extends V#L since matrix powering can easily be carried out in polynomial
time, and thus all theorems of V#L from [13, 58] are also theorems of VPV. From results in [58] (see
page 44 of [29] for a correction) it follows that VPV proves the Cayley-Hamilton Theorem, and hence
the cofactor expansion formula and other usual properties of determinants of integer matrices.

Another theory for polynomial-time reasoning is V1 [14]. In general, the theories Vi for FPΣP
i

reasoning is axiomatized by 2-BASIC and the comprehension axiom schema

ΣB
i -COMP : ∃X ≤ y ∀z < y

(
X(z)↔ ϕ(z)

)
,

where ϕ ∈ ΣB
i (L2

A) and X does not occur free in ϕ. Theories Vi are two-sorted versions of Buss’s Si
2

single-sorted theories [10], and Vi and Si
2 are isomorphic under the notion of RSUV isomorphism [14,

Section VIII.8.5].
Thus the theory V1 is axiomatized by 2-BASIC and the ΣB

1 -COMP schema. The ΣB
1 -definable

functions of V1 are FP functions, and V1 is ΣB
1 -conservative over VPV. However there is evidence

showing that V1 is stronger than VPV. For example, the theory V1 proves the ΣB
1 -IND, ΣB

1 -MIN and
ΣB

1 -MAX schemes while VPV cannot prove these ΣB
1 schemes, assuming the polynomial hierarchy does

not collapse [34].

2.1.5 The surjective weak pigeonhole principle and Wilkie’s Witnessing Theorem

The surjective weak pigeonhole principle for a function F, denoted by sWPHP(F), is the universal closure
of the formula

(n > 0∧ A > 0)→ ∃Y < (n + 1)A ∀X < nA, F(X) 6= Y,

stating that F cannot map [0, nA) onto [0, (n + 1)A).
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Remark 4. We write “∀X < nA” to mean that we want to universally quantify over all binary numbers
X less than the binary number n · A. The same interpretation applies to the existential quantifier
“∃Y < (n + 1)A” above. Note that this way of writing “string quantifiers” is incorrect according to
the conventions in Cook-Nguyen two-sorted theories, but it can easily be translated to a correct one.
We will use quantifiers of binary numbers bounded by other binary numbers freely in this thesis for
convenience.

The surjective weak pigeonhole principle for VPV functions, denoted by sWPHP(LFP), is the
schema {

sWPHP(F) | F ∈ LFP
}

.

Note that this principle is believed to be weaker than the usual surjective “strong” pigeonhole
principle stating that we cannot map [0, A) onto [0, A + 1). For example, sWPHP(LFP) can be proven
in the theory V3 for FPΣP

3 reasoning (cf. [62]), but it is not known if the usual surjective pigeonhole
principle for VPV functions can be proven within the theory

⋃
i≥1 Vi for the polynomial hierarchy.

Next we will recall an important theorem due to Alex Wilkie, which gives the earliest evidence
that sWPHP is the reasonable principle for witnessing probabilistic algorithms in bounded arithmetic.
Although the theorem was proved by Wilkie, the first published proof can only be found in [33,
Theorem 7.3.7]. An alternative and more detailed proof was later given by Thapen in [62, Theorem 3.11].
Wilkie’s Witnessing Theorem states that when the sWPHP principle is added to the theory V1, there
exists a probabilistic polynomial-time function witnessing the formula ∀X∃Z ϕ(X, Z) for every ΣB

1

formula A(X, Z).

Theorem 5 (Wilkie’s Witnessing Theorem). Let ϕ(X, Z) be a ΣB
1 -formula and assume that

V1 + sWPHP(LFP) ` ∀X∃Z ϕ(X, Z).

Then there is a probabilistic polynomial-time algorithm which, for each input X, outputs with probability at least
1/2 some Y satisfying the formula ϕ(X, Y).

Jeřábek showed in [30] that the provably total search problems of VPV + sWPHP(LFP) are precisely
the ones reducible to the following NP search problem: given a pair of circuits G : {0, 1}n → {0, 1}2n

and H : {0, 1}2n → {0, 1}n, find a Y ∈ {0, 1}2n such that G(H(Y)) 6= Y.

2.2 Notation

We write the notation “(T `)” in front of the statement of a theorem to indicate that the statement is
formulated and proved within the theory T. We write the notation “(in T)” in front of a definition to
indicate that the definition is introduced in the theory T.

We will often work with bounded definable sets, which are collections of binary strings of the form

X =
{

X ∈ {0, 1}n | ϕ(X)
}

where ϕ is a formula (possibly with other free variables). Bounded sets are not genuine objects in our
arithmetical theories: X ∈ X is an abbreviation for |X| ≤ n ∧ ϕ(X). We will use uppercase calligraphic
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letters X ,Y ,Z , . . . to represent these bounded definable sets. The sets we will encounter most often
will be defined by Boolean circuits in the following sense: a circuit C : {0, 1}n → {0, 1} defines the set{

X ∈ {0, 1}n | C(X) = 1
}

. Hence we say X is definable by circuit C : {0, 1}n → {0, 1} to indicate that
X =

{
X ∈ {0, 1}n | C(X) = 1

}
.

If F is a function of n variables, then let F(X1, . . . , Xn−1, •) denote the function of one variable
resulting from F by fixing the first n− 1 arguments to X1, . . . , Xn−1. We write F : X � Y to denote that
F is a surjection from X onto Y . We write F : X ↪→ Y to denote that F is an injection from X into Y .

We use lowercase Greek letters α, β, γ, . . . to denote binary rational numbers. And we write γ = β± ε

to denote that β− ε ≤ γ ≤ β + ε.

Let [β, γ) denote the set {Z ∈ Z | β ≤ Z < γ}. Let [β) denote the set {Z ∈ Z | 0 ≤ Z < β}. We
also use similar notation for unary or binary numbers. We often use the standard notation [n] to denote
the set {1, . . . , n}.

Given a square matrix M, we write M[i | j] to denote the (i, j)-minor of M, i.e., the square matrix
formed by removing the ith row and jth column from M.

We let ~x denote a number sequence 〈x1, . . . , xk〉 and let ~X denote a string sequence 〈X1, . . . , Xk〉.
We write ~xk×k and ~Xk×k to denote two-dimensional arrays

〈
xi,j | 1 ≤ i, j ≤ k

〉
and

〈
Xi,j | 1 ≤ i, j ≤ k

〉
respectively, where the elements of these two-dimensional arrays are listed by rows. Note that ~xk×k and
~Xk×k can be simply encoded as integer matrices, and thus we will use matrix notation freely on them.

We often use two-dimensional matrices to encode binary relations, e.g. the edge relation of a graph,
matching, etc. In this thesis, it is more convenient for our purpose to index the entries of matrices
starting from 0 instead of 1. In other words, if Xn×n is a two-dimensional matrix, then entries of X
consist of all X(i, j) for 0 ≤ i, j < n, and X(0, 0) is the top leftmost entry of X.

We will use the following shorthand notation to indicate that x equals the logarithm of some unary
number:

x ∈ Log↔ ∃m, 2x = m + 1

(Note that the Log notation in our two-sorted framework corresponds to the LogLog notation in the
first-order setup in Jeřábek’s work [28, 29, 30].)

We also write log(x) to denote dlog2(x)e, i.e. the ceiling of the base-2 logarithm of x.

We write x = poly(n) to mean that x = nk for some k > 0. Similarly we write ε = 1/poly(n) to
denote ε = 1

nk for some k > 0.

Let C be a circuit, then we let |C| to denote the length of binary string encoding the circuit C.

2.3 Jeřábek’s approximate counting framework

We will give a brief and simplified overview of Jeřábek’s framework [28, 29, 30] for probabilistic
reasoning within VPV + sWPHP(LFP). For more complete definitions and results, the reader is
referred to Jeřábek’s work.

Let F(R) be a VPV boolean function (which may have other arguments). We think of F as defining
a predicate on binary numbers R. Let Xn =

{
R ∈ {0, 1}n | F(R) = 0

}
. Observe that bounding the
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probability PR∈{0,1}n
[
F(R) = 0

]
from above by the ratio s/t is the same as showing that t · |Xn| ≤ s · 2n.

More generally, many probability inequalities can be restated as inequalities between cardinalities of
sets. This is problematic since even for the case of polynomial-time definable sets, it follows from Toda’s
theorem [63] that we cannot express their cardinalities directly using bounded formulas (assuming that
the polynomial hierarchy does not collapse). Hence we need an alternative method to compare the
sizes of definable sets without exact counting.

The method proposed by Jeřábek in [28, 29, 30] is based on the following simple observation: if X
and Y are definable sets and there is a function F mapping X onto Y , then the cardinality of Y is at
most the cardinality of X . Thus instead of counting the sets X and Y directly, we can compare the
sizes of X and Y by showing the existence of a surjection F, which in many cases can be easily carried
out within weak theories of bounded arithmetic.

The remaining challenge is to formally verify that the definition of cardinality comparison through
the use of surjections is a meaningful and well-behaved definition. The basic properties of surjections
like “any set can be mapped onto itself” and “surjectivity is preserved through function compositions”
roughly correspond to the usual reflexivity and transitivity of cardinality ordering, i.e., |X | ≤ |Y| and
|Y| ≤ |Z| → |X | ≤ |Z| for all bounded definable sets X , Y and Z . However, more sophisticated
properties, e.g., dichotomy |X | ≤ |Y| ∨ |Y| ≤ |X | or “uniqueness” of cardinality, turn out to be much
harder to show.

As a result, Jeřábek proposed in [30] a systematic and sophisticated framework to justify his
definition of size comparison. He observed that estimating the size of a set X ⊆ {0, 1}n, whose
characteristic function is computed by a polysize Boolean circuit, within an error 2n/poly(n) is the
same as estimating PX∈{0,1}n [X ∈ X ] within an error 1/poly(n), which can be solved by drawing
poly(n) independent random samples X ∈ {0, 1}n and check if X ∈ X . This gives us a polynomial-time
random sampling algorithm for approximating the size of X . Since a counting argument [28] can be
formalized within VPV + sWPHP(LFP) to show the existence of suitable average-case hard functions
for constructing Nisan-Wigderson generators, this random sampling algorithm can be derandomized
to show the existence of an approximate cardinality S of X for any given error ε = 1/poly(n) in the
following sense. The theory VPV + sWPHP(LFP) proves the existence of S and suitable surjections
witnessing that

S− ε · 2n ≤ |X | ≤ S + ε · 2n.

We start by reviewing the formal definitions taken from [28, 30].

Definition 6 ([30]). (in VPV) Let f : {0, 1}k → {0, 1} be a truth-table of a Boolean function encoded as
a string of length 2k and k ∈ Log.

• We say that f is (worst-case) ε-hard, written as Hardε( f ), if there does not exist a circuit C of size
at most 2εk which computes f .

• We say that f is average-case ε-hard, written as HardA
ε ( f ), if there does not exist a circuit C of

size at most 2εk such that ∣∣∣{u < 2k | C(u) = f (u)}
∣∣∣ ≥ (1

2
+ 2−εk

)
2k
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Note that in the above definition we can count the size of the set precisely since the domain of the
function f is small. The following key lemma shows that the theory VPV + sWPHP(LFP) proves the
existence of a family of average-case ε-hard functions.

Lemma 7 ([30]). For every constant 0 < ε < 1/3, there exists a constant c such that VPV + sWPHP(LFP)
proves that:

For every k ≥ c and k ∈ Log, there exists average-case ε-hard functions f : {0, 1}k → {0, 1}.

We next recall the definitions of the combinatorial designs used in the Nisan-Wigderson generator
construction.

Definition 8 ([30]). (in VPV) Let k, `, t ∈ Log satisfy k ≤ ` ≤ t. A 〈k, `, t, m〉-design is a sequence 〈Si〉i<m

of subsets Si ⊆ [0, t) such that |Si| = ` and |Si ∩ Sj| ≤ k for all i < j < m.

Jeřábek showed that VPV proves that combinatorial designs of appropriate parameters can be
produced uniformly by a VPV function.

Lemma 9 ([30]). Let 0 < γ < 1. There are constants δ > 0, c > 1 and a function F ∈ LFP such that

VPV ` F(X) is a
〈

γ`, `, c`, 2δ`
〉

-design, where ` = log(|X|+ 1)

We next state the formal definition of the Nisan-Wigderson generator that “stretches” a seed of t
bits to pseudorandom string of m bits.

Definition 10 ([30]). (in VPV) Let X ∈ {0, 1}t and Y ⊆ [0, t), where Y = {s0, . . . , s`−1} and si < si+1

for all i < `. Then we define X � Y := Z, where |Z| ≤ ` and Z(i) = X(si) for all i < `.
If f : {0, 1}` → {0, 1} and S = 〈Si〉i<m is a 〈k, `, t, m〉-design, then the Nisan-Wigderson generator is

a function NW f ,S : {0, 1}t → {0, 1}m defined by

NW f ,S(X)(i) = f (X � Si)

We now state formally Jeřábek’s theorem from [30], which plays a central role in this thesis. Recall
that we say X is definable by circuit C : {0, 1}n → {0, 1} to indicate that X =

{
X ∈ {0, 1}n | C(X) = 1

}
.

Theorem 11 (Jeřábek’s Theorem [30]). (VPV + sWPHP(LFP) `) Let C : {0, 1}n → {0, 1} be a boolean
circuit, and ε = 1/poly(n). Let the set X be definable by the circuit C. Then there exist S ≤ 2n, v ≤
poly(nε−1|C|), and circuits Gi, Hi of size poly(nε−1|C|) such that

G0 :
[
v(S + ε2n)

)
� [v)×X H0 : [v)×X ↪→

[
v(S + ε2n)

)
(2.7)

G1 : [v)×
(
X ] [0, ε2n)

)
� [vS) H1 : [vS) ↪→ [v)×

(
X ] [0, ε2n)

)
(2.8)

and Gi ◦ Hi = id on their respective domains.
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In other words, the theorem states that given a set X defined by a circuit C, the theory VPV +

sWPHP(LFP) proves the existence of the approximate size S that is ε-close to the actual size of the set
X . This size S is constructed by choosing an appropriate Nisan-Wigderson generator NW f ,S : {0, 1}t →
{0, 1}n with t = O(log(n)) that generates the samples needed to approximate the fraction α of elements
in {0, 1}n that also belong to X . For this purpose, we can let

α =

∣∣∣{X ∈ {0, 1}t | C(NW f ,S(X)) = 1}
∣∣∣

2t

Then we define S := α2n to be the approximate size of X in this theorem.
It is worth noting that Lemma 7 is the only place we need sWPHP(LFP) to prove the existence of

average-case ε-hard functions. Once we have these average-case ε-hard functions, the rest of the proof
of Theorem 11 can be proved in VPV.

Theorem 11 allows Jeřábek to show many properties, expected from cardinality comparison, that
are satisfied by his method within the theory VPV + sWPHP(LFP) (see Lemmas 13 and 14). It is worth
noting that proving the uniqueness of cardinality within some error seems to be the best we can do
within bounded arithmetic, where exact counting is not available.

We need the following formal definition of approximate size comparison based on surjections
between definable sets.

Definition 12 ([30]). (in VPV+ sWPHP(LFP)) Let X ,Y ⊆ {0, 1}n be definable by circuits and 0 ≤ ε ≤ 1.
We say that the size of X is approximately less than the size of Y with error ε, denoted as

X -ε Y ,

if there exists a circuit G, and V 6= 0, such that

G : [V)×
(
Y ] [ε2n)

)
� [V)×X .

The sets X and Y are approximately equinumerous with error ε, written

X ≈ε Y ,

if X -ε Y and Y -ε X .

Note that in Definition 12 we allow V to be binary, and thus this approximate size comparison
definition is more general than what we have in Theorem 11.

The following properties follow directly from the definition of -ε and ≈ε.

Lemma 13 ([30]). (VPV `) Let X ,Y ,X ′,Y ′,Z ⊆ {0, 1}n. LetW ,W ′ ⊆ {0, 1}m be sets definable by circuits.
Let 0 ≤ ε, δ ≤ 1.

1. If X -ε Y and ε ≤ δ, then X -δ Y .

2. If X ⊆ Y , then X -0 Y .

3. If X -ε Y -δ Z , then X -ε+δ Z .
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4. If X -ε X ′ and Y -δ Y ′, and X ′ and Y ′ are separable by a circuit, then X ∪ Y -ε+δ X ′ ∪ Y ′.

5. If X -ε X ′ andW -δ W ′, then X ×W -ε+δ+εδ X ′ ×W ′.

The following less elementary properties exploit consequences of approximate counting technique.

Lemma 14 ([30]). (VPV + sWPHP(LFP) `) Let X ,Y ⊆ {0, 1}n be sets definable by circuits. Let S, T, U ≤
2n, and let 0 ≤ ε, δ, η, γ ≤ 1 and γ = 1/poly(n).

1. There exists S ≤ 2n such that X ≈γ [S).

2. If [S) -ε [T), then S ≤ T + (ε + γ)2n. And if [S) ≈ε [T), then S = T ± (ε + γ)2n.

3. X -γ Y or Y -γ X .

4. If [S) -ε X -δ [T), then S ≤ T + (ε + δ + γ)2n

5. If X -ε Y , then {0, 1}n \ Y -ε+γ {0, 1}n \ X .

6. If X ≈ε [S), Y ≈δ [T) and X ∩ Y ≈η [U), then X ∪ Y ≈ε+δ+η+γ [S + T −U).
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The complexity class CC and its theory

3.1 Ccv and the complexity class CC

A comparator gate is a function C : {0, 1}2 → {0, 1}2, that takes an input pair (p, q) and outputs a pair
(p ∧ q, p ∨ q). Intuitively, the first output in the pair is the smaller bit among the two input bits p, q,
and the second output is the larger bit.

We will use the graphical notation on the right to denote a comparator gate, where x and y denote
the names of the wires, and the direction of the arrow denotes the direction to which we move the
larger bit as shown in the picture below.

p x • p ∧ q

q y H p ∨ q

A comparator circuit can be defined as a directed acyclic graph consisting of: input nodes with
in-degree zero and out-degree one, output nodes with in-degree one and out-degree zero, and internal
nodes with in-degree two and out-degree two. Each internal node represents a comparator gate, with
one out-edge labeled AND and the other labeled OR. If there are m input nodes then there must be m
output nodes, and the circuit computes a function f : {0, 1}m → {0, 1}m in the obvious way.

Under this definition each comparator circuit can be represented by m horizontal wires that carry
bit values (see Figure 1.1 on Page 3), where m is the number of input nodes. Each comparator gate is
represented by a vertical arrow connecting two of the wires. The arrowhead (representing the OR of the
two inputs) can be chosen at will to point up or down, but the decision affects which wire future gates
connect. To see this, topologically sort the internal nodes of the graph (representing the comparator
gates), and arrange the corresponding arrows in order from left to right. The left endpoints of the wires
represent the m input nodes, and the gates can be placed one by one from left to right, each connecting
the appropriate wires (determined by looking back to the last output gate touching the wire).

In this paper we present a comparator circuit by specifying its representation as horizontal wires
connected by arrows, as explained in the previous paragraph. We use the two-sorted notation given in
Section 2.1.3. We encode the circuit by a triple (m, n, X), where m is the number of wires and n is the
number of gates, and X encodes a sequence of n pairs 〈i, j〉 with i, j < m, where each pair 〈i, j〉 encodes

21
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a comparator gate that swaps the values of the wires i and j iff the value on wire i is greater than the
value of wire j. We also allow “dummy” gates of the form 〈i, i〉, which do nothing. We write (X)i to
denote the ith comparator gate.

The comparator circuit value problem (Ccv) is the decision problem: Given a comparator circuit, an
assignment of bits to the input nodes, and a designated output wire, decide whether the circuit outputs
one on that wire. The next definition formalizes this, and defines the corresponding complexity classes.

Definition 15. Ccv is the two-sorted relation Ccv(m, n, i, X, Y) which holds iff i < m and (m, n, X)

codes a comparator circuit as above for which the output of wire i is one when the inputs are as
specified by Y. We often write Ccv(i, C, Y) instead of Ccv(m, n, i, X, Y), where the string C = 〈m, n, X〉
(for ‘circuit’) codes the triple (m, n, X).

The complexity class CC is the class of decision problems that are AC0 many-one reducible to Ccv.

In our definition of comparator circuit each comparator gate can point in either direction, up or
down (see Figure 1.1). As mentioned earlier, an equivalent circuit with the same number of wires and
gates can always be constructed so that all gates point up, or all gates point down, or in fact each gate
can be made to point up or down arbitrarily. Transforming a circuit to one of these forms (with the
same number of gates) cannot necessarily be done by an AC0 function, but it is not hard to show the
following.

Proposition 16. The Ccv problem with the restriction that all comparator gates point in the same direction is
CC-complete.

Proof. Suppose we have a gate with the arrow pointing upward like following:

x N
y •

We will build a circuit that outputs the same values as those of x and y, but all the gates will now point
downward.

x0 •
y0 • •

0 x1 H H

0 y1 H

It is not hard to see that the wires x1 and y1 in this new comparator circuit will output the same values
with the wires x and y respectively in the original circuit. For the general case, we can simply make
copies of all wires for each layer of the comparator circuit, where each copy of a wire will be used to
carry value of a wire at a single layer of the circuit. Then apply the above construction to simulate the
effect of each gate. Note that additional comparator gates are also needed to forward the values of
the wires from one layer to another, in the same way that we use the gate 〈y0, y1〉 to forward the value
carried in wire y0 to wire y1 in the above construction.

3.2 The stable marriage problem

An instance of the stable marriage problem (Sm) is given by a number n (specifying the number of men
and the number of women), together with a preference list for each man and each woman specifying
a total ordering on all people of the opposite sex. The goal of Sm is to produce a perfect matching



Chapter 3. The complexity class CC and its theory 23

between men and women, i.e., a bijection from the set of men to the set of women, such that the
following stability condition is satisfied: there are no two people of the opposite sex who like each other
more than their current partners. Such a stable solution always exists, but it may not be unique. Thus
Sm is a search problem (2.1), rather than a decision problem.

Gale and Shapley showed in their seminal work [20] that there are always a unique man-optimal and
a unique woman-optimal solution, and presented a polynomial-time algorithm to find these solutions.
In the man-optimal solution each man is matched with a woman whom he likes at least as well as any
woman that he is matched with in any stable solution. Dually for the woman-optimal solution. Thus
we define the man-optimal stable marriage decision problem (MoSm) as follows: given an instance of the
stable marriage problem together with a designated man-woman pair, determine whether that pair
is married in the man-optimal stable marriage. We define the woman-optimal stable marriage decision
problem (WoSm) analogously.

We show here that the search version and the decision versions are computationally equivalent, and
each is complete for CC with respect to the appropriate reducibility in Definition 2. Section 3.7.1 shows
how to reduce the lexicographical first maximal matching problem (which is complete for CC) to the
Sm search problem, and Section 3.7.2 shows how to reduce both the MoSm and WoSm problems to
Ccv.

3.3 The new theory VCC

This section requires some background on two-sorted bounded arithmetic theories from the Cook-
Nguyen framework that we reviewed in Section 2.1, and the notation developed in Section 2.2.

We want to define a formula δCCV(m, n, X, Y, Z), where

• (m, n, X) encodes a comparator circuit with m wires and n gates as explained before Definition 15.

• Y(i) encodes the input value for the ith wire as a truth value, and

• Z is an (n + 1)×m array, where Z(i, j) is the value of wire j at layer i, where each layer is simply
a sequence of values carried by all the wires right after a comparator gate.

Although X encodes a circuit with only n gates, the matrix Z actually encodes n + 1 layers 0, 1, . . . , n
since we use layer 0 to encode the input values of the comparator circuit and layer n to encode the
output values. The formula δCCV(m, n, X, Y, Z) holds iff Z encodes the correct values of the layers
computed by the comparator circuit encoded by X with input Y, and thus is defined as the following
ΣB

0 -formula:

∀i < m
(
Y(i)↔ Z(0, i)

)
∧ ∀i < n∀x < m∀y < m,

(X)i = 〈x, y〉 →

 Z(i + 1, x)↔
(
Z(i, x) ∧ Z(i, y)

)
∧ Z(i + 1, y)↔

(
Z(i, x) ∨ Z(i, y)

)
∧ ∀j < m

[
(j 6= x ∧ j 6= y)→

(
Z(i + 1, j)↔ Z(i, j)

)]
 (3.1)

Definition 17. The theory VCC has vocabulary L2
A and is axiomatized by the axioms of V0 and the
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following axiom

AXccv : ∃Z ≤ 〈m, n + 1〉+ 1, δCCV(m, n, X, Y, Z), (3.2)

where δCCV(m, n, X, Y, Z) is defined as in (3.1).

Define the string function FCCV(m, n, X, Y) to be the Z satisfying δCCV(m, n.X, Y, Z) (with each Z(i)
set false when it is not determined). By a slight abuse of notation we will write FCCV(C, Y) instead of
FCCV(m, n, X, Y) when C = 〈m, n, X〉. Thus

C = 〈m, n, X〉 ∧ Z = FCCV(C, Y)→ δCCV(m, n, X, Y, Z) (3.3)

It follows from the axiom (3.2) that FCCV is ΣB
1 -definable in VCC.

There is a technical lemma required to show that VCC fits the framework described in [14, Chap-
ter IX]. We need to show that the aggregate F∗CCV of FCCV is ΣB

1 -definable in VCC, where (roughly
speaking) F∗CCV is the string function that gathers the values of FCCV for a polynomially long sequence
of arguments. The nature of CC circuits makes this easy: The sequence of outputs for a sequence of
circuits can be obtained from a single circuit which computes them all in parallel: the lines of the
composite circuit comprise the union of the lines of each component circuit.

Thus the framework of [14, Chapter IX] does apply to VCC, and in particular the theory VCC is a
universal conservative extension of VCC whose function symbols are precisely those AC0-reducible
to the function FCCV. However we will postpone to Theorem 26 in Section 3.4 the proof that the ΣB

1 -
definable functions of VCC are precisely those in FCC, the class of functions AC0 many-one reducible
to the Ccv problem.

It is hard to work with VCC up to this point since we have not shown whether VCC can prove the
definability of basic counting functions (as in VTC0). However, we have the following theorem.

Theorem 18 (VNC1 ⊆ VCC). The theory VCC proves the axiom MFV defined in (2.3).

Proof. Observe that each comparator gate can produce simultaneously an AND gate and an OR gate
with the only restriction that each of these gates must have fan-out one. Since all AND and OR gates of
a monotone Boolean formula also have fan-out one, and the axiom MFV assumes that the variables of
the formula are all distinct, it is easy to transform the instance of the monotone Boolean formula value
problem specified by the parameters (n, F, I) in the axiom to an instance of Ccv.

Since VTC0 ⊆ VNC1 (see (2.6)) the next result is an immediate consequence of this theorem.

Corollary 19 (VTC0 ⊆ VCC). The theory VCC proves the axiom NUMONES defined in (2.2).

This corollary is important since it allows us to use the counting ability of VTC0 freely in VCC
proofs. In particular using counting and induction on the layers of a comparator circuit, we can prove
in VTC0 the following fundamental property of comparator circuits.

Corollary 20. Given a comparator circuit computation, the theory VTC0 (and hence VCC) proves that all layers
of the computation have the same number of ones and zeros.

Theorem 21 (VCC ⊆ VP). The theory VP proves the axiom AXccv defined in (3.2).

Proof. This easily follows since Ccv is a special case of the monotone circuit value problem.
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b • • • 0

x H x′

y H • H y′

b H 1

Figure 3.1: Conditional comparator gadget

0 • 0 • 0 • 0 1 • y • x ∧ y • 0

x x H x x x x H x ∨ y x ∨ y

y H y • y H y y H 1 • 0 H x ∧ y

1 1 H 1 1 0 0 H 1 1

Figure 3.2: Operation of conditional comparator gadget

3.4 Universal comparator circuits

Here we present a construction of universal comparator circuits due to Yuval Filmus. The key idea is a
gadget: a comparator circuit with four wires and four gates which allows a conditional application of a
comparator to two of its inputs x, y, depending on whether a bit b is 0 or 1. The other two inputs are b
and b (see Figure 3.1). The comparator is applied only when b = 1 (see Figure 3.2).

In order to simulate a single arbitrary comparator in a circuit with m wires we put in m(m− 1)
gadgets in a row, for the m(m− 1) possible comparators. Simulating n comparators requires m(m− 1)n
gadgets.

Thus there is an AC0 function UNIV such that if m, n are arbitrary parameters, then U = UNIV(m, n) =
〈m′, n′, U′〉 is a universal circuit which simulates all comparator networks with at most m wires and at
most n comparators, where the number of wires in U is m′ = 4m(m− 1)n + m (note that the original m
wires are common to all of the gadgets) and the number of gates is n′ = 7m(m− 1)n.

The AC0 function INPUT(C, Y) = Y′ computes the input bits Y′ for the universal circuit U =

UNIV(m, n), where C = 〈m̂, n̂, X〉 with m̂ ≤ m and n̂ ≤ n. Then U with input Y′ simulates the circuit
C with input Y. We may arrange the universal circuit so that the m̂ wires of the original circuit C
correspond to wires number 0, 1, . . . , m̂− 1 in UNIV(m, n) (and the remaining input wires specified by
Y′ code the inputs to the gadgets in U to simulate the comparator gates of C).

Theorem 22. VCC proves the following formula, stating that the circuit UNIV(m, n) has the intended universal
property.

C = 〈m̂, n̂, X〉 ∧ m̂ ≤ m ∧ n̂ ≤ n ∧ j < m̂ →[
FCCV(C, Y)(n̂, j) ↔ FCCV

(
UNIV(m, n), INPUT(C, Y)

)
(n′, j)

]
where n′ = 7m(m− 1)n.
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Proof. Use induction on i to show that

C = 〈m̂, n̂, X〉 ∧ m̂ ≤ m ∧ n̂ ≤ n →

∀j < m̂
[
FCCV(C, Y)(i, j) ↔ FCCV

(
UNIV(m, n), INPUT(C, Y)

)
(i′, j)

]
where i′ is the layer in UNIV(m, n) which corresponds to layer i in the circuit C.

The next result is an important application of universal comparator circuits. It tells us that the class
CC can be characterized in terms of uniform circuit families, as in the definitions of the complexity
classes NCk and ACk.

Theorem 23. For each relation R(X) in CC there is a family {CR
k }k∈N of comparator circuits described by AC0

functions of k such that wire zero of CR
k outputs R(X) when supplied with copies of X(i),¬X(i) for i < k as

inputs. More precisely, there are AC0 functions CIRCUITR and INR such that VCC proves

|X| ≤ k→
[
R(X)↔ FCCV

(
CIRCUITR(k), INR(k, X)

)
(n, 0)

]
where n is the number of comparator gates in CIRCUITR(k) and Y = INR(k, X) consists of (for some polynomial
p = p(k)) p copies of X(i) and p copies of ¬X(i), for i = 0, 1, . . . , k− 1. A similar result holds more generally
for relations R(~x, ~X) in CC.

Proof. First observe that the theorem holds in case the relation R(X) is in AC0. This is because an AC0

circuit is easily converted to a tree whose internal nodes are AND or OR gates with fan-out one (which
can be converted to comparator gates) and whose leaves have inputs of the form INR(k, X) as described
in the theorem. (No universal circuit is needed for this.)

If F(X) is an AC0 function, then its bit graph BF(i, X) is an AC0 relation. Hence the above construction
can be used to construct an AC0-uniform comparator circuit family CIRCUITF(k) which on input
INF(k, X) of the form described in the theorem, outputs the bits of F(X). This construction will be
applied to the function F(X) defined in (3.4) below.

Now suppose R(X) is in CC. Then R(X) is AC0 many-one reducible to Ccv (see Definition 15).
Hence there are AC0 functions CIRR(X) and INPR(X) such that

R(X)↔ Ccv

(
0, CIRR(X), INPR(X)

)
where we assume the output wire i = 0. (This can be accomplished by renumbering the wires in the
comparator circuit.)

Now given k, choose mk and nk such that for all X with |X| ≤ k, if 〈m, n, X′〉 = CIRR(X) then
m ≤ mk and n ≤ nk. We may choose mk and nk to be polynomials in k, because CIRR is an AC0 function.
Then we define the circuit CIRCUITR(k) in the theorem to consist of the universal circuit UNIV(mk, nk)

preceded by a comparator circuit CIRCUITF(k) computing the AC0 function

F(X) = INPUT
(

CIRR(X), INPR(X)
)

. (3.4)

for |X| ≤ k, where INPUT is as in Theorem 22. The outputs of this circuit are connected to the inputs of
UNIV(mk, nk). The function INR(k, X) is the same as INF(k, X), which supplies inputs to CIRCUITF(k)
(see Fig. 3.3).
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R(X)

INPUT(CIRR(X), INPR(X))

Compute F(X)

F(X) =

UNIV(mk, nk)

¬X(k− 1)

¬X(k− 1)

¬X(0)

¬X(0)

X(k− 1)

X(k− 1)

X(0)

X(0)

...

...

...

...

...

...

...

...

...

...

...

...

Figure 3.3: The construction of a comparator circuit for any relation R(X) in CC for a fixed k.

Thus by (3.4) and Theorem 22, wire 0 of UNIV(mk, nk) outputs R(X).

Corollary 24. The function class FCC is closed under composition.

Proof. For notational simplicity we prove this for unary string functions G(X). We must show that if
G(X) and H(X) are in FCC then so is H ◦ G(X). Recall that a function G(X) is in FCC if and only if
G(X) is polynomially bounded and its bit graph BG(i, X) is in CC. Thus by Theorem 23 and its proof,
a function G(X) is in FCC if and only if there is an AC0-uniform family {CG

k }k∈N such that for |X| ≤ k,
when polynomially many copies of X(i) and ¬X(i), i < k are fed as inputs to the circuit CG

k using the
AC0 function ING, then the outputs of the bottom wires of CG

k are the first p(k) bits of G(X), where p(k)
is a polynomial upper bound on |G(X)| for |X| ≤ k.

The circuit CH◦G
k can be constructed from polynomially many copies of comparator circuits CG

k
stacked vertically (computing many copies of G(X)) serve as inputs to the circuit CH

p(k) computing
H. Actually the circuit CH

p(k) also needs negations of the bits of G(X) as inputs. These are easily
supplied, using the fact that if C is a comparator circuit and C′ is the result of flipping each gate in
C (interchanging AND and OR gates), then (by De Morgan’s Laws) the output bits of C′ with input
Y′ are the negations of the output bits of C with input Y, where Y′ is the string of negations of the
inputs Y.

Theorem 25. CC is closed under AC0 reductions.

Proof. By [14, Theorem IX.1.7], it suffices to show that FCC is closed under composition and string
comprehension. The latter is explained by the following definition: For a number function f (x) (which
may contain other arguments), the string comprehension of f is the string function F(y) satisfying

F(y)(i)↔ ∃x ≤ y, i = f (x)

We know FCC is closed under composition by Corollary 24, so it suffices to show that FCC is closed
under string comprehension. We can show this directly from the definition of FCC, without referring to
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u0

u2

u1

u3

u4

Figure 3.4

any of the previous theorems. We just observe that a collection of y + 1 instances of Ccv determining
whether i = f (x) for x = 0, 1, . . . , y can be combined by AC0 functions of y to form an instance of Ccv

determining F(y)(i).

An important consequence of Theorem 25 is the following theorem, which shows that VCC the
correct theory for CC.

Theorem 26. The ΣB
1 -definable functions of VCC are precisely those in FCC.

3.5 The theory VCC contains VNL

Each instance of the Reachability problem consists of a directed acyclic graph G = (V, E), where
V = {u0, . . . , un−1}, and we want to decide if there is a path from u0 to un−1. It is well-known that
Reachability is NL-complete. Since a directed graph can be converted into a layered graph with
an equivalent reachability problem, it suffices to give a comparator circuit construction that solves
instances of Reachability satisfying the following assumption:

The graph G only has directed edges of the form (ui, uj), where i < j. (3.5)

We believe that our new construction for showing that NL ⊆ CC is more intuitive than the one in
[60, 40]. Moreover, we reduce Reachability to Ccv directly without going through some intermediate
complete problem, and this was stated as an open problem in [60, Chapter 7.8.1].

We will demonstrate our construction through a simple example, where we have the directed graph
in Figure 3.4 satisfying the assumption (3.5). We will build a comparator circuit as in Figure 3.5, where
the wires ν0, . . . , ν4 represent the vertices u0, . . . , u4 of the preceding graph and the wires ι0, . . . , ι4 are
used to feed 1-bits into the wire ν0, and from there to the other wires νi reachable from ν0. We let every
wire ιi take input 1 and every wire νi take input 0.

We next show how to construct the gadgets in the boxes. For a graph with n vertices (n = 5 in our
example), the kth gadget is constructed as follows:

1: Introduce a comparator gate from wire ιk to wire ν0

2: for i = 0, . . . , n− 1 do
3: for j = i + 1, . . . , n− 1 do
4: Introduce a comparator gate from νi to νj if (ui, uj) ∈ E, or a dummy gate on νi otherwise.
5: end for
6: end for

Note that the gadgets are identical except for the first comparator gate.
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We only use the loop structure to clarify the order the gates are added. The construction can easily
be done in AC0 since the position of each gate can be calculated exactly, and thus all gates can be added
independently from one another. Note that for a graph with n vertices, we have at most n vertices
reachable from a single vertex, and thus we need n gadgets described above. In our example, there are
at most 5 wires reachable from wire ν0, and thus we utilize the gadget 5 times.

1 ι0 • 0
1 ι1 • 0
1 ι2 • 0
1 ι3 • 0
1 ι4 • 0
0 ν0 H • • H • • H • • H • • H • • 1
0 ν1 H H H H H 1
0 ν2 H • • H • • H • • H • • H • • 1
0 ν3 H H H H H 1
0 ν4 H H H H H 1

Figure 3.5: A comparator circuit that solves Reachability. (The dummy gates are omitted.)

Intuitively, the construction works since each gadget from a box looks for the lexicographical first
maximal path starting from v0 (with respect to the natural lexicographical ordering induced by the vertex
ordering v0, . . . , vn), and then the vertex at the end of the path will be marked (i.e. its wire will now
carry 1) and thus excluded from the search of the gadgets that follow. For example, the gadget from
the left-most dashed box in Figure 3.5 will move a value 1 from wire ι0 to wire ν0 and from wire ν0 to
wire ν1. This essentially “marks” the wire ν1 since we cannot move this value 1 away from ν1, and thus
ν1 can no longer receive any new incoming 1. Hence, the gadget from the second box in Figure 3.5 will
repeat the process of finding the lex-first maximal path from v0 to the remaining (unmarked) vertices.
These searches end when all vertices reachable from v0 are marked. Note that this has the same effect
as applying the depth-first search algorithm to find all the vertices reachable from v0.

Theorem 27 (VNL ⊆ VCC). The theory VCC proves the axiom CONN defined in (2.4).

Proof. Recall that if G is a directed graph on n vertices u0, . . . , un−1 with the edge relation E, then the
formula δCONN(n, E, U) holds iff U is a matrix of n rows, where row d encodes the set of all vertices in
G that are reachable from u0 using a path of length at most d.

We start by converting G into a layered graph G′ = (V′, E′) which satisfies (3.5), where

V′ =
{

u`
i | 0 ≤ i, ` < n

}
, (3.6)

E′ =
{
(u`

i , u`+1
j ) | 0 ≤ i, j, ` < n and (i = j or (ui, uj) ∈ E)

}
.

Observe that a vertex u`
i is reachable from u0

0 in G′ iff ui is reachable from u0 by a path of length at
most ` in G. Moreover, if we enumerate the vertices of G′ by layers, then G′ satisfies the condition
(3.5). We now apply the above construction to G′ to find all vertices in V′ reachable from u0

0. Then
we construct a matrix U witnessing the formula δCONN(n, E, U) by letting the row d encode the set of
vertices ui in V such that ud

i is reachable from u0
0 in G′.

We want to show that the comparator circuit constructed for G′ using the above method produces
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the correct set of vertices ud
i reachable from u0

0 for every d. Although the correctness of the construction
follows from the intuition that the circuit simulates the depth-first search algorithm, we cannot formalize
this intuition directly since it would require VNL reasoning. Recall that up to this point, we only know
that VTC0 ⊆ VNC1 ⊆ VCC by Theorem 18. It turns out that using only the counting ability of VTC0,
we can analyze the computation of the circuit in the above construction and argue that since we feed in
as many 1-bits as the number of wires representing the vertices of G′, these 1-bits will eventually fill all
the lower wires that are reachable from ν0

0 .

Now we begin the detailed proof. (To follow the proof it will be helpful to keep an eye on Figure 3.5.)
Let C be the comparator circuit constructed from the layered graph G′ of G using the above construction,
where C consists of the wires {νi | 0 ≤ i, ` < n2} representing the vertices of G′ and wires {ι0, . . . , ιn2}
are used to feed ones to the wire ν0. It is important to note that we will order the wires from high to
low by layers of G′ so that the sequence of wires

ν0, . . . , νn2−1

corresponds to the sequence of nodes

u0
0, u0

1, . . . , u0
n−1, u1

0, u1
1, . . . , u1

n−1, . . . , un−1
0 , un−1

1 , . . . , un−1
n−1.

Let γ0, γ1, . . . , γn2−1 be the successive gadgets in the circuit C.

Lemma 28. (VCC `) For each k ≤ n2 − 1, if wire ν0 has value 1 at the input of gadget γk then the value of
each wire νi, 0 ≤ i ≤ n2 − 1, is the same at the output of γk as at the input of γk. If ν0 has value 0 at the input
of γk then the above is true of γk with exactly one exception: some wire νj is 0 at the input of γk and 1 at the
output of γk.

Proof. Note that for k < n2 − 1 the output values of γk are the same as the input values of γk+1.

We proceed by induction on k. For k = 0 the input values of wires (ν0, . . . , νn2−1) are 0, but after
the first gate (ι0, ν0) the value of wire ν0 becomes 1. Hence by Corollary 20 applied to γ0 starting after
that gate (or by induction on the depth of the gates in γ0), the output values of wires (ν0, . . . , νn2−1)

contain a single 1, and the rest are 0.

For the induction step suppose k > 0. Suppose first that the value of ν0 at the input of γk is 1, so
the output value of ν0 for γk−1 is 1. Then it follows from the induction hypothesis that the tuple of
values for wires (ν0, . . . , νn2−1) is either the same for the input and output of γk−1 or wire ν0 is the only
exception (it must be an exception if its input value is 0 because by assumption its output value is 1).
Note that after the first gate (ι0, ν0) in γk−1 the value of wire ν0 is certainly 1 and so at this point in
the gadget γk−1 the tuple of values for wires (ν0, . . . , νn2−1) is the same as at this point in γk. Since
gadgets γk−1 and γk are identical after the first gate, the outputs for wires (ν0, . . . , νn2−1) are the same
for the two gadgets. Thus the lemma follows for this case.

Now suppose that the value of ν0 at the input of γk (and hence the output of γk−1) is 0. Then by the
induction hypothesis the value of ν0 at the input of γk−1 is also 0 and the values of (ν0, . . . , νn2−1) at
the inputs of γk−1 and γk are identical except some wire νj (j 6= 0) is 0 for γk−1 and 1 for γk. After the
first gate in each gadget the value of ν0 is 1, and since the gadgets are identical except for the first gate,
it follows by induction on p that the value of each wire at position p in γk−1 is the same as the value of
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that wire at position p in γk, except for each p one wire is 0 in γk−1 and 1 in γk. The lemma follows
when p is the output position.

The next result follows easily from the preceding lemma by induction on k.

Lemma 29. (VCC `) If a wire νi has value 1 at the output of some gadget γk, then it has value 1 at the outputs
of all succeeding gadgets. If the tuple of output values for (ν0, . . . , νn2−1) is the same for two successive gadgets
γk and γk+1 then ν0 = 1 and the tuple remains the same for the outputs of all succeeding gadgets.

The next result is the only place in the proof of Theorem 27 that makes essential use of the ability of
VCC to count, as in Corollary 20.

Lemma 30. (VCC `) Wire ν0 has value 1 at the output of the circuit C.

Proof. By Lemma 29, if ν0 has value 0 at the output of C, then it has value 0 at the output of every
gadget γk. Since there are n2 ones at the input to C (one for every wire ιi), by Corollary 20 there are n2

ones at the output of C. But if ν0 remains 0 after every gadget, then by the construction of C we see that
the final output of every wire ιi is 0, and hence outputs of all n2 wires νi must be 1, including ν0.

Lemma 31. (VCC `) In the final gadget, no wire νi changes its value after any comparator gate, except possibly
ν0 changes from 0 to 1 after the initial gate feeds a 1 from ιn2−1.

Proof. We use induction on i. For i = 0, by Lemma 30 the output of ν0 in the final gadget is 1. At the
input to this gadget ν0 can be either 0 or 1, but after the first gate it is certainly 1. The value of ν0

cannot change from 1 to 0 in the gadget, because after the first gate there is no further gate leading
down to ν0 which could bring down a 1 to change the value of ν0 from 0 to 1, but we know the final
output value is 1.

For i > 0 it follows from Lemmas 28 and 30 that the value of wire νi is the same at the input and
output of the final gadget. We note that all gates leading down to νi precede all gates leading away
from νi. The only way that νi can change from 0 to 1 is at a gate bringing down a 1 from above, but
that would change the value of the wire above, violating the induction hypothesis. The only way that
νi can change from 1 to 0 is at a gate leading away from ν0, but then νi cannot change back to 1, so the
input and output cannot be the same.

Lemma 32. (VCC `) If a wire νi has value 1 at some position p in some gadget γk, then the output of νi in the
final gadget is 1.

Proof. By Lemma 28 the tuple of input values for wires ν0, . . . , νn2−1 is the same for gadgets γk and
γk+1 except possibly some input changes from 0 to 1. From this and the fact that the gadgets γk and
γk+1 are the same except for the first gate, it is easy to prove by induction on p that at position in p
each wire has the same value in γk+1 as in γk, except the value might be 0 in γk and 1 in γk+1.

Therefore by induction on k, if some wire νi has value 1 in position p in some gadget then wire νi

has value 1 in position p in the final gadget. In this case, by Lemma 31 the output of νi in the final
gadget is 1.

Lemma 33. (VCC `) Let j > 0 and let y be the node in G′ corresponding to wire νj. Then the output of νj in
C is 1 iff there is i < j such that the output of wire νi in C is 1 and there is an edge from x to y, where x is the
node in G′ which corresponds to νi.
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Proof. For the direction (⇐), suppose that the output of wire νi is 1 and there is an edge from x to y in
G′. Then there is a gate from νi to νj in the final gadget. Then the value of νj must be 1 by Lemma 31,
since otherwise this gate would change νi from 1 to 0. Since the value of νj cannot change, its value is 1
at the output.

For the direction (⇒) suppose the value of νj is 1 at the output. Since the value of νj at the input to
C is 0, there is some gadget γk such that the value of νj changes from 0 to 1. For this to happen there
must be some comparator gate in γk from some wire νi down to νj with i < j such that the value of νi

before the gate is 1, and there is an edge from the node x corresponding to νi to node y. By Lemma 32
the value of νi at the output of the final gadget is 1.

To complete the proof of Theorem 27 recall the meaning of the array U given in (2.5), and the
relation between the graph G = (V, E) and the graph G′ = (V′, E′) given by (3.6). We define U(d, i)
(the truth value of node ui of G in row d of the array U) to be true iff the the output of wire νj in circuit
C is 1, where νj is the wire corresponding to node ud

i in G′.
We prove that this definition of U satisfies the formula δCONN(n, E, U) (2.5) (which appears in the

axiom (2.4) for VNL) by induction on d. The base case is d = 0. We have U(0, 0) holds because the
output of ν0 (the wire corresponding to node u0

0) is 1 by Lemma 30. For i > 0, U(0, i) is false because
there is no edge in G′ leading to node u0

i , and hence there is no comparator gate in any gadget in C
leading down to the wire corresponding to u0

i , so that wire has output 0.
The induction step follows directly from our definition of U above, together with (2.5) and Lemma 33.

As a of consequence of Theorem 27, we have the following result.

Theorem 34. CC is closed under NL many-one reductions, and hence is closed under logspace many-one
reductions.

Proof. This follows from the following three facts: The function class FCC is closed under composition,
FNL ⊆ FCC, and a decision problem is in CC if and only if its characteristic function is in FCC.

3.6 Lexicographical first maximal matching problem is CC-complete

Let G = (V, W, E) be a bipartite graph, where V = {vi}m−1
i=0 , W = {wi}n−1

i=0 and E ⊆ V ×W. The
lexicographical first maximal matching (lfm-matching) is the matching produced by successively matching
each vertex v0, . . . , vm−1 to the least vertex available in W.

Formally, let Em×n be a matrix encoding the edge relation of a bipartite graph with m bottom nodes
and n top nodes, where E(i, j) = 1 iff the bottom node vi is adjacent to the top node wj. Let L be a
matrix of the same size as E with the following intended interpretation: L(i, j) = 1 iff the edge (vi, wj)

is in the lfm-matching. We can define a ΣB
0 -formula δLFMM(m, n, X, L), which asserts that L properly

encodes the lfm-matching of the bipartite graph represented by X as follows:

∀i < m∀j < n, L(i, j)↔
[

E(i, j) ∧ ∀k < j ∀` < i
(
¬L(i, k) ∧ ¬L(`, j)

)
∧ ∀k < j

(
¬E(i, k) ∨ ∃i′ < i L(i′, k)

) ]
. (3.7)
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Figure 3.6: Label of an arrow denotes the section in which the reduction is described. Arrows without labels
denote trivial reductions.

In this section we will show that two decision problems concerning the lexicographical matching of
a bipartite graph are CC-complete (under AC0 many-one reductions). The lexicographical first maximal
matching problem (Lfmm) is to decide if a designated edge belongs to the lfm-matching of a bipartite
graph G. The vertex version of lexicographical first maximal matching problem (vLfmm) is to decide if
a designated top node is matched in the lfm-matching of a bipartite graph G. Lfmm is the usual way to
define a decision problem for lexicographical first maximal matching as seen in [40, 61]; however, as
shown in Sections 3.6.1 and 3.6.2, the vLfmm problem is even more closely related to the Ccv problem.

We will show that the following two more restricted lexicographical matching problems are also
CC-complete. We define 3Lfmm to be the restriction of Lfmm to bipartite graphs of degree at most
three. We define 3vLfmm to be the restriction of vLfmm to bipartite graphs of degree at most three.

To show that the problems defined above are equivalent under AC0 many-one reductions, it turns
out that we also need the following intermediate problem. A negation gate flips the value on a wire.
For comparator circuits with negation gates, we allow negation gates to appear on any wire (see the
left diagram of Figure 3.10 below for an example). The comparator circuit value problem with negation
gates (Ccv¬) is: given a comparator circuit with negation gates and input assignment, and a designated
wire, decide if that wire outputs 1.

All reductions in this section are summarized in Figure 3.6.

3.6.1 Ccv ≤AC0

m 3vLfmm

By Proposition 16 it suffices to consider only instances of Ccv in which all comparator gates point
upward. We will show that these instances of Ccv are AC0 many-one reducible to instances of 3vLfmm,
which consist of bipartite graphs with degree at most three.

The key observation is that a comparator gate on the left below closely relates to an instance of
3vLfmm on the right. We use the top nodes p0 and q0 to represent the values p0 and q0 carried by the
wires x and y respectively before the comparator gate, and the nodes p1 and q1 to represent the values
of x and y after the comparator gate, where a top node is matched iff its respective value is one.
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p0 x N p1 = p0 ∨ q0

q0 y • q1 = p0 ∧ q0

p0 q0 p1 q1

x y

If nodes p0 and q0 are not previously matched, i.e. p0 = q0 = 0 in the comparator circuit, then edges
〈x, p0〉 and 〈y, q0〉 are added to the lfm-matching. So the nodes p1 and q1 are not matched. If p0 is
previously matched, but q0 is not, then edges 〈x, p1〉 and 〈y, q0〉 are added to the lfm-matching. So the
node p1 will be matched but q1 will remain unmatched. The other two cases are similar.

Thus, we can reduce a comparator circuit to the bipartite graph of an 3vLfmm instance by converting
each comparator gate into a “gadget” described above. We will describe our method through an
example, where we are given the comparator circuit in Figure 3.7.

0 a N 1
1 b • N 1
1 c • 0

0 1 2

Figure 3.7

We divide the comparator circuit into vertical layers 0, 1, and 2 as
shown in Figure 3.7. Since the circuit has three wires a, b and c, for
each layer i, we use six nodes, including three top nodes ai, bi and ci

representing the values of the wires a, b and c respectively, and three
bottom nodes a′i, b′i , c′i, which are auxiliary nodes used to simulate the
effect of the comparator gate at layer i.
Layer 0: This is the input layer, so we add an edge {xi, x′i} iff the wire
x takes input value 1. In this example, since b and c are wires taking
input 1, we need to add the edges {b0, b′0} and {c0, c′0}.

a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Layer 1: We then add the gadget simulating the comparator gate from wire b to wire a as follows.

a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Since the value of wire c does not change when going from layer 0 to layer 1, we can simply propagate
the value of c0 to c1 using the pair of dashed edges in the picture.
Layer 2: We proceed very similarly to layer 1 to get the following bipartite graph.

a0 b0 c0

a′0 b′0 c′0

a1 b1 c1

a′1 b′1 c′1

a2 b2 c2

a′2 b′2 c′2

Finally, we can get the output values of the comparator circuit by looking at the “output” nodes a2, b2, c2

of this bipartite graph. We can easily check that a2 is the only node that remains unmatched, which
corresponds exactly to the only zero produced by wire a of the comparator circuit in Figure 3.7.

Remark 35. The construction above is an AC0 many-one reduction since each gate in the comparator
circuit can be reduced to exactly one gadget in the bipartite graph that simulates the effect of the
comparator gate. Note that since it can be tedious and unintuitive to work with AC0-circuits, it might
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seem hard to justify that our reduction is an AC0-function. However, thanks to Theorem 1, we do not
have to work with AC0-circuits directly; instead, it is not hard to construct a ΣB

0 -formula that defines
the above reduction.

The correctness of our construction can be proved in VCC by using ΣB
0 induction on the layers of the

circuits and arguing that the matching information of the nodes in the bipartite graph can be correctly
translated to the values carried by the wires at each layer.

3.6.2 vLfmm ≤AC0

m Ccv

Consider an instance of vLfmm consisting of a bipartite graph in Figure 3.8. Recall that we find the
lfm-matching by matching the bottom nodes x, y, . . . successively to the first available node on the top.
Hence we can simulate the matching of the bottom nodes to the top nodes using comparator circuit
on the right of Figure 3.8, where we can think of the moving of a one, say from wire x to wire a, as
the matching of node x to node a in the original bipartite graph. In this construction, a top node is
matched iff its corresponding wire in the circuit outputs 1.

a b c d

x y z

0 a N N 1
0 b N N 1
0 c N 1
0 d N N 0
1 x • • • • 0
1 y • • • • 0
1 z • • • • 0

Figure 3.8

Note that we draw bullets without any arrows going out from them in the circuit to denote dummy
gates, which do nothing. These dummy gates are introduced for the following technical reason. Since
the bottom nodes might not have the same degree, the position of a comparator gate really depends on
the number of edges that do not appear in the bipartite graph, which makes it harder to give a direct
AC0 reduction. By using dummy gates, we can treat the graph as if it is a complete bipartite graph,
where the missing edges are represented by dummy gates. This can easily be shown to be an AC0

reduction from vLfmm to Ccv, and its correctness can be carried out in VCC using ΣB
0 -induction on the

layers of the circuit. This together with the reduction from Section 3.6.1 gives us the following theorem.

Theorem 36. (VCC `) The problems Ccv, 3vLfmm and vLfmm are equivalent under AC0 many-one reduc-
tions.

3.6.3 Ccv ≤AC0

m 3Lfmm

We start by applying the reduction Ccv ≤AC0

m 3vLfmm of Section 3.6.1 to get an instance of 3vLfmm,
and notice that the degrees of the top “output” nodes of the resulting bipartite graph, e.g. the nodes
a2, b2, c2 in the example of Section 3.6.1, have degree at most two. Now we show how to reduce such
instances of 3vLfmm (i.e. those whose designated top vertices have degree at most two) to 3Lfmm.
Consider the graph G with degree at most three and a designated top vertex b of degree two as shown
on the left of Figure 3.9. We construct a bipartite graph G′, which contains a copy of the graph G and
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one additional top node wt and one additional bottom node wb, and two edges {b, wb} and {wt, wb},
as shown in Figure 3.9. Observe that the degree of the new graph G′ is at most three.

a b c

x y z

a b c wt

x y z wb

Figure 3.9

We treat the resulting bipartite graph G′ and the edge {wt, wb} as an instance of 3Lfmm. It is not
hard to see that the vertex b is matched in the lfm-matching of the original bipartite graph G iff the
edge {wt, wb} is in the lfm-matching of the new bipartite graph G′.

3.6.4 Ccv¬ ≤AC0

m Ccv

Recall that a comparator circuit value problem with negation gates (Ccv¬) is the task of deciding, on a
comparator circuit with negation gates and an input assignment, if a designated wire outputs one. It
should be clear that Ccv is a special case of Ccv¬ and hence AC0 many-one reducible to Ccv¬. Here,
we show the nontrivial direction that Ccv¬ ≤AC0

m Ccv.

0 x N 1
1 y • N 1

1 z • ¬ 1

0 x N 1
1 x̄ • 0
1 y • N 1
0 ȳ H • 0
1 z • • N 1
0 z̄ H • N 0
0 t H • 0

Figure 3.10: Successive gates on the left circuit corresponds to the successive boxes of gates on the right circuit.

This reduction is based on “double-rail” logic. Given an instance of Ccv¬ consisting of a comparator
circuit with negation gates C with its input I and a designated wire s, we construct an instance of Ccv

consisting of a comparator circuit C′ with its input I′ and a designated wire s′ as follows. For every
wire w in I we put in two corresponding wires, w and w̄, in C′. We define input I′ of C′ such that the
input value of w̄ is the negation of the input value of w. We want to fix things so that the value carried
by the wire w̄ at each layer is always the negation of the value carried by w. For any comparator gate
〈y, x〉 in C we put in both the gate 〈y, x〉 and a second gate 〈x̄, ȳ〉 in C′ immediately after 〈y, x〉. It is
easy to check by De Morgan’s laws that the wires x and y in C′ carry the corresponding values of x
and y in C, and the wires x̄ and ȳ in C′ carry the corresponding negations of x and y in C.

The circuit C′ has one extra wire t with input value 0 to help in translating negation gates. For each
negation gate on a wire, says z in the example from Figure 3.10, we add and three comparator gates
〈z, t〉, 〈z̄, z〉, 〈t, z̄〉 as shown in the right circuit of Figure 3.10. Thus t as a temporary “container” that
we use to swap the values of carried by the wires z and z̄. Note that the swapping of values of z and z̄
in C′ simulates the effect of a negation in C. Also note that after the swap takes place the value of t is
restored to 0.
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Finally note that the output value of the designated wire s in C is 1 iff the output value of the
corresponding wire s in C′ with input I′ is 1. Thus we set the designated wire s′ in I′ to be s.

3.6.5 Lfmm ≤AC0

m Ccv¬

Consider an instance of Lfmm consisting of a bipartite graph on the left of Figure 3.11, and a designated
edge {y, c}. Without loss of generality, we can safely ignore all top vertices occurred after c, all bottom
vertices occurred after y and all the edges associated with them, since they are not going to affect the
outcome of the instance. Using the construction from Section 3.6.2, we can simulate the matching of the
bottom nodes to the top nodes using comparator circuit in the upper box on the right of Figure 3.11.

a b c

x y

0 a N N 1
0 b N 0
0 c N • 1
1 x • • • 0
1 y • • • 0
0 a′ N N 1
0 b′ N 0
0 c′ ¬ H 1
1 x′ • • • 0
1 y′ • • 0

Figure 3.11

We keep another running copy of this simulation on the bottom, (see the wires labelled a′, b′, c′, x′, y′

in Figure 3.11). The only difference is that the comparator gate 〈y′, c′〉 corresponding to the designated
edge {y, c} is not added. We finally add a negation gate on c′ and a comparator gate 〈c, c′〉. We let
the desired output of the Ccv instance be the output of c, since c outputs 1 iff the edge {y, c} is added
to the lfm-matching. It is not hard to see that such construction can be generalized, and the output
correctly computes if the designated edge is in the lfm-matching.

Theorem 37. (VCC `) The problems Ccv, Ccv¬, 3Lfmm and Lfmm are equivalent under AC0 many-one
reductions.

Combined with the results from Sections 3.6.1 and 3.6.2, we have the following corollary.

Corollary 38. (VCC `) The problems Ccv, 3vLfmm, vLfmm, Ccv¬, 3Lfmm and Lfmm are equivalent under
AC0 many-one reductions.

Since Ccv¬ is complete for CC, we can use comparator circuits to decide the complement of the
Ccv problem: given a comparator circuit and and input assignment, does a designated wire output 0?
Thus, we have the following corollary.

Corollary 39. CC is closed under complementation.
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3.7 The Sm problem is CC-complete

3.7.1 3Lfmm is AC0 many-one reducible to Sm, MoSm and WoSm

We start by showing that 3Lfmm is AC0 many-one reducible to Sm in the second sense of Definition 2;
i.e. we regard both 3Lfmm and Sm as search problems. (Of course the lfm-matching is the unique
solution to 3Lfmm formulated as a search problem, but it is still a total search problem.)

Let G = (V, W, E) be a bipartite graph from an instance of 3Lfmm, where V is the set of bottom
nodes, W is the set of top nodes, and E is the edge relation such that the degree of each node is at most
three (see the example in the figure on the left below). Without loss of generality, we can assume that
|V| = |W| = n. To reduce it to an instance of Sm, we double the number of nodes in each partition,
where the new nodes are enumerated after the original nodes and the original nodes are enumerated
using the ordering of the original bipartite graph, as shown in the diagram on the right below. We also
let the bottom nodes and top nodes represent the men and women respectively.

w0

m0

w1

m1

w2

m2

w3

m3

w4

m4

w5

m5

It remains to define a preference list for each person in this Sm instance. The preference list of
each man mi, who represents a bottom node in the original graph, starts with all the woman wj (at
most three of them) adjacent to mi in the order that these women are enumerated, followed by all the
women wn, . . . , w2n−1; the list ends with all women wj not adjacent to mi also in the order that they
are enumerated. For example, the preference list of m2 in our example is w2, w3, w4, w5, w0, w1. The
preference list of each newly introduced man mn+i simply consists of w0, . . . , wn−1, wn, . . . , w2n−1, i.e.,
in the order that the top nodes are listed. Preference lists for the women are defined dually.

Intuitively, the preference lists are constructed so that any stable marriage (not necessarily man-
optimal) of the new Sm instance must contain the lfm-matching of G. Furthermore, if a bottom node u
from the original graph is not matched to any top node in the lfm-matching of G, then the man mi

representing u will marry some top node wn+j, which is a dummy node that does not correspond to
any node of G.

Formally, let I be an instance of Sm constructed from a bipartite graph G = (V, W, E) using the
above construction, where the set of men is {mi}2n−1

i=0 and the set of women is {wi}2n−1
i=0 , and the

preference lists are defined as above. For convenience, assume that the set of bottom nodes and top
nodes of G are V = {mi}n−1

i=0 and W = {wi}n−1
i=0 respectively; the set of newly added bottom nodes and

top nodes are V′ = {mi}2n−1
i=n and W ′ = {wi}2n−1

i=n respectively. We will encode the edge relation of
G by a Boolean matrix En×n, where E(i, j) = 1 iff mi is adjacent to wj in G. Similarly, we encode the
lfm-matching of G by Boolean matrix Ln×n. We encode a stable marriage by a Boolean matrix M2n×2n,
and thus M(i, j) = 1 iff mi marries wj in M. We first prove the following lemma.

Lemma 40. (VCC `) Given a stable marriage M, if M(i, j) = 1 for some i, j < n, then E(i, j) = 1.

Proof. We prove by contradiction. Suppose M(i, j) = 1 for some i, j < n, but E(i, j) = 0, then since M is
a perfect matching, by the pigeonhole principle PHP(n− 1, M), which is provable in VTC0 (and hence
in VCC), we cannot map the set of n men V′ into the set of n− 1 women W. Thus, there must exist
some p ≥ n and q ≥ n such that M(p, q) = 1. Since mi prefers wq to wj and wj prefers mq to mi, M is
not stable; hence a contradiction.
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Lemma 41. (VCC `) Let M be a stable marriage of the Sm instance I reduced from the graph G, and let L be
the lfm-matching of G. Then we have L =

(
{0, . . . , n− 1} × {0, . . . , n− 1}

)
∩M, where here L and M are

treated as relations.

Proof. First, we will show that L is contained in
(
{0, . . . , n − 1} × {0, . . . , n − 1}

)
∩ M. Suppose

otherwise, then there must exist a pair (i, j), called “bad pair", i, j < n, such that L(i, j) = 1 but
M(i, k) = 1 for some k 6= j. Using the ΣB

0 -MIN principle, we pick the “bad pair" (i, j) with minimum
man index. There are two cases:

1. If k < j, then we cannot have L(h, k) = 1 for any h < i for otherwise the pair (h, k) is a “bad pair"
with a smaller man index than (i, j), which is a contradiction. Therefore, L(h, k) = 0 for any h < i.
By Lemma 40, we have E(i, k) = 1. Note that for any ` < k, we have L(i, `) = 0, and furthermore,
by the property of lfm-matching, for any ` < k, either E(i, `) = 0 or there exists some i′ < i such
that L(i′, `) = 1. Therefore, L(i, k) = 1 by Eq. (3.7), which contradicts the fact that L(i, j) = 1.

2. Otherwise k > j, then we cannot have M(h, j) = 1 for any h > i for otherwise mi prefers wj to wk

and wj prefers mi to mh, which implies that M is not stable. Therefore, M(h, j) = 1 for some h < i.
By Lemma 40, we have E(h, j) = 1. Note that for any ` < j, L(h, `) = 0, for otherwise the pair
(h, `) is a “bad pair" with a smaller man index than (i, j), which is a contradiction. Furthermore,
by the property of lfm-matching, for any ` < j, either E(h, `) = 0 or there exists some i′ < i such
that L(i′, `) = 1. Since for any p < h, we have L(p, j) = 0, by Eq. (3.7), we have L(h, j) = 1, which
contradicts the fact that L(i, j) = 1.

Next, it remains to show that L cannot be strictly contained in
(
{0, . . . , n− 1} × {0, . . . , n− 1}

)
∩M.

Suppose otherwise, let (i, j), i, j < n, be a pair such that M(i, j) = 1 but for all k < n and for all ` < n,
we have L(i, k) = 0 and L(`, j) = 0. By Lemma 40, we have E(i, j) = 1. Furthermore, by the property
of lfm-matching, for any ` < j, either E(i, `) = 0 or there exists some i′ < i such that L(i′, `) = 1. By
Eq. (3.7), we have L(i, j) = 1, which is a contradiction.

Since Lemma 41 directly implies the correctness of the AC0 many-one reduction from 3Lfmm to
Sm as search problems, any solution of a stable marriage instance constructed by the above reduction
provides us all the information to decide if an edge is in the lfm-matching of the original 3Lfmm

instance. The key explanation is that every instance of stable marriage produced by the above reduction
has a unique solution; thus the man-optimal solution coincides with the woman-optimal solution.
Further Lemma 41 also shows that the decision version of 3Lfmm is AC0 many-one reducible to either
of the decision problems MoSm and WoSm. Hence we have proven the following theorem.

Theorem 42. (VCC `) 3Lfmm is AC0 many-one reducible to Sm, MoSm and WoSm.

3.7.2 MoSm and WoSm are AC0 many-one reducible to Ccv

In this section, we formalize a reduction from Sm to Ccv due to Subramanian [60, 61]. Subramanian
did not reduce Sm to Ccv directly, but to the network stability problem built from the less standard X
gate, which takes two inputs p and q and produces two outputs p′ = p ∧ ¬q and q′ = ¬p ∧ q. It is
important to note that the “network” notion in Subramanian’s work denotes a generalization of circuits
by allowing a connection from the output of a gate to the input of any gate including itself, and
thus a network in his definition might contain cycles. An X-network is a network consisting only of
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X gates under the important restriction that each X gate has fan-out exactly one for each output it
computes. The network stability problem for X gate (Xns) is then to decide if an X-network has a stable
configuration, i.e., a way to assign Boolean values to the wires of the network so that the values are
compatible with all the X gates of the network. Subramanian showed in his dissertation [60] that Sm,
Xns and Ccv are all equivalent under log space reductions.

We do not work with Xns in this paper since networks are less intuitive and do not have a nice
graphical representation as do comparator circuits. By utilizing Subramanian’s idea, we give a direct
AC0 many-one reduction from Sm to Ccv. For this goal, it turns out to be conceptually simpler to go
through a new variant of Ccv, where the comparator gates are three-valued instead of Boolean.

3.7.2.1 Three-valued Ccv is CC-complete

We define the Three-valued Ccv problem similarly to Ccv, i.e., we want to decide, on a given input
assignment, if a designated wire of a comparator circuit outputs one. The only difference is that each
wire can now take either value 0, 1 or ∗, where a wire takes value ∗ when its value is not known to be 0
or 1. The output values of the comparator gate on two input values p and q will be defined as follows.

p ∧ q =


0 if p = 0 or q = 0

1 if p = q = 1

∗ otherwise.

p ∨ q =


0 if p = q = 0

1 if p = 1 or q = 1

∗ otherwise.

Every instance of Ccv is also an instance of Three-valued Ccv. We will show that every instance of
Three-valued Ccv is AC0 many-one reducible to an instance of Ccv by using a pair of Boolean wires to
represent each three-valued wire and adding comparator gates appropriately to simulate three-valued
comparator gates.

Theorem 43. (VCC `) Three-valued Ccv and Ccv are equivalent under AC0 many-one reductions.

Proof. Since each instance of Ccv is a special case of Three-valued Ccv, it only remains to show that
every instance of Three-valued Ccv is AC0 many-one reducible to an instance of Ccv.

First, we will describe a gadget built from standard comparator gates that simulates a three-valued
comparator gate as follows. Each wire of an instance of Three-valued Ccv will be represented by
a pair of wires in an instance of Ccv. Each three-valued comparator gate on the left below, where
p, q, p ∧ q, p ∨ q ∈ {0, 1, ∗}, can be simulated by a gadget with two standard comparator gates on the
right below.

p x • p ∧ q
q y H p ∨ q

p1 x1 • p1 ∧ q1
p2 x2 • p2 ∧ q2

q1 y1 H p1 ∨ q1

q2 y2 H p2 ∨ q2

The wires x and y are represented using the two pairs of wires 〈x1, x2〉 and 〈y1, y2〉, and three possible
values 0, 1 and ∗ will be encoded by 〈0, 0〉, 〈1, 1〉, and 〈0, 1〉 respectively. The fact that our gadget
correctly simulates the three-valued comparator gate is shown in the following table.
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p q 〈p1, p2〉 〈q1, q2〉 p ∧ q p ∨ q 〈p1 ∧ q1, p2 ∧ q2〉 〈p1 ∨ q1, p2 ∨ q2〉
0 0 〈0, 0〉 〈0, 0〉 0 0 〈0, 0〉 〈0, 0〉
0 1 〈0, 0〉 〈1, 1〉 0 1 〈0, 0〉 〈1, 1〉
0 ∗ 〈0, 0〉 〈0, 1〉 0 ∗ 〈0, 0〉 〈0, 1〉
1 0 〈1, 1〉 〈0, 0〉 0 1 〈0, 0〉 〈1, 1〉
1 1 〈1, 1〉 〈1, 1〉 1 1 〈1, 1〉 〈1, 1〉
1 ∗ 〈1, 1〉 〈0, 1〉 ∗ 1 〈0, 1〉 〈1, 1〉
∗ 0 〈0, 1〉 〈0, 0〉 0 ∗ 〈0, 0〉 〈0, 1〉
∗ 1 〈0, 1〉 〈1, 1〉 ∗ 1 〈0, 1〉 〈1, 1〉
∗ ∗ 〈0, 1〉 〈0, 1〉 ∗ ∗ 〈0, 1〉 〈0, 1〉

Using this gadget, we can reduce an instance of Three-valued Ccv to an instance of Ccv by doubling
the number of wires, and for every three-valued comparator gate of the Three-valued Ccv instance,
we will add a gadget with two standard comparator gates simulating it.

The above construction shows how to reduce the question of whether a designated wire outputs
1 for a given instance of Three-valued Ccv to the question of whether a pair of wires of an instance
of Ccv outputs 〈1, 1〉. However for an instance of Ccv we are only allowed to decide whether a single
designated wire outputs 1. This technical difficulty can be easily overcome since we can use an ∧-gate
(one of the two outputs of a comparator gate) to test whether a pair of wires outputs 〈1, 1〉, and outputs
the result on a single designated wire.

3.7.2.2 A fixed-point method for solving stable marriage problems

We formalize a method for solving Sm using three-valued comparator circuits based on [60, 61].
Consider an instance I of Sm consisting of n men and n women and preference lists for each man and
woman. From this instance we construct a three-valued comparator circuit CI . Figure 3.12 illustrates
CI when I consists of two men a, b and two women x, y with preference lists given by the matrices.

For each man m and woman w in I and each pair j, k with j, k < n we say Pair(mj, wk) holds iff w is
at the jth position of m’s preference list and m is at the kth position of w’s preference list. For each such
pair there are two consecutive input wires of CI labelled mi

j and wi
k respectively. (Here the superscript

i stands for ‘input’.) Hence there are n2 pairs of input wires, making a total of 2n2 input wires.

In addition there are 2n2 other wires called ‘output wires’ labelled in the same order as above; two
consecutive wires with labels mo

j and wo
k for each pair satisfying Pair(mj, wk). These output wires have

fixed input values: We let output wire mo
0 take input one for every man m, and let the rest of output

wires have zero inputs.

The circuit CI has the following comparator gates. For each pair (mi
j, wi

k) of consecutive inputs
there is a gate from wire mi

j to wi
k. After these gates, for every person p, we add a gate from wire

pi
j to po

j+1 for every j < n− 1. Note that the order of this last group of wires does not matter. (See
Figure 3.12.)

Given the instance I of Sm with n men and n women, defineM : {0, 1, ∗}2n2 → {0, 1, ∗}2n2
to be the

function computed by the preceding circuit construction, where the inputs ofM are those fed into the
input wires, and the outputs ofM are those produced by the output wires. Explicitly, if Pair(mj, wk)
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Men:
a x y
b y x

Women:
x a b
y a b

1 ai
0 • •

0 xi
0 H •

∗ ai
1 •

0 yi
0 H •

∗ bi
1 •

∗ xi
1 H

1 bi
0 • •

∗ yi
1 H

I0 1 ao
0 1

0 xo
0 0

0 ao
1 H 0

0 yo
0 0

0 bo
1 H ∗

0 xo
1 H 1

1 bo
0 1

0 yo
1 H ∗

I1

Figure 3.12

then:

mo
j =

1 if j = 0,

mi
j−1 ∧ wi

r otherwise, where Pair(mj−1, wr).

wo
k =

0 if k = 0,

wi
k−1 ∨mi

r otherwise, where Pair(mr, wk−1).

We will use the following notation. Any sequence I ∈ {0, 1, ∗}2n2
can be seen as an input of function

M, and thus we write I(pi
j) to denote the input value of wire pi

j with respect to I. Similarly, if a

sequence J ∈ {0, 1, ∗}2n2
is an output ofM, then we write J(po

j ) to denote the output value of wire po
j .

Let sequence I0 ∈ {0, 1, ∗}2n2
be an input of M defined as follows: I0(mi

0) = 1 for every man m,
and I0(wi

0) = 0 for every woman w, and I0(pi
j) = ∗ for every person p and every j, 1 ≤ j < n. Note

that the number of ∗’s in the sequence I0 is

c(n) = 2n2 − 2n. (3.8)

Our version of Subramanian’s method [60, 61] consists of computing

Ic(n) =Mc(n)(I0),

whereMd simply denotes the dth power ofM, i.e. the function we get by composingM with itself
d times. It turns out that Ic(n) is a fixed point ofM, i.e. Ic(n) =M(Ic(n)). To show this, we define a
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sequence I′ to be an extension of a sequence I if I(p) = I′(p) for every person p such that I(p) ∈ {0, 1}.
In other words, all Boolean values in I are preserved in J, even though some ∗-values in I might be
changed to Boolean values in J. We can show thatM(I) is an extension of I for every I which extends
I0, and henceMd(I0) extends I0 for all d. It follows thatMc(n)(I0) is a fixed point because there are at
most c(n) ∗’s to convert to 0 or 1.

Now we can extract a stable marriage from the fixed point Ic(n) by letting B be the sequence obtained
by substituting zeros for all remaining ∗-values in Ic(n). Then B is also a fixed point ofM. A stable
marriage can then be extracted from B by announcing the marriage of a man m and a woman w iff
Pair(mj, wk) and B(mo

j ) = 1 and B(wo
k) = 0. Our goal is to formalize the correctness of this method.

In the example in Figure 3.12, the computation of the fourth power of the functionM can easily be
done by using the comparator circuit in Figure 3.13. We show the outputs, produced as a result of the
iteration, which comprise the fixed point I4 =M4(I0) ofM. In this case the fixed point consists of
Boolean values, where (I4(ao

0), I4(xo
0)) = (1, 0) and (I4(bo

0), I4(yo
1)) = (1, 0). Thus, woman x is married

to man a, and woman y is married to man b, which is a stable marriage.

Henceforth, we will let I` denote the output ofM`(I0). We want to show that the c(n)th power of
M : {0, 1, ∗}2n2 → {0, 1, ∗}2n2

on input I0 defined above in fact produces a fixed point ofM.

Theorem 44. (VCC `) The three-valued sequence Ic(n) =Mc(n)(I0) is a fixed point ofM.

To prove this theorem, we need a new definition. The proof of Theorem 44 follows from the
important observation that every sequence Iq is extended by all sequences I`, ` ≥ q. And thus when
going from I` to I`+1, the only change that can be made is to change some ∗-values in I` to Boolean
values in I`+1. But since we started out with at most c(n) ∗-values, we will reach a fixed point in at
most c(n) steps. Before proving Theorem 44, we need the following lemma, which says that any given
sequence Iq is extended by all sequences I`, ` ≥ q. The lemma can be formulated as the following ΣB

0

statement.

Lemma 45. (VCC `) For every q ≤ c(n) + 1, for every person p, and for every k < n, if we have Iq(pi
k) =

v ∈ {0, 1}, then I`(pi
k) = v for all ` satisfying q ≤ ` ≤ c(n) + 1.

Proof of Lemma 45. We prove by ΣB
0 induction on q ≤ c(n) + 1. The base case (q = 0) is easy. With

respect to I0 the only wires having non-∗ values are pi
0 for every person p. But the output wires po

0

corresponding to these input values are fed these same Boolean values as constant inputs, and these
wires are not involved with any comparator gates. Thus, these values will be preserved for every I`
with q ≤ ` ≤ c(n) + 1.

For the induction step, we are given q such that 0 < q ≤ c(n) + 1, and assume that Iq(pi
k) = v ∈

{0, 1} for some person p and k < n, we want to show that I`(pi
k) = v for all ` satisfying q ≤ ` ≤ c(n)+ 1.

We will only argue for the case when p is a man m since the case when p is a woman can be argued
similarly. We consider two cases. We may have k = 0, in which case, as argued in the base case,
we have I`(mi

0) = 1 for all ` satisfying q ≤ ` ≤ c(n) + 1. Otherwise, we have k ≥ 1, then since
Iq(mo

k) = v ∈ {0, 1}, from howM was constructed, the output wire po
k must have got its non-∗ value

v from the wire mi
k−1, which in turn must carry value v before transferring it to wire mo

k. But then
we observe that wire mi

k−1 is connected to some wire wi
r by a comparator gate (i.e. Pair(mk−1, wr)

holds) before being connected by a comparator gate to mo
k. Thus, from the definition of three-valued
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1 a0
0 • •

0 x0
0 H •

∗ a0
1 •

0 y0
0 H •

∗ b0
1 •

∗ x0
1 H

1 b0
0 • •

∗ y0
1 H

1 a1
0 • •

0 x1
0 H •

0 a1
1 H •

0 y1
0 H •

0 b1
1 H •

0 x1
1 H H

1 b1
0 • •

0 y1
1 H H

1 a2
0 • •

0 x2
0 H •

0 a2
1 H •

0 y2
0 H •

0 b2
1 H •

0 x2
1 H H

1 b2
0 • •

0 y2
1 H H

1 a3
0 • •

0 x3
0 H •

0 a3
1 H •

0 y3
0 H •

0 b3
1 H •

0 x3
1 H H

1 b3
0 • •

0 y3
1 H H

1 a4
0 1

0 x4
0 0

0 a4
1 H 0

0 y4
0 0

0 b4
1 H 0

0 x4
1 H 1

1 b4
0 1

0 y4
1 H 0

Figure 3.13: The comparator circuit computing the 4th power ofM constructed from the example in Figure 3.12.
Since the output wires of the first three blocks serve as input wires to the next block, we use superscripts 1,2,3,4
for these wires on successive blocks, instead of the letter ‘o’ used in Figure 3.12.
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comparator gate, the value v produced on mi
k−1 by the gate

〈
mi

k−1, wi
r

〉
only depends on the non-∗

value(s) of either Iq−1(mi
k−1) or Iq−1(wi

r) or both. In any of these cases, by the induction hypothesis,
these non-∗ values of Iq−1 will be preserved in I` for all ` with q− 1 ≤ ` ≤ c(n) + 1. Hence, we will
always get I`(mo

k) = v for all ` satisfying q ≤ ` ≤ c(n) + 1.

Proof of Theorem 44. Suppose for a contradiction that for every ` ≤ c(n), I` is not a fixed point. In other
words, I`+1 =M(I`) 6= I` for all ` ≤ c(n). Is is important to note that, by Lemma 45, when going from
I` to I`+1, we know that I`+1 extends I`. Thus, the only change thatM can make at each stage is to
switch the ∗-values at some positions in I` to Boolean values in I`+1. If Ic(n) is not a fixed point, then
by utilizing the counting in VTC0 (Corollary 19), we can show that the number of ∗-values that are
switched to Boolean values when going from I0 to Ic(n)+1 is at least c(n) + 1. This is a contradiction,
since we started out with only c(n) ∗-values in I0, and no additional ∗-value was supplied during the
iterations ofM. The final argument, i.e., the number of ∗-values never increases, can be proved more
formally by ΣB

0 -induction on the layers of the comparator circuit computingMc(n)(I0).

Although Theorem 44 gives us a fixed point ofM, this fixed point may still be three-valued and thus
does not give us all the information needed to extract a stable marriage. However, every three-valued
fixed point can easily be extended to a Boolean fixed point as follows. Given a three-valued sequence I,
we let I[∗ → v] denote the sequence we get by substituting v for all the ∗-values in I.

Proposition 46. (VCC `) If I is a three-valued fixed point of M, then I[∗ → 0] and I[∗ → 1] are Boolean
fixed points ofM.

Proof. Suppose that I is a three-valued fixed point ofM. Then when the circuit CI is presented with
input I the output is also I. Without studying the detailed structure of the circuit but just observing
that the gates compute monotone functions, by induction on the depth of a gate g in the circuit we can
compare the values v and v′ of g under the two inputs I and I[∗ → 0] as follows: v′ = v if v ∈ {0, 1}
and v′ = 0 if v = ∗. In particular this is true of the output gates of the circuit. Since I is a fixed point,
the output of CI under input I is I, and so the output under input I[∗ → 0] is I[∗ → 0]. Thus I[∗ → 0]
is a fixed point of the circuit.

A similar argument works for I[∗ → 1]

To show that the above method for solving Sm using three-valued comparator circuits is correct, it
remains to justify Subramanian’s method for extracting a stable marriage from a Boolean fixed point.
Define G to be an AC0-function, i.e., ΣB

0 -definable, which takes as input a Boolean fixed point B ofM,
and returns a marriage M such that the pair of man m and woman w is in M iff when j, k are chosen
such that Pair(mj, wk) holds, then B(mo

j ) = 1 and B(wo
k) = 0. It is worth noting that since B =M(B),

we have B(pi
k) = B(po

k) for every person p and every k < n; however, the superscripts o and i are useful
for distinguishing between input and output values of the comparator circuit CI computingM. From
the construction of G and the fixed-point property ofM, we have the following theorem.

Theorem 47. (VCC `) If B is a Boolean fixed point ofM then M = G(B) is a stable marriage.

To prove this theorem, we first need to establish the next two lemmas that capture the basic
properties of the comparator circuit computingM.

Lemma 48. (VCC `) Let B be any Boolean input to the circuit CI .



Chapter 3. The complexity class CC and its theory 46

1. For every man m and every k < n− 1, if B(mi
k) = 1 then B(mo

k+1) = 0 iff B(wi
j) = 0, where wi

j is the
wire that satisfies Pair(mk, wj).

2. For every woman w and every j < n− 1, if B(wi
j) = 0 then B(wo

j+1) = 1 iff B(mi
k) = 1, where mi

k is
the wire that satisfies Pair(mk, wj).

Proof. We will only prove Part 1 since Part 2 can be shown using a dual argument. For the (⇐) direction,
we recall that since mi

k was paired with wi
j when constructing CI , we have a comparator gate going

from mi
k to wi

j. Thus, since B(mi
k) = 1 and B(wi

j) = 0, after the comparator gate
〈

mi
k, wi

j

〉
, the wire mi

k
now carries value zero. But since the output wire B(mo

k+1) will carry whatever value forwarded from
the wire mi

k, in this case, we have B(mo
k+1) = 0.

For the (⇒) direction, from the construction of CI , the only way that we can change from B(mi
k) = 1

to B(mo
k+1) = 0 is by having a comparator gate

〈
mi

k, wi
j

〉
connecting mi

k with some wire wi
j, and

B(wi
j) = 0.

Lemma 49. (VCC `) Let B be any Boolean fixed point forM.

1. For every man m and every k < n, if B(mi
k) = 1 and B(mi

k+1) = 0, then

B(mi
0) = . . . = B(mi

k) = 1, B(mi
k+1) = . . . = B(mi

n) = 0.

2. For every woman w and every j < n, if B(wi
j) = 0 and B(mo

j+1) = 1, then

B(wi
0) = . . . = B(wi

j) = 0, B(wi
j+1) = . . . = B(wi

n) = 1.

Proof. We will only prove Part 1 since Part 2 can be proved by a dual argument. Assume that m is a
man and k < n is such that B(mi

k) = 1 and B(mi
k+1) = 0. We will use ΣB

0 -MIN to choose the least k0 ≥ 0
satisfying B(mi

k0
) = 1 and B(mi

k0+1) = 0. We can then prove by ΣB
0 induction on `, k0 + 1 ≤ ` < n, that

B(mi
`) = 0. The base case when ` = k0 + 1 trivially holds. For the induction step, by the construction

of CI , we observe that when B(mi
`−1) = 0, then the wire mi

`−1 will always carry value zero. But since
mo

` will receive whatever value forwarded to it from mi
`−1, we get B(mi

`) = B(mo
`) = 0. Thus, we have

just shown that

B(mi
0) = . . . = B(mi

k0
) = 1, B(mi

k0+1) = . . . = B(mi
n−1) = 0.

But this implies that k0 is the only subscript at which the elements of the sequence

B(mi
0), B(mi

2), . . . , B(mi
n−1)

change their values from one to zero. Thus, we get k = k0, and we are done.

From the above two lemmas, we can show that using G we can extract from every Boolean fixed
point ofM which extends I0 a perfect matching.

Lemma 50. (VCC `) If B is a Boolean fixed point of M then M = G(B) is a perfect matching between the
men and women of I .
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Proof. We will only prove that every man is married to a unique woman in M since the claim that every
woman is married to a unique man can be shown similarly. Given a man m we want to show that he is
married to a unique woman. Since B is a fixed point we know B(mi

0) = B(mo
0) = 1, and by Lemma 49

the elements of the sequence
B(mi

0), B(mi
1), . . . , B(mi

n−1)

can only change their values from one to zero at most once. Thus by Lemma 48 and the definition of
M, m can marry at most once. It remains for us to show that m indeed gets married. Suppose to the
contrary that m remains single in M. Then

B(mi
0) = B(mi

1) = . . . = B(mi
n−1) = 1.

For every woman w we can choose k, j < n so that Pair(mk, wj) holds, and so by Lemma 48 it follows
that B(wi

j) = 1. But B(wi
0) = B(wo

0) = 0, so the elements of the sequence

B(wi
0), B(wi

1), . . . , B(wi
n−1)

must change their values from zero to one at least once, and by Lemma 49 they change their values
exactly once. Thus by Lemma 48 and the definition of M, every woman is married to exactly one
man. Since m was excluded, we have n women paired with at most n− 1 men, and this contradicts the
pigeonhole principle PHP(n− 1, M).

Proof of Theorem 47. By Lemma 50, we know that M is a perfect matching. Thus it only remains to
show that M satisfies the stability condition. Suppose not. Then there exist men a, b and women x, y
such that x is married to a and y is married to b, but man a prefers y to x and woman y prefers a to b.
Since x is married to a, by how M was constructed and Lemma 49, there are some k < n and p < n
such that Pair(ak, xp), and

B(ai
0) = B(ai

1) = . . . = B(ai
k) = 1. (3.9)

Similarly, since y is married to b, there are some ` < n and q < n such that Pair(b`, yq), and

B(yi
0) = B(yi

1) = . . . = B(yi
q) = 0. (3.10)

Now by the definition of Pair there must be some s, t < n such that Pair(as, yt) holds. But since man a
prefers y to x, and woman y prefers a to b, we have s < k and t < q. Thus from (3.9) and (3.10), we get
B(ai

s) = 1 and B(yi
t) = 0 respectively. Hence, y is also married to a, and this contradicts Lemma 50.

Fix a stable marriage instance I with n men and n women, and letM be the function computed by
the comparator circuit CI . Let Φsm denote the set of all stable marriages of I , and let Φfxp denote the
set of all Boolean fixed points ofM which extend the input I0 defined from I . Note that Φsm and Φfxp

are exponentially large sets, so they are not really objects of our theories. In other words, we write
M ∈ Φsm to denote that M satisfies a formula asserting the stable marriage property, and we write
I ∈ Φfxp to denote that I satisfies a formula asserting that I is a fixed point of M. It was proved in
[61] that there is a one-to-one correspondence between Φsm and Φfxp, and that the matchings extracted
from Ic(n)[∗ → 0] and Ic(n)[∗ → 1] are man-optimal and woman-optimal respectively. We now show
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how to formalize these results.
We define F : Φsm → Φfxp to be a function that takes as input a stable marriage M of I , and outputs

a sequence I ∈ {0, 1}2n2
defined as follows. For every man m and every woman w that are matched in

M, if j, k < n are subscripts such that Pair(mj, wk) holds, then we assign

I(mi
0) = . . . = I(mi

j) = 1 and I(mi
j+1) = . . . = I(mi

n−1) = 0 (3.11)

I(wi
0) = . . . = I(wi

k) = 0 and I(wi
k+1) = . . . = I(wi

n−1) = 1. (3.12)

From this definition of F, we can prove the following lemma.

Lemma 51. (VCC `) The function F : Φsm → Φfxp is a bijection.

We first need to verify that the range of F is indeed contained in Φfxp.

Lemma 52. (VCC `) If M is a stable marriage, then I = F(M) is a fixed point ofM.

Proof. We start by stating the following:

Claim: For every pair of wires (mi
j, wi

k) satisfying Pair(mj, wk), we have (I(mi
j), I(wi

k)) = (1, 0) iff man
m is matched to woman w in M.

To see that I is a fixed point of M it suffices to show that equations (3.11) and (3.12) hold with the
superscripts i replaced by o. This follows from the Claim and Lemma 48 with B = I, together with the
observation that for every man m and woman w, the circuit CI assigns the outputs mo

0 = 1 and wo
0 = 0.

It remains to prove the Claim. The direction (⇐) follows immediately from the definition of I.
To prove the direction (⇒), suppose that for some man m and woman v, Pair(m`, vs) holds for some
`, s < n and (I(mi

`), I(vi
s)) = (1, 0) but m is not matched to v. Then m is matched to some other woman

w, and Pair(mj, wk) holds for some j, k < n. Since I(mi
`) = 1, it follows from (3.11) that ` < j, so m

prefers v to w. Since I(vi
s) = 0, it follows from (3.12) applied to the woman v that v prefers m to the

man that she is matched with. Therefore the marriage is not stable.

Proof of Lemma 51. From Lemma 52, we know that the function F is properly defined. It also follows
from how F was defined that two distinct stable marriages will get mapped to distinct fixed points
ofM, and hence F is injective. It only remains to show that F is surjective. But then it is not hard to
check that the function G defined before Theorem 47 is a left inverse of F.

We next want to show that G(Ic(n)[∗ → 0]) and G(Ic(n)[∗ → 1]) are man-optimal and woman-
optimal stable marriages of I respectively. A technical difficult is that it might be tricky to compare
G(Ic(n)[∗ → 0]) and G(Ic(n)[∗ → 1]) with G(J) for some arbitrary Boolean fixed point J ofM. However
the following lemma shows that every Boolean fixed point ofM is an extension of Ic(n), which means
that it suffices to work with only Boolean fixed-point extensions of Ic(n).

Lemma 53. (VCC `) If J is a Boolean fixed point ofM, then J extends I` for every ` ≤ c(n).

Proof. We prove by ΣB
0 induction on ` ≤ c(n). Base case (` = 0): we have I0(mo

0) = 1 for every man
m and I0(wo

0) = 0 for every woman w. But from howM was constructed, M always outputs value
one on wire mo

0 for every man m and zero on wire wo
0 for every woman w. Thus since J is a Boolean

fixed point ofM, we also have J(mo
0) = 1 for every man m and J(wo

0) = 1 for every man w, and hence
J extends J0.
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For the induction step, we are given ` such that 0 < ` ≤ c(n), and assume that J extends I`. We
want to show that for every person p and k < n, if I`(pi

k) = v ∈ {0, 1}, then J(pi
k) = v. We will only

argue for the case when p is a man m since the case when p is a woman can be argued similarly. We
consider two cases. We may have k = 0, then we can argue as in the base case. Otherwise, we have
k ≥ 1, then since I`(mo

k) = v ∈ {0, 1}, from howM was constructed, the output wire po
k must have got

its non-∗ value v from the wire mi
k−1, which in turn must have carried value v before transferring it to

wire mo
k. But then we observe that wire mi

k−1 is connected to some wire wi
r by a comparator gate (i.e.

Pair(mk−1, wr) holds) before being connected by a comparator gate to mo
k. Thus from the definition of

three-valued comparator gate, the value v produced on mi
k−1 by the gate

〈
mi

k−1, wi
r

〉
only depends on

the non-∗ value(s) of either Im−1(mi
k−1) or Iq−1(wi

r) or both. In any of these cases, since J extends I`−1

(by the induction hypothesis), these non-∗ values of Iq−1 will also be contained J. But since J =M(J),
we get J(mo

k) = v.

From Lemma 51 and Lemma 53, we can prove the following theorem.

Theorem 54. (VCC `) Let M be a stable marriage of the Sm instance I . Let

M0 = G(Ic(n)[∗ → 0]) M1 = G(Ic(n)[∗ → 1]).

Then M0 and M1 are stable marriages, and every man gets a partner in M0 no worse than the one he gets in
M, and every woman gets a partner in M1 no worse than the one she gets in M. In other words, M0 and M1

are the man-optimal and woman-optimal solutions respectively.

Proof. We only prove that M0 is man-optimal since the proof that M1 is woman-optimal is similar.
From Lemma 51 and Lemma 53, if we let K = F(M), then K is a Boolean fixed point ofM extending
the three-valued fixed point Ic(n) and K uniquely determines M. Suppose for a contradiction that some
man m gets a better partner in M than in M0. Let w and u be the women m marries in M and M0,
and assume that j, k, `, s < n are subscripts such that Pair(mj, wk) and Pair(m`, us) hold. For brevity,
let O = Ic(n)[∗ → 0]. Then from how M and M0 are constructed, we have (K(mi

j), K(wi
k)) = (1, 0) and

(O(mi
`), O(ui

s)) = (1, 0). Note that we construct O by substituting zeros for all ∗-values in Ic(n), so we
must have Ic(n)(mi

`) = 1 originally. By Lemma 49, we have O(mi
0) = . . . = O(mi

`) = 1. But since m
prefers w to u, we also have j < `, and hence O(mi

j) = 1. Since we cannot introduce additional ones
to Ic(n) to get O, we also have Ic(n)(mi

j) = 1. We next show the following claim, which will imply a
contradiction since m cannot marry both w and u in the stable marriage M0.

Claim: We must have O(wi
k) = 0.

We cannot have (Ic(n)(mi
j), Ic(n)(wi

k)) = (1, 0); otherwise, m has no choice but to marry w in both M
and M0 since both K and O are extensions of Ic(n). This forces Ic(n)(wi

k) = ∗. But then since we must
substitute zeros for all ∗-values when producing O, we have O(wi

k) = 0 .

Theorem 55. (VCC `) MoSm and WoSm are AC0 many-one reducible to Ccv¬.

Proof. We will show only the reduction from MoSm to Ccv¬ since the reduction from WoSm to Ccv¬
works similarly.

Following the above construction, we can write a ΣB
0 -formula defining an AC0 function that takes

as input an instance of MoSm with preference lists for all the men and women, and produces a
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three-valued comparator circuit that computes the three-valued fixed point Ic(n) = Mc(n)(I0), and
then extracts the man-optimal stable marriage from Ic(n)[∗ → 0]. Although the first step of computing
Ic(n) =Mc(n)(I0) can easily be done as shown in the example from Figure 3.13, the second step of
computing Ic(n)[∗ → 0] from the output Ic(n) and extracting the stable marriage cannot be trivially
done using a three-valued comparator circuit. However, we can apply the construction from the
proof of Theorem 43 to simulate the three-valued computation of Ic(n) =Mc(n)(I0) using an instance
of Ccv¬, where we can then utilize the available negation gates, ∧-gates and ∨-gates to build the
necessary gadget to decide if a designated pair of man and woman are married in the man-optimal
stable marriage. The use of negation gates is essential in our construction.

Let I be an instance of MoSm, where (m, w) is the designated pair of man and woman. Let M
denote the man-optimal stable marriage of I . We choose j, k such that Pair(mj, wk) holds. Then we recall
that (m, w) ∈ M iff Ic(n)[∗ → 0](mo

j ) = 1 and Ic(n)[∗ → 0](wo
k) = 0. Observe that Ic(n)[∗ → 0](mo

j ) = 1
and Ic(n)[∗ → 0](wo

k) = 0 iff

(
Ic(n)(m

o
j ), Ic(n)(w

o
k)
)
= (1, 0) ∨

(
Ic(n)(m

o
j ), Ic(n)(w

o
k)
)
= (1, ∗). (3.13)

Let C denote the three-valued circuit computing Ic(n) =Mc(n)(I0). Then (3.13) simply asserts that the
wire carrying Ic(n)(mo

j ) of C must output 1 and the wire carrying Ic(n)(wo
k) of C must output either 0 or

∗. Let C′ be the boolean comparator circuit that simulates the three-valued computation of C using the
construction from the proof of Theorem 43, where now we use a pair of wires in C′ to simulate each
three-valued wire of C. From (3.13) it suffices to check that Ic(n)(mo

j ) is coded by 〈1, 1〉 and Ic(n)(wo
k)

has first component 0 in its code (the two possibilities are 〈0, 0〉 and 〈0, 1〉). This checking is easily done
with comparator gates, together with a negation gate to verify the 0 output.

Corollary 38 and Theorems 43, 42 and 55 give us the following corollary.

Corollary 56. (VCC `) The ten problems MoSm, WoSm, Sm, Ccv, Ccv¬, Three-valued Ccv, 3Lfmm,
Lfmm, 3vLfmm and vLfmm are all equivalent under AC0 many-one reductions, where the equivalence of Sm

is with respect to the search problem version of the reduction defined in Definition 2.

Proof. Corollary 38 and Theorem 43 show that Ccv, Ccv¬, Three-valued Ccv, 3Lfmm, Lfmm, 3vLfmm

and vLfmm are all equivalent under AC0 many-one reductions.
Theorem 55 shows that MoSm and WoSm are AC0 many-one reducible to Three-valued Ccv.

Theorem 42 also shows that 3Lfmm is AC0 many-one reducible to MoSm, WoSm, and Sm. Hence,
MoSm, WoSm, and Sm is equivalent to the above problems under AC0 many-one reductions.



Chapter 4

Formalizing randomized matching
algorithms

In this chapter, we will analyze in VPV two randomized matching algorithms using Jeřábek’s framework.
The first one is the RNC2 algorithm for determining whether a bipartite graph has a perfect matching,
based on the Schwartz-Zippel Lemma [55, 65] for polynomial identity testing applied to the Edmonds
polynomial [18] associated with the graph. The second algorithm, due to Mulmuley, Vazirani and
Vazirani [47], is in the function class associated with RNC2, and uses the Isolating Lemma to find such
a perfect matching when it exists.

We will use the method proposed and utilized by Jeřábek in [28, 29] which is based on the following
simple observation: if X and Y are sets and there is a function F mapping X onto Y , then the
cardinality of Y is at most the cardinality of X . Thus instead of counting the sets X and Y directly, we
can compare the sizes of X and Y by showing the existence of a surjection F, which in many cases can
be easily carried out within weak theories of bounded arithmetic. In this chapter, we will restrict our
discussion to the case when the sets are bounded polynomial-time definable sets and the surjections
are polytime functions, all of which can be defined within VPV or other variants of polytime theories.
The following definition is all we need to know about Jeřábek’s framework.

Definition 57. Let Xn =
{

R ∈ {0, 1}n | F(R) = 1
}

, where F(R) is a VPV function (which may have
other arguments) and let s, t be VPV terms. Then

PrR<2n [R ∈ Xn] � s/t

means that either Xn is empty, or there exists a VPV function G(n, •) (which may have other arguments)
mapping the set [s]× {0, 1}n onto the set [t]×Xn.

Since we are not concerned with justifying the above definition, our theorems can be formalized in
VPV without sWPHP.

The reader is advised to review the notation defined in Section 2.2 since we will use it extensively
in this chapter.

51
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4.1 Edmonds’ Theorem

Let G be a bipartite graph with two disjoint sets of vertices U = {u1, . . . , un} and V = {v1, . . . , vn}. We
use a pair (i, j) to encode the edge {ui, vj} of G. Thus the edge relation of the graph G can be encoded
by a boolean matrix En×n, where we define (i, j) ∈ E, i.e. E(i, j) = 1, iff {ui, vj} is an edge of G.

Each perfect matching in G can be encoded by an n× n permutation matrix M satisfying M(i, j)→
E(i, j) for all i, j ∈ [n]. Recall that a permutation matrix is a square boolean matrix that has exactly one
entry of value 1 in each row and each column and 0’s elsewhere.

Recall that VPV extends V#L since matrix powering can easily be carried out in polynomial time,
and thus all theorems of V#L from [13, 58] are also theorems of VPV. In particular the language of VPV
contains the function Det, which computes the determinant of integer matrices based on Berkowitz’s
algorithm. From results in [58] (see page 44 of [29] for a correction) it follows that VPV proves the
Cayley-Hamilton Theorem, and hence the cofactor expansion formula and other usual properties of
determinants of integer matrices.

Let An×n be the matrix obtained from G by letting Ai,j be an indeterminate Xi,j for all (i, j) ∈ E, and
let Ai,j = 0 for all (i, j) 6∈ E. The matrix of indeterminates A(~X) is called the Edmonds matrix of G, and
Det(A(~X)) is called the Edmonds polynomial of G. In general this polynomial has exponentially many
monomials, so for the purpose of proving its properties in VPV we consider Det(A(~X)) to be a function
which takes as input an integer matrix ~Wn×n and returns an integer Det(A(~W)). Thus Det(A(~X)) ≡ 0
means that this function is identically zero.

The following theorem draws an important connection between determinants and matchings. The
standard proof uses the Lagrange expansion which has exponentially many terms, and hence cannot be
formalized in VPV. However we will give an alternative proof which can be so formalized.

Theorem 58 (Edmonds’ Theorem [18]). (VPV `) Let Det(A(~X)) be the Edmonds polynomial of the bipartite
graph G. Then G has a perfect matching if and only if

Det(A(~X)) 6≡ 0

(i.e. if and only if there exists an integer matrix ~W such that Det(A(~W)) 6= 0).

Proof. For the direction (⇒) we need the following lemma.

Lemma 59. (VPV `) Det(M) ∈ {−1, 1} for any permutation matrix M.

Proof of Lemma 59. We will construct a sequence of matrices

Nn, Nn−1, . . . , N1,

where Nn = M, N1 = (1), and we construct Ni−1 from Ni by choosing ji satisfying N(i, ji) = 1 and
letting Ni−1 = Ni[i | ji].

From the way the matrices Ni are constructed, we can easily show by ΣB
0 (LFP) induction on

` = n, . . . , 1 that the matrices N` are permutation matrices. Finally, using the cofactor expansion
formula, we prove by ΣB

0 (LFP) induction on ` = 1, . . . , n that Det(N`) ∈ {−1, 1}.

From the lemma we see that if M is the permutation matrix representing a perfect matching of G,
then VPV proves Det(A(M)) = Det(M) ∈ {1,−1}, so Det(A(~X)) is not identically 0.
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For the direction (⇐) it suffices to describe a polytime function F that takes as input an integer
matrix Bn×n = A(~W), where A(~X) is the Edmonds matrix of a bipartite graph G and ~Wn×n is an
integer value assignment, and reason in VPV that if Det(B) 6= 0, then F outputs a perfect matching of
G.

Assume Det(B) 6= 0. Note that finding a perfect matching of G is the same as extracting a
nonzero diagonal, i.e., a sequence of nonzero entries B(1, σ(1)), B(2, σ(2)), . . . , B(n, σ(n)), where σ is a
permutation of the set [n]. For this purpose, we construct a sequence of matrices

Bn, Bn−1, . . . , B1,

as follows. We let Bn = B. For i = n, . . . , 2, we let Bi−1 = Bi[i | ji] and the index ji is chosen using the
following method. Suppose we already know Bi satisfying Det(Bi) 6= 0. By the cofactor expansion
along the last row of Bi,

Det(Bi) =
i

∑
j=1

Bi(i, j)(−1)i+jDet(Bi[i | j]).

Thus, since Det(Bi) 6= 0, at least one of the terms in the sum on the right-hand side is nonzero. Thus,
we can choose the least index ji such that Bi(i, ji) ·Det(Bi[i | ji]) 6= 0.

To extract the perfect matching, we let Q be an n× n matrix, where Q(i, j) = j. Then we construct a
sequence of matrices

Qn, Qn−1, . . . , Q1,

where Qn = Q and Qi−1 = Qi[i | ji], i.e., we delete from Qi exactly the row and column we deleted
from Bi. We define a permutation σ by letting σ(i) = Qi(i, ji). Then σ(i) is the column number in B
which corresponds to column ji in Bi, and the set of edges

{
(i, σ(i)) | 1 ≤ i ≤ n

}
is our desired perfect matching.

4.2 The Schwartz-Zippel Lemma

The Schwartz-Zippel Lemma [55, 65] is one of the most fundamental tools in the design of randomized
algorithms. The lemma provides us a coRP algorithm for the polynomial identity testing problem (Pit):
given an arithmetic circuit computing a multivariate polynomial P(~X) over a field F, we want to
determine if P(~X) is identically zero. The Pit problem is important since many problems, e.g.,
primality testing [1], perfect matching [47], and software run-time testing [64], can be reduced to Pit.
Moreover, many fundamental results in complexity theory like IP = PSPACE [56] and the PCP theorem
[4, 5] make heavy use of Pit in their proofs. The Schwartz-Zippel lemma can be stated as follows.

Theorem 60 (Schwartz-Zippel Lemma). Let P(X1, . . . , Xn) be a non-zero polynomial of degree D ≥ 0 over
a field (or integral domain) F. Let S be a finite subset of F and let ~R denote the sequence 〈R1, . . . , Rn〉. Then

Pr~R∈Sn

[
P(~R) = 0

]
≤ D
|S| .
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Using this lemma, we have the following coRP algorithm for the Pit problem when F = Z. Given a
polynomial

P(X1, . . . , Xn)

of degree at most D, we choose a sequence ~R ∈ [0, 2D)n at random. If P is given implicitly as a circuit,
the degree of P might be exponential, and thus the value of P(~R) might require exponentially many
bits to encode. In this case we use the method of Ibarra and Moran [26] and let Y be the result of
evaluating P(~R) using arithmetic modulo a random integer from the interval [1, Dk] for some fixed k.
If Y = 0, then we report that P ≡ 0. Otherwise, we report that P 6≡ 0. (Note that if P has small degree,
then we can evaluate P(~R) directly.)

Unfortunately the Schwartz-Zippel Lemma seems hard to prove in bounded arithmetic. The main
challenge is that the degree of P can be exponentially large. Even in the special case when P is
given as the symbolic determinant of a matrix of indeterminates and hence the degree of P is small,
the polynomial P still has up to n! terms. Thus, we will focus on a much weaker version of the
Schwartz-Zippel Lemma that involves only Edmonds’ polynomials since this will suffice for us to
establish the correctness of a FRNC2 algorithm for deciding if a bipartite graph has a perfect matching.

4.2.1 Edmonds’ polynomials for complete bipartite graphs

In this section we will start with the simpler case when every entry of an Edmonds matrix is a variable,
since it clearly demonstrates our techniques. This case corresponds to the Schwartz-Zippel Lemma for
Edmonds’ polynomials of complete bipartite graphs.

Let A be the full n× n Edmonds’ matrix A, where Ai,j = Xi,j for all 1 ≤ i, j ≤ n. We consider the
case that S is the interval of integers S = [0, s) for s ∈ N, so |S| = s. Then Det(A(~X)) is a nonzero
polynomial of degree exactly n, and we want to show that

Pr
~r∈Sn2

[
Det(A(~r)) = 0

]
� n

s
.

Let
Z(n, s) :=

{
~r ∈ Sn2 | Det(A(~r)) = 0

}
,

i.e., the set of zeros of the Edmonds polynomial Det(A(~X)). Then by Definition 57, it suffices to exhibit
a VPV function mapping [n]× Sn2

onto S×Z(n, s). For this it suffices to give a VPV function mapping
[n]× Sn2−1 onto Z(n, s). We will define a VPV function

F(n, s, •) : [n]× Sn2−1 � Z(n, s),

so F(n, s, •) takes as input a pair (i,~r), where i ∈ [n] and~r ∈ Sn2−1 is a sequence of n2 − 1 elements.
Let B be an n× n matrix with elements from S. For i ∈ [n] let Bi denote the leading principal

submatrix of B that consists of the i× i upper-left part of B. In other words, Bn = B, and Bi−1 := Bi[i | i]
for i = n, . . . , 2. The following fact follows easily from the least number principle ΣB

0 (LFP)-MIN.

Fact 61. (VPV `) If Det(B) = 0, then there is i ∈ [n] such that Det(Bj) = 0 for all i ≤ j ≤ n, and either
i = 1 or i > 1 and Det(Bi−1) 6= 0.

We claim that given Det(B) = 0 and given i as in the fact, the element B(i, i) is uniquely determined
by the other elements in B. Thus if i = 1 then B(i, i) = 0, and if i > 1 then by the cofactor expansion of
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Det(Bi) along row i,
0 = Det(Bi) = Bi(i, i) ·Det(Bi−1) + Det(B′i) (4.1)

where B′i is obtained from Bi by setting B′(i, i) = 0. This equation uniquely determines Bi(i, i) because
Det(Bi−1) 6= 0.

The output of F(n, s, (i,~r)) is defined as follows. Let B be the n× n matrix determined by the n2 − 1
elements in~r by inserting the symbol ∗ (for unknown) in the position for B(i, i). Try to use the method
above to determine the value of ∗ = Bi(i, i), assuming that ∗ is chosen so that Det(B) = 0. This method
could fail because Det(Bi−1) = 0. In this case, or if the solution to the equation (4.1) gives a value for
Bi(i, i) which is not in S, output the default “dummy” zero sequence~0n×n. Otherwise let C be B with ∗
replaced by the obtained value of Bi(i, i). If Det(C) = 0 then output C, otherwise output the dummy
zero sequence.

Theorem 62. (VPV `) Let A(~X) be the Edmonds matrix of a complete bipartite graph Kn,n. Let S denote
the set [0, s). Then the function F(n, s, •) defined above is a polytime surjection that maps [n]× Sn2−1 onto
Z(n, s).

Proof. It is easy to see that F(n, s, •) is polytime (in fact it belongs to the complexity class DET). To see
that F is surjective, let C be an arbitrary matrix in Z(n, s), so Det(C) = 0. Let i ∈ [n] be determined by
Fact 61 when B = C. Let~r be the sequence of n2 − 1 elements consisting of the rows of C with C(i, i)
deleted. Then the algorithm for computing F(n, s, (i,~r)) correctly computes the missing element C(i, i)
and outputs C.

4.2.2 Edmonds’ polynomials for general bipartite graphs

For general bipartite graphs, an entry of an Edmonds matrix A might be 0, so we cannot simply use
leading principal submatrices in our construction of the surjection F. However given a sequence ~Wn×n

making Det(A(~W)) 6= 0, it follows from Theorem 58 that we can find a perfect matching M in polytime.
Thus, the nonzero diagonal corresponding to the perfect matching M will play the role of the main
diagonal in our construction. The rest of the proof will proceed similarly. Thus, we have the following
theorem.

Theorem 63. (VPV `) There is a VPV function H(n, s, A, ~W, •) where An×n is the Edmonds matrix for
an arbitrary bipartite graph and ~W is a sequence of n2 (binary) integers, such that if Det(A(~W)) 6= 0 then
H(n, s, A, ~W, •) maps [n]× Sn2−1 onto

{
~r ∈ Sn2 | Det(A(~r)) = 0

}
, where S = [0, s).

In other words, it follows from Definition 57 that the function H(n, s, A, ~W, •) in the theorem
witnesses that

Pr
~r∈Sn2

[
Det(A(~r)) = 0

]
� n

s
.

Proof. Assume Det(A(~W)) 6= 0. Then the polytime function described in the proof of Theorem 58
produces an n× n permutation matrix M such that for all i, j ∈ [n], if M(i, j) = 1 then the element
A(i, j) in the Edmonds matrix A is not zero. We apply the algorithm in the proof of Theorem 62,
except that the sequence of principal submatrices of B used in Fact 61 is replaced by the sequence
Bn, Bn−1, . . . , B1 determined by M as follows. We let Bn = B, and for i = n, . . . , 2 we let Bi−1 = Bi[i | ji],
where the indices ji are chosen the same way as in the proof of Theorem 58 when constructing the
perfect matching M.
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We note that the mapping H(n, s, A, •) in this case may not be in DET since the construction of M
depends on the sequential polytime algorithm from Theorem 58 for extracting a perfect matching.

4.2.3 The RNC2 algorithm for the bipartite perfect matching decision problem

An instance of the bipartite perfect matching decision problem is a bipartite graph G encoded by a matrix
En×n, and we are to decide if G has a perfect matching. Here is an RDET algorithm for the problem.
The algorithm is essentially due to Lovász [39]. From E, construct the Edmonds matrix A(~X) for G
and choose a random sequence~rn×n ∈ [2n]n

2
. If Det(A(~r)) 6= 0 then we report that G has a perfect

matching. Otherwise, we report G does not have a perfect matching.

We claim that VPV proves correctness of this algorithm. The correctness assertion states that if G
has a perfect matching then the algorithm reports NO with probability at most 1/2, and otherwise
it certainly reports NO. Theorem 58 shows that VPV proves the latter. Conversely, if G has a perfect
matching given by a permutation matrix M then the function H(n, 2n, A, M, •) of Theorem 63 witnesses
that the probability of Det(A(~r)) = 0 is at most 1/2, according to Definition 57, where A is the Edmonds
matrix for G. Hence VPV proves the correctness of this case too.

Since RDET ⊆ FRNC2, this algorithm (which solves a decision problem) is also an RNC2 algorithm.

4.3 Formalizing the Hungarian algorithm

The Hungarian algorithm is a combinatorial optimization algorithm which solves the maximum-weight
bipartite matching problem in polytime and anticipated the later development of the powerful primal-dual
method. The algorithm was developed by Kuhn [35], who gave the name “Hungarian method” since it
was based on the earlier work of two Hungarian mathematicians: D. Kőnig and J. Egerváry. Munkres
later reviewed the algorithm and showed that it is indeed polytime [48]. Although the Hungarian
algorithm is interesting by itself, we formalize the algorithm since we need it in the VPV proof of the
Isolating Lemma for perfect matchings in Section 4.4.1.

The Hungarian algorithm finds a maximum-weight matching for any weighted bipartite graph. The
algorithm and its correctness proof are simpler if we make the two following changes. First, since edges
with negative weights can never be in a maximum-weight matching, and thus can be safely deleted, we
can assume that every edge has nonnegative weight. Second, by assigning zero weight to every edge
not present, we only need to consider weighted complete bipartite graphs.

Let G = (X ] Y, E) be a complete bipartite graph, where X = {xi | 1 ≤ i ≤ n} and Y = {yi | 1 ≤
i ≤ n}, and let ~w be an integer weight assignment to the edges of G, where wi,j ≥ 0 is the weight of the
edge {xi, yj} ∈ E.

A pair of integer sequences ~u = 〈ui〉ni=1 and ~v = 〈vi〉ni=1 is called a weight cover if

∀i, j ∈ [n], wi,j ≤ ui + vj. (4.2)

The cost of a cover is cost(~u,~v) := ∑n
i=1(ui + vi). We also define w(M) := ∑(i,j)∈M wi,j. The Hungarian

algorithm is based on the following important observation.

Lemma 64. (VPV `) For any matching M and weight cover (~u,~v), we have w(M) ≤ cost(~u,~v).



Chapter 4. Formalizing randomized matching algorithms 57

Proof. Since the edges in a matching M are disjoint, summing the constraints wi,j ≤ ui + vj over all
edges of M yields w(M) ≤ ∑(i,j)∈M(ui + vj). Since no edge has negative weight, we have ui + vj ≥ 0
for all i, j ∈ [n]. Thus,

w(M) ≤ ∑
(i,j)∈M

(ui + vj) ≤ cost(~u,~v)

for every matching M and every weight cover (~u,~v).

Given a weight cover (~u,~v), the equality subgraph H~u,~v is the subgraph of G whose vertices are X ]Y
and whose edges are precisely those {xi, yj} ∈ E satisfying wi,j = ui + vj.

Theorem 65. (VPV `) Let H = H~u,~v be the equality subgraph, and let M be a maximum cardinality matching
of H. Then the following three statements are equivalent

1. w(M) = cost(~u,~v).

2. M is a maximum-weight matching of G and (~u,~v) is a minimum-weight cover of G.

3. M is a perfect matching of the equality subgraph H.

(The reader is referred to (A.3) for the full proof of this theorem.)

Below we give a simplified version of the Hungarian algorithm which runs in polynomial time
when the edge weights are small (i.e. presented in unary notation). The correctness of the algorithm
easily follows from Theorem 65.

Algorithm 66 (The Hungarian algorithm). We start with an arbitrary weight cover (~u,~v) with small
weights: e.g. let

ui = max{wi,j | 1 ≤ j ≤ n}

and vi = 0 for all i ∈ [n]. If the equality subgraph H~u,~v has a perfect matching M, we report M as
a maximum-weight matching of G. Otherwise, change the weight cover (~u,~v) as follows. Since the
maximum matching M is not a perfect matching of H, the Hall’s condition fails for H. Thus it is not
hard (cf. Corollary 121 from (A.2)) to construct in polytime a subset S ⊆ X satisfying |N(S)| < |S|,
where N(S) denotes the neighborhood of S. Hence we can calculate the quantity

δ = min
{

ui + vj − wi,j | xi ∈ S ∧ yj 6∈ N(S)
}

,

and decrease ui by δ for all xi ∈ S and increase vj by δ for all yj ∈ N(S) without violating the weight
cover property (4.2). This strictly decreases the sum ∑n

i=1(ui + vi). Thus this process can only repeat at
most as many time as the initial cost of the cover (~u,~v). Assuming that all edge weights are small (i.e.
presented in unary), the algorithm terminates in polynomial time. Finally we get an equality subgraph
H~u,~v containing a perfect matching M, which by Theorem 65 is also a maximum-weight matching of G.

When formalizing the Isolating Lemma for bipartite matchings, we need a VPV function Mwpm

that takes as inputs an edge relation En×n of a bipartite graph G and a nonnegative weight assignment
~w to the edges in E, and outputs a minimum-weight perfect matching if such a matching exists, or
outputs ∅ to indicate that no perfect matching exists. Recall that the Hungarian algorithm returns
a maximum-weight matching, and not a minimum-weight perfect matching. However we can use the
Hungarian algorithm to compute Mwpm(n, E, ~w) as follows.
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Algorithm 67 (Finding a minimum-weight perfect matching).

1: Let c = n ·max
{

wi,j | (i, j) ∈ E
}
+ 1.

2: Construct the sequence ~w′ as follows

w′i,j =

c− wi,j if (i, j) ∈ E

0 otherwise.

3: Run the Hungarian algorithm on the complete bipartite graph Kn,n with weight assignment ~w′ to
get a maximum-weight matching M.

4: if M contains an edge that is not in E then
5: return the empty matching ∅
6: else
7: return M
8: end if

Note that since we assign zero weights to the edges not present and very large weights to other
edges, the Hungarian algorithm will always prefer the edges that are present in the original bipartite
graph. More formally for any perfect matching M and non-perfect matching N we have

w′(M) ≥ nc− n ·max
{

wi,j | (i, j) ∈ E
}

= (n− 1)c +
(
c− n ·max

{
wi,j | (i, j) ∈ E

})
= (n− 1)c + 1

> (n− 1)c

≥ w′(N)

The last inequality follows from the fact that w′i,j ≤ c for all (i, j) ∈ N. Thus, if the Hungarian algorithm
returns a matching M with at least one edge not in E, then the original graph cannot have a perfect
matching. Also from the way the weight assignment ~w′ was defined, every maximum-weight perfect
matching of Kn,n with weight assignment ~w′ is a minimum-weight matching of the original bipartite
graph.

It is straightforward to check that the above argument can be formalized in VPV, so VPV proves
the correctness of Algorithm 67 for computing the function Mwpm.

4.4 FRNC2 algorithm for finding a bipartite perfect matching

Below we recall the elegant FRNC2 (or more precisely RDET) algorithm due to Mulmuley, Vazirani
and Vazirani [47] for finding a bipartite perfect matching. Although the original algorithm works for
general undirected graphs, we will only focus on bipartite graphs in this thesis.

Let G be a bipartite graph with two disjoint sets of vertices U = {u1, . . . , un} and V = {v1, . . . , vn}.
We first consider the minimum-weight bipartite perfect matching problem, where each edge (i, j) ∈ E is
assigned an integer weight wi,j ≥ 0, and we want to a find a minimum-weight perfect matching of
G. It turns out there is a DET algorithm for this problem under two assumptions: the weights must
be polynomial in n, and the minimum-weight perfect matching must be unique. We let A(~X) be an
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Edmonds matrix of the bipartite graph. Replace Xi,j with Wi,j = 2wi,j (this is where we need the weights
to be small). We then compute Det(A(~W)) using Berkowitz’s FNC2 algorithm. Assume that there
exists exactly one (unknown) minimum-weight perfect matching M. We will show in Theorem 72 that
w(M) is exactly the position of the least significant 1-bit, i.e., the number of trailing zeros, in the binary
expansion of Det(A(~W)). Once having w(M), we can test if an edge (i, j) ∈ E belongs to the unique
minimum-weight perfect matching M as follows. Let w′ be the position of the least significant 1-bit
of Det(A[i | j](~W)). We will show in Theorem 73 that the edge (i, j) is in the perfect matching if and
only if w′ is precisely w(M)− wi,j. Thus, we can test all edges in parallel. Note that up to this point,
everything can be done in DET ⊆ FNC2 since the most expensive operation is the Det function, which
is complete for DET.

What we have so far is that, assuming that the minimum-weight perfect matching exists and is
unique, there is a DET algorithm for finding this minimum-weight perfect matching. But how do we
guarantee that if a minimum-weight perfect matching exists, then it is unique? It turns out that we
can assign every edge (ui, vj) ∈ E a random weight wi,j ∈ [2m], where m = |E|, and use the Isolating
Lemma [47] to ensure that the graph has a unique minimum-weight perfect matching with probability
at least 1/2.

The RDET ⊆ FRNC2 algorithm for finding a perfect matching is now complete: assign random
weights to the edges, and run the DET algorithm for the unique minimum-weight perfect matching
problem. If a perfect matching exists, with probability at least 1/2, this algorithm returns a perfect
matching.

4.4.1 Isolating a perfect matching

We will recall the Isolating Lemma [47], the key ingredient of Mulmuley-Vazirani-Vazirani FRNC2

algorithm for finding a perfect matching. Let X be a set with m elements {a1, . . . , am} and let F be a
family of subsets of X. We assign a weight wi ≥ 0 to each element ai ∈ X, and define the weight of a
set Y ∈ F to be w(Y) := ∑ai∈Y wi. Let minimum-weight be the minimum of the weights of all the sets
in F . Note that several sets of F might achieve minimum-weight. However, if minimum-weight is
achieved by a unique Y ∈ F , then we say that the weight assignment ~w = 〈wi〉mi=1 is isolating for F .
(Every weight assignment is isolating if |F | ≤ 1.)

Theorem 68 (Isolating Lemma [47]). Let F be a family of subsets of an m-element set X = {a1, . . . , am}. Let
~w = 〈wi〉mi=1 be a random weight assignment to the elements in X. Then for all k ≥ 1

Pr~w∈[k]m [~w is not isolating for F ] ≤ m
k

.

To formalize the Isolating Lemma in VPV it seems natural to present the family F by a polytime
algorithm. This is difficult to do in general (see Remark 70 below), so we will formalize a special case
which suffices to formalize the FRNC2 algorithm for finding a bipartite perfect matching. Thus we are
given a bipartite graph G, and the family F is the set of perfect matchings of G. We want to show that
if we assign random weights to the edges, then the probability that this weight assignment does not
isolate a perfect matching is small. Note that although the family F here might be exponentially large,
F is polytime definable, since recognizing a perfect matching is easy.



Chapter 4. Formalizing randomized matching algorithms 60

Theorem 69 (Isolating a Perfect Matching). (VPV `) Let F be the family of perfect matchings of a bipartite
graph G with edges E = {e1, . . . , em}. Let ~w be a random weight assignment to the edges in E. Then

Pr~w∈[k]m
[
~w is not isolating for F

]
� m/k.

For brevity, we will call a weight assignment ~w “bad” if ~w is not isolating for F . Let

B :=
{
~w ∈ [k]m | ~w is bad for F

}
.

Then to prove Theorem 69, it suffices to construct a VPV function mapping [m]× [k]m−1 onto B. Note
that the upper bound m/k is independent of the size n of the two vertex sets. The set B is polytime
definable since ~w ∈ B iff

∃i, j ∈ [n]

(
E(i, j) and M(i, j) and ¬M′(i, j) and M, M′

encode two perfect matchings with the same weight

)
,

where M denotes the output produced by applying the Mwpm function (Algorithm 67) on G, and M′

denotes the output produced by applying Mwpm on the graph obtained from G by deleting the edge
(i, j).

Proof of Theorem 69. By Definition 57 we may assume that B is nonempty, so there is an element δ ∈ B.
(We will use δ as a “dummy” element.) It suffices for us to construct explicitly a VPV function F
mapping [m]× [k]m−1 onto B. For each i ∈ [k] we interpret the set {i} × [k]m−1 as the set of all possible
weight assignments to the m− 1 edges E \ {ei}. Our function F will map each set {i} × [k]m−1 onto the
set of those bad weight assignments ~w such that the graph G contains two distinct minimum-weight
perfect matchings M and M′ with ei ∈ M \M′.

The function F takes as input a sequence

〈i, w1, . . . , wi−1, wi+1, . . . , wm〉

from [m]× [k]m−1 and does the following. Use the function Mwpm (defined by Algorithm 67) to find a
minimum-weight perfect matching M′ of G with the edge ei deleted. Use Mwpm to find a minimum-
weight perfect matching M1 of the subgraph G \ {uj, v`}, where uj and v` are the two endpoints of
ei. If both perfect matchings M′ and M1 exist and satisfy w(M′)− w(M1) ∈ [k], then F outputs the
sequence 〈

w1, . . . , wi−1, w(M′)− w(M1), wi+1, . . . , wm
〉

. (4.3)

Otherwise F outputs the dummy element δ of B.

Note that if both M′ and M1 exist, then (4.3) is a bad weight assignment, since M′ and M = M1∪{ei}
are distinct minimum-weight perfect matchings of G under this assignment.

To show that F is surjective, consider an arbitrary bad weight assignment ~w = 〈wi〉mi=1 ∈ B. Since ~w
is bad, there are two distinct minimum-weight perfect matchings M and M′ and some edge ei ∈ M \M′.
Thus from how F was defined,

〈i, w1, . . . , wi−1, wi+1, . . . , wm〉 ∈ [m]× [k]m−1



Chapter 4. Formalizing randomized matching algorithms 61

is an element that gets mapped to the bad weight assignment ~w.

Remark 70. The above proof uses the fact that there is a polytime algorithm for finding a minimum-
weight perfect matching (when one exists) in an edge-weighted bipartite graph. This suggests limi-
tations on formalizing a more general version of Theorem 69 in VPV. For example, if F is the set of
Hamiltonian cycles in a complete graph, then finding a minimum weight member of F is NP hard.

4.4.2 Extracting the unique minimum-weight perfect matching

Let G be a bipartite graph and assume that G has a perfect matching. Then in Section 4.4.1 we
formalized a version of the Isolating Lemma, which with high probability gives us a weight assignment
~w for which G has a unique minimum-weight perfect matching. This is the first step of the Mulmuley-
Vazirani-Vazirani algorithm. Now we proceed with the second step, where we need to output this
minimum-weight perfect matching using a DET function.

Let B be the matrix we get by substituting Wi,j = 2wi,j for each nonzero entry (i, j) of the Edmonds
matrix A of G. We want to show that if M is the unique minimum weight perfect matching of G with
respect to ~w, then the weight w(M) is exactly the position of the least significant 1-bit in the binary
expansion of Det(B). The usual proof of this fact is not hard, but it uses properties of the Lagrange
expansion for the determinant, which has exponentially many terms and hence cannot be formalized in
VPV. Our proof avoids using the Lagrange expansion, and utilizes properties of the cofactor expansion
instead.

Lemma 71. (VPV `) There is a VPV function that takes as inputs an n× n Edmonds’ matrix A and a weight
sequence

~W =
〈
Wi,j = 2wi,j | 1 ≤ i, j ≤ n

〉
.

And if B = A(~W) satisfies Det(B) 6= 0 and p is the position of the least significant 1-bit of Det(B), then the
VPV function outputs a perfect matching M of weight at most p.

It is worth noting that the lemma holds regardless of whether or not the bipartite graph correspond-
ing to A and weight assignment ~W has a unique minimum-weight perfect matching.

The proof of Lemma 71 is very similar to that of Theorem 58. Recall that in Theorem 58, given a
matrix B satisfying Det(B) 6= 0, we want to extract a nonzero diagonal of B. In this lemma, we are
given the position p of the least significant 1-bit of Det(B), and we want to get a nonzero diagonal of
B whose product has the least significant 1-bit at position at most p. For this, we can use the same
method of extracting the nonzero diagonal from Theorem 58 with the following modification. When
choosing a term of the Lagrange expansion on the recursive step, we will also need to make sure the
chosen term produces a nonzero sub-diagonal of B that will not contribute too much weight to the
diagonal we are trying to extract. This ensures that the least significant 1-bit of the weight of the chosen
diagonal is at most p.

For the rest of this section, we define numz(Y) to be the position of the least significant 1-bit of the
binary string Y. Thus if numz(Y) = q then Y = ±2qZ for some positive odd integer Z.

Proof of Lemma 71. We construct a sequence of matrices

Bn, Bn−1, . . . , B1
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where Bn = B and Bi−1 = Bi[i | ji] for i = n . . . , 2 where the index ji is chosen as follows. Define

Ti :=

(
n

∏
`=i+1

B`(`, j`)

)
Det(Bi).

Assume we are given jn, . . . , ji+1 such that numz(Ti) ≤ p. We want to choose ji such that numz(Ti−1) ≤ p,
where by definition

Ti−1 =

(
n

∏
`=i

B`(`, j`)

)
Det(Bi−1) =

(
n

∏
`=i

B`(`, j`)

)
Det(Bi[i | ji]).

This can be done as follows. From the cofactor expansion of Det(Bi), we have

Ti =
i

∑
j=1

(−1)i+j

(
n

∏
`=i+1

B`(`, j`)

)
Bi(i, j)Det(Bi[i | j]).

Since numz(Ti) ≤ p, at least one of the terms in the sum must have its least significant 1-bit at position
at most p. Thus, we can choose ji such that

numz

((
n

∏
`=i+1

B`(`, j`)

)
Bi(i, ji)Det(Bi[i | ji])

)
= numz(Ti−1)

is minimized, which guarantees that numz(Ti−1) ≤ p.

Since by assumption numz(Tn) = numz(Det(Bn)) = p, VPV proves by ΣB
0 (LFP) induction on

i = n, . . . , 1 that
numz(Ti) ≤ p.

If we define j1 = 1, then when i = 1 we have

T1 =

(
n

∏
`=2

B`(`, j`)

)
Det(B1) =

n

∏
`=1

B`(`, j`).

Thus it follows that numz(T1) = numz (∏n
`=1 B`(`, j`)) ≤ p.

Similarly to the proof of Theorem 58, we can extract a perfect matching with weight at most p by
letting Q be a matrix, where Q(i, j) = j for all i, j ∈ [n]. Then we compute another sequence of matrices

Qn, Qn−1, . . . , Q1,

where Qn = Q and Qi−1 = Qi[i | ji], i.e., we delete from Qi exactly the row and column we deleted
from Bi.

To prove that M = {(`, Q`(`, j`)) | 1 ≤ ` ≤ n} is a perfect matching, we note that whenever a pair
(i, k) is added to the matching M, we delete the row i and column ji, where ji is the index satisfying
Qi(i, ji) = k. So we can never match any other vertex to k again.

It remains to show that w(M) ≤ p. Since

n

∏
`=1

B`(`, j`) = 2w(M),
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the binary expansion of ∏n
`=1 B`(`, j`) has a unique one at position w(M) and zeros elsewhere. Thus it

follows from how the matching M was constructed that w(M) ≤ p.

The next two theorems complete our description and justification of our RDET algorithm for finding
a perfect matching. For these theorems we are given a bipartite graph G = (U ]V, E), where we have
U = {u1, . . . , un} and V = {v1, . . . , vn}, and each edge (i, j) ∈ E is assigned a weight wi,j such that G
has a unique minimum-weight perfect matching (see Theorem 69). Let ~Wn×n be a sequence satisfying
Wi,j = 2wi,j for all (i, j) ∈ E. Let A be the Edmonds matrix of G, and let B = A(~W). Let M denote the
unique minimum weight perfect matching of G.

Theorem 72. (VPV `) The weight p = w(M) is exactly numz(Det(B)).

If in Lemma 71 we tried to extract an appropriate nonzero diagonal of B using the determinant and
minors of B as our guide, then in the proof of this theorem we do the reverse. From a minimum-weight
perfect matching M of G, we want to rebuild in polynomially many steps suitable minors of B until
we fully recover the determinant of B. We can then prove by ΣB

0 (LFP) induction that in every step of
this process, each “partial determinant” of B has the least significant 1-bit at position p. Note that the
technique we used to prove this theorem does have some similarity to that of Lemma 59, even though
the proof of this theorem is more complicated.

Proof. Let Q be a matrix, where Q(i, j) = j for all i, j ∈ [n]. For 1 ≤ i ≤ n let Bi be the result of deleting
rows i + 1, . . . , n and columns M(i + 1), . . . , M(n) from B and let Qi be Q with the same rows and
columns deleted. We can construct these matrices inductively in the form of two matrix sequences

Bn, Bn−1, . . . , B1 Qn, Qn−1, . . . , Q1

where

• we let Bn = B and Qn = Q, and

• for i = n, n− 1, . . . , 2, define ji to be the unique index satisfying

M(i) = Qi(i, ji),

and then let Bi−1 = Bi[i | ji] and Qi−1 = Qi[i | ji].

Then (setting j1 = 1)
Bi(i, ji) = B(i, M(i)) = 2wi,M(i) , 1 ≤ i ≤ n (4.4)

Claim: numz(Det(Bi)) = ∑i
`=1 w`,M(`) for all i ∈ [n].

The theorem follows from this by setting i = n. We will prove the claim by induction on i. The base
case i = 1 follows from (4.4).

For the induction step, it suffices to show

numz(Det(Bi+1)) = numz(Det(Bi)) + wi+1,M(i+1)
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From the cofactor expansion formula we have

Det(Bi+1) =
i+1

∑
j=1

(−1)(i+1)+jBi+1(i + 1, j)Det(Bi+1[i + 1 | j])

Since Bi+1(i + 1, ji+1) = 2wi+1,M(i+1) by (4.4), and Det(Bi+1[i + 1 | ji+1]) = Det(Bi), it suffices to show
that if

R := Bi+1(i + 1, ji+1)Det(Bi+1[i + 1 | ji+1])

then
numz(R) < numz

(
Bi+1(i + 1, j)Det(Bi+1[i + 1 | j])

)
for all j 6= ji+1.

Suppose for a contradiction that there is some j′ 6= j` such that

numz
(

Bi+1(i + 1, j′)Det(Bi+1[i + 1 | j′])
)
≤ numz(R).

Then, we can extend the set of edges

{
(n, M(n)), . . . , (i + 2, M(i + 2)), (i + 1, j′)

}
with i edges extracted from Bi+1[i + 1 | j′] (using the method from Lemma 71) to get a perfect matching
of G with weight at most p, which contradicts that M is the unique minimum-weight perfect matching
of G.

To extract the edges of M in DET, we need to decide if an edge (i, j) belongs to the unique minimum-
weight perfect matching M without knowledge of other edges in M. The next theorem, whose proof
follows directly from Lemma 71 and Theorem 72, gives us that method.

Theorem 73. (VPV `) For every edge (i, j) ∈ E, we have (i, j) ∈ M if and only if

w(M)− wi,j = numz
(
Det(B[i | j])

)
.

Proof. (⇒): Assume (i, j) ∈ M. Then the bipartite graph G′ = G \ {ui, vj} must have a unique
minimum-weight perfect matching of weight w(M)− wi,j. Thus from Theorem 72,

numz
(
Det(B[i | j])

)
= w(M)− wi,j.

(⇐): We prove the contrapositive. Assume (i, j) 6∈ M. Suppose for a contradiction that

w(M)− wi,j = numz
(
Det(B[i | j])

)
.

Then by Lemma 71 we can extract from the submatrix B[i | j] a perfect matching Q of the bipartite
graph G′ = G \ {ui, vj} with weight at most w(M)− wi,j. But then M′ = Q ∪ {(i, j)} is another perfect
matching of G with w(M′) ≤ w(M), a contradiction.

Theorems 69, 72, and 73 complete the description and justification of our RDET algorithm for
finding a perfect matching in a bipartite graph. Since these are theorems of VPV, it follows that VPV



Chapter 4. Formalizing randomized matching algorithms 65

proves the correctness of the algorithm.

4.4.3 Related bipartite matching problems

The correctness of the Mulmuley-Vazirani-Vazirani algorithm can easily be used to establish the
correctness of RDET algorithms for related matching problems, for example, the maximum (cardinality)
bipartite matching problem and the minimum-weight bipartite perfect matching problem, where the
weights assigned to the edges are small. We refer to [47] for more details on these reductions.



Chapter 5

Moser’s constructive proof of the
Lovász Local Lemma

We will recall the statement of the Lovász Local Lemma (LLL). Consider the situation, where we have
some collection of “bad” events A1, . . . , Am satisyfing

P(Ai) ≤ pi < 1,

and we want to find a lower bound for P
(⋂m

i=1 Ai
)
, the probability that none of Ai’s happens. If all

Ai’s are independent, then

P

(
m⋂

i=1

Ai

)
≥

m

∏
i=1

(1− pi).

The LLL gives us a way to deal with situations when the events only have some limited dependencies.
For simplicity, we will consider only the symmetric version of the LLL in this paper.

Theorem 74 (symmetric). Consider a set of events A1, . . . , Am, where P(Ai) ≤ p < 1 and each Ai depends
on at most d other Aj’s. If e · p · (d + 1) ≤ 1 (e is the base of the natural logarithm), then P

(⋂m
i=1 Ai

)
> 0.

We will be particularly interested in the application of this lemma to the k-SAT problem. Let F be a
k-CNF formula with m clauses, and let Ai be the event that the ith clause is not satisfied. On a random
assignment, we have P(Ai) = 2−k. For each clause C ∈ F, we let VBL(C) denote the set of variables
occurring in C, and let

Γ(C) =
{

clause D in F | VBL(C) ∩ VBL(D) 6= ∅
}

.

To apply Theorem 74 to such a formula F, we set p = 2−k and (d + 1) = Γ(C), so if |Γ(C)| ≤ 2k/e then
e · p · (d + 1) ≤ 1, and hence the formula F is satisfiable.

Note that the LLL does not give us any information of how to construct a satisfying assignment for
a formula satisfying the LLL assumption. Recall that Beck [8] was the first to give a polytime algorithm
for finding satisfying assignments when the neighborhood size is at most 2k/48. Alon [2] simplified
and randomized Beck’s algorithm, and improved the neighborhood size to 2k/4. Srinivasan presented
in [59] a variant that achieves a bound of essentially O(2k/4). Moser [44] improved the bound to 2k/8.
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Most recently, Moser and Tardos gave a constructive proof for a general (not necessarily symmetric)
version of the LLL [45]. As a corollary, their constructive proof gives a randomized polytime algorithm
for k-SAT with the neighborhood size up to 2k/e.

It is worth emphasizing that the proofs given by Alon, Srinivasan, Moser, and Moser-Tardos are
constructive in the sense that randomized polytime algorithms are provided for finding a satisfying
assignment; deterministic polytime algorithms are known only for much weaker versions of the LLL.
The notion of “randomized constructivity” has recently been elaborated by Gasarch and Haeupler [21],
where Moser’s technique was applied to yield a randomized algorithm that computes witnesses to
a lower-bound of the van der Waerden number W(k, 2). Recall W(k, 2) is the smallest integer n such
that every 2-coloring of the set [n] has a monochromatic arithmetic progression of length k. Thus, it is
interesting to analyze Moser’s “randomized constructive” technique more formally using Jeřábek’s
framework.

5.1 Constructive proof for k-SAT with neighborhood size up to 2k−3

For the rest of this section, we will consider a very slick and beautiful constructive proof by Moser for
the special case of k-SAT, where the neighborhood size Γ(C) is at most 2k−3 for every clause C. Let’s
consider the following randomized algorithm.

solve(F):

1: Pick a random assignment for F
2: while (∃C ∈ F, C is unsatisfied) do
3: Pick the lexicographically first such C
4: call locally_fix(C)
5: end while

The procedure for locally fixing a clause C (and its unsatisfied neighbors) is defined as follows:

locally_fix(C):

1: Pick a random assignment for variables in VBL(C)
2: while (∃D ∈ Γ(C), D is unsatisfied) do
3: Pick the lexicographically first such D
4: call locally_fix(D)

5: end while

In the analysis of this algorithm, we will treat the random source used by the algorithm as an
additional random binary string input. Thus if the algorithm makes at most r calls to locally_fix

(including all the recursive calls), then a binary random string input of length n + rk is sufficient since
n random bits are needed for the initial truth assignment and at most rk random bits are used for at
most r calls to the locally_fix procedure. When the algorithm runs out of random bits, we will assume
that the algorithm terminates with not necessarily a satisfying assignment.

Theorem 75. On input a k-CNF formula F with n variables and m clauses such that Γ(C) ≤ 2k−3 for every
clause C, the theory VPV+ sWPHP(FP) proves that there exists a random binary string of length n+(m+ 1)k
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on which the procedure solve outputs a satisfying assignment for F.

Proof. The proof of this theorem rests on the following important lemma.

Lemma 76. If the algorithm makes at least r = m + 1 calls to locally_fix using a random binary string R of
length rk + n, then we can losslessly encode R using a string of length rk + n− 1.

Suppose the algorithm makes r calls to the locally_fix procedure (including all the recursive calls).
Then the length of the random string R we used is n+ rk, where n random bits are needed for the initial
truth assignment and the remaining rk random bits are used for r calls to the locally_fix procedure.

It is important to observe that if we know the final truth assignment (after r calls to locally_fix

procedure), and the whole execution history of the algorithm, then we can fully recover the original
random string R used by the algorithm. The reason is that whenever a clause is unsatisfied, it reveals k
random bits of the bit string R. So if we know the clause the algorithm has just fixed, then we also
know the k random bits that have just been used by the algorithm. And thus, if we go backward in time
and recover k random bits at each step, we will eventually recover the whole original random string R.

We next analyze the number of bits we need to encode an execution history of the algorithm. We
first need to keep track of a list of clauses from the top level procedure solve that trigger the recursive
procedure locally_fix. We observe that whenever locally_fix terminates, the number of satisfying clauses
strictly increases. Actually we can prove by induction on the depth of all polynomial size recursion
trees produced by a call to locally_fix that the following holds.

Lemma 77. Whenever a call to locally_fix from solve terminates, there are always strictly less unsatisfied
clauses, and moreover no new unsatisfied clause is introduced.

Naively, we will need in the worst-case m log m bits to store this list of clauses that trigger the
locally_fix procedure from the solve procedure. However, from the point of view of solve, by Lemma 77,
no new unsatisfied clause is produced after each call to locally_fix terminates. And since the clauses are
considered lexicographically, we can store the set of clauses that trigger locally_fix from solve instead,
and it only takes m bits to store the bit-vector encoding the set of at most m clauses.

Now, whenever a clause C triggers the locally_fix procedure, we can store the information of the
clauses that are locally fixed efficiently; since |Γ(C)| ≤ 2k−3, by using the lexicographical ordering on
the clauses in Γ(C), we need only k− 3 bits to index all clauses in Γ(C). Thus, to store the full history
tree of how the clauses in Γ(C) are fixed, we can simply store the list of words that encode the nodes of
the recursion tree, where each word has length

(k− 3) + 2 bits to encode position of a clause in the recursion tree,

which will be shown in the next lemma.

Lemma 78. Two bits are needed to encode position of a clause in the recursion tree.

Proof. We can use the first bit to encode whether or not fixing the current clause triggers another
recursive call to locally_fix. For this we simply need to encode whether the next node in the list is a
child of the current node.

Since we want to recover a recursion tree from a list of nodes, another difficulty is that whenever
we return from a leaf of the recursion tree, how do we know the position of next node in the list? One
possible way is to use the second bit to indicate the nodes that are expecting a neighbor, so whenever
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we return from a leaf, we will find the deepest node v on the path from root to the current leaf that is
expecting a neighbor, and then insert the new node as the right-most child of the parent of v.

Thus, in total, we need

m + r((k− 3) + 2) + n︸︷︷︸
final truth assignment

= m + r(k− 1) + n

bits to recover the original random string R. When r = m + 1, we have

m + r(k− 1) + n = (r− 1) + r(k− 1) + n

= rk + n− 1

< rk + n = length of R.

We have just shown Lemma 76.

Let r = m + 1. Then, using the above encoding method, we can define a function G : {0, 1}rk+n−1 →
{0, 1}rk+n, where G treats an input X ∈ {0, 1}rk+n−1 as an encoding of an execution history of the
procedure solve and outputs a random string of length rk + n. Note that if the input X doesn’t encode
a valid execution history, and thus cannot be decoded, then G simply returns some default string, say
~0 ∈ {0, 1}rk+n.

Now we observe that the range of G contains all the random strings on which at least m + 1 calls
to locally_fix are made. Thus, sWPHP(G) proves that there exists a “good” random string of length
(m + 1)k + n that lies outside the range of G on which at most m calls to locally_fix are made, and thus
the procedure solve terminates with satisfying assignment within O(m) steps.

We have just shown in Theorem 75 that the theory VPV + sWPHP(LFP) proves the existence of a
satisfying assignment for each instance of k-SAT with neighborhood size up to 2k−3. The next corollary
shows that we can also compute a satisfying assignment efficiently.

Corollary 79. There is a randomized polynomial-time algorithm that, on input a k-CNF formula F with n
variable and m clauses such that Γ(C) ≤ 2k−3 for every clause C, outputs a satisfying assignment for F with
probability at least 1/2.

Proof. Since VPV + sWPHP(LFP) ⊆ V1 + sWPHP(LFP), and we have just shown in Theorem 75 that
VPV + sWPHP(LFP) proves the existence of a satisfying assignment for each formula F of k-SAT with
neighborhood size up to 2k−3. Thus, it follows from Wilkie’s Witnessing Theorem (see Theorem 5)
that there is a randomized polynomial-time algorithm that outputs a satisfying assignment for F with
probability at least 1/2.

5.2 Constructive proofs for more general versions of the LLL

Messner and Thierauf [41] generalized Moser’s elegant proof to instances of k-SAT with neighborhood
size up to 2k/e. I believe that this proof is also formalizable in VPV + sWPHP(FP) by formalizing a
suitable version of Stirling’s approximation using methods developed by Jeřábek in [28, 29].
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However, it is not clear at all how to formalize the full proof in [45], which uses properties of infinite
branching processes. Thus we leave open the question of whether the constructive proof of the LLL by
Moser-Tardos [45] is formalizable in VPV + sWPHP(FP).



Chapter 6

Formalizing the Goldreich-Levin
Theorem

So far we have seen how to formalize simple theorems where the statements with probability are simple
enough to be reformulated as surjective mappings between definable sets. However sophisticated
proofs involve more complicated statements about probability or expectation cannot easily be translated
to such mappings. As a result, we need to develop a more systematic framework to talk about these
basic probabilistic concepts. This chapter requires some background on Jeřábek’s approximate counting
framework [30], which was summarized in Section 2.3.

6.1 Formalizing basic probability definitions in the conservative ex-

tension HARDA of VPV + sWPHP(LFP)

The definition of X -ε Y from Section 2.3 is problematic if we want to use it in inductive formulas
involving approximate counting or situations where we need to approximate size of sets which
themselves are defined using approximate counting. The reason is that stating X -ε Y would require
an unbounded ∃ΠB

2 -formula; even when restricting its usage to the case covered in Theorem 11, we
cannot do better than ΣB

2 . Jeřábek solved this problem by working in a suitable fully conservative
extension HARDA of VPV + sWPHP(LFP) introduced in [28]. Let α be a new oracle function symbol.
We define VPV(α) similarly to VPV but we allow the oracle function symbol α to appear in functions
constructed by limited recursion on notation. Then VPV(α)-functions correspond to polynomial-time
algorithms with access to oracle α.

Definition 80 ([28]). The theory HARDA is an extension of VPV(α) + sWPHP(LFP(α)) by the axioms

α(x) is a binary string encoding a truth-table of a Boolean function in log(x + 1) variables,

x ≥ c→ HardA
1/3(α(x)),

log(x + 1) = log(y + 1)→ α(x) = α(y)

where c is the constant from Lemma 7. (Recall that the notation HardA
ε was defined in Definition 6.)
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The theory HARDA contains oracle function symbol α that outputs appropriate hard-in-average
functions needed to construct the Nisan-Wigderson generators used in Theorem 11. Thus, we have the
following theorem.

Theorem 81 (adapted from [30]). There is an integer-valued VPV(α)-function Size(C, n, ε) such that
HARDA proves that if the set X ⊆ {0, 1}n is definable by some polysize circuit C : {0, 1}n → {0, 1},
then for all ε = 1/poly(n),

X ≈ε [Size(C, n, ε)) .

The circuits in (2.7) and (2.8) are also constructible by VPV(α)-functions where S = Size(C, n, ε). We often
abuse the notation and write Size(X , ε) instead of Size(C, n, ε).

By analyzing the proof of Jeřábek’s Theorem (i.e. Theorem 11), we can make the following interesting
observation by analyzing the choice of Nisan-Wigderson generators in the proof.

Corollary 82. (VPV + sWPHP(LFP) `) Let C0 : {0, 1}n → {0, 1} and C1 : {0, 1}n → {0, 1} be Boolean
circuits of sizes poly(n), and ε = 1/poly(n). Suppose at least one of the following condition holds

1. C0 and C1 have the same size

2. ε is sufficiently small, in particular

4 log
(n

ε
+ 1
)
≥ max

{
12 log(n + 1),

1
δ

log(n + 1), 4
(

log
(
max(|C0|, |C1|) + 1

)
+ 1
)}

,

where δ is the constant from Lemma 9.

Then the proof of Theorem 11 chooses the same Nisan-Wigderson generator to approximate the sizes of the sets
defined by C0 and C1.

Proof. This follows from the choice of the parameters in the proof of Theorem 11. The Nisan-Wigderson
generator used by Jeřábek’s proof to approximate the size of the set defined by each circuit Ci is chosen
based on parameters n and `, where

` = max
{

4 log
(n

ε
+ 1
)

, 12 log(n + 1),
1
δ

log(n + 1), 4
(

log
(
max(|C0|, |C1|) + 1

)
+ 1
)}

Thus when ε is sufficiently small such that the condition in (2) is satisfied, we have

` = 4 log
(n

ε
+ 1
)

which depends only on ε and n.

By the observation from Corollary 82, we can prove the following lemmas, which are used very
often in this chapter, but are not available in Jeřábek’s work [30].

Lemma 83. ( HARDA `) Let X , X c := {0, 1}n \ X , Y and X1, . . . ,Xk be subsets of {0, 1}n definable by
circuits. Then for all sufficiently small ε = 1/poly(n),

1. If X ⊆ Y , then Size(X , ε) ≤ Size(Y , ε).

2. If X = Y , then Size(X , ε) = Size(Y , ε).
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3. If X =
⋃k

i=1 Xi, then Size(X , ε) ≤ ∑k
i=1 Size(Xi, ε).

4. If X =
⊎k

i=1 Xi, then Size(X , ε) = ∑k
i=1 Size(Xi, ε).

5. If Size(X , ε) = S, then Size(X c, ε) = 2n − S.

6. Size(X , ε) ≤ S iff Size(X c, ε) ≥ 2n − S.

Proof. When ε is sufficiently small as stated in Corollary 82, we actually use the same Nisan-Wigderson
generator to compute Size(X , ε), Size(X c, ε), Size(Y , ε) and Size(Xi, ε) for all i ∈ [k].

Lemma 84. ( HARDA `) Let X ,Y ⊆ {0, 1}n, U ⊆ {0, 1}p and V ⊆ {0, 1}q, where p + q = n and all of
these sets are defined by circuits of poly(n) size. Let γ < 1. Then for all ε, δ = 1/poly(n),

1. If X -γ Y , then Size(X , ε) ≤ Size(Y , ε) + (γ + 2ε + δ)2n.

2. If X ≈γ Y , then Size(X , ε) = Size(Y , ε)± (γ + 2ε + δ)2n.

3. If X -γ U × V , then Size(X , ε) ≤ Size(U , ε)Size(V , ε) + (γ + 3ε + ε2 + δ)2n.

4. If X ≈γ U × V , then Size(X , ε) = Size(U , ε)Size(V , ε)± (γ + 3ε + ε2 + δ)2n.

5. If X -γ U × {0, 1}q, then Size(X , ε) ≤ Size(U , ε)2q + (γ + 2ε + δ)2n.

6. If X ≈γ U × {0, 1}q, then Size(X , ε) = Size(U , ε)2q ± (γ + 2ε + δ)2n.

Proof. 1. We have [
Size(X , ε)

)
-ε X -γ Y -ε

[
Size(Y , ε)

)
.

This by Lemma 13 (3) implies that

[
Size(X , ε)

)
-γ+2ε

[
Size(Y , ε)

)
.

Then by Lemma 14 (2) the result follows.

2. Follows from (1).

3. We have

[
Size(X, ε)

)
-ε X

-γ U × V

-2ε+ε2
[
Size(U , ε)Size(V , ε)

)
(by Lemma 13 (5))

Thus by Lemma 13 (3) we get

[
Size(X , ε)

)
-γ+3ε+ε2

[
Size(U , ε)Size(V , ε)

)
.

By Lemma 14 (2) this implies the result.

4. Follows from (3).
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5. We have [
Size(X , ε)

)
-ε X -γ U × {0, 1}q -ε

[
Size(U , ε) · 2q)

Thus by Lemma 13 (3) we get

[
Size(X , ε)

)
-γ+2ε

[
Size(U , ε) · 2q).

Then we can apply Lemma 14 (2) to get the result.

6. Follows from (5).

6.1.1 Approximate probability

Using the function Size defined in the previous section, we can easily define the notion of approximate
probability as follows.

Definition 85 (adapted from [30]). (in HARDA) Let C : {0, 1}n → {0, 1} be a circuit. Given an error
ε = 1/poly(n), we define

Pε
X∈{0,1}n [C(X)] =

Size(C, n, ε)

2n .

Informally, Pε
X∈{0,1}n [C(X)] approximates the usual probability notion PX∈{0,1}n [C(X)] within

ε-error since it follows from the definition of approximate counting that

PX∈{0,1}n [C(X)]− ε ≤ Pε
X∈{0,1}n [C(X)] ≤ PX∈{0,1}n [C(X)] + ε.

Note that we often need to talk about binary rational numbers when dealing with probability.
However in VPV we can easily define binary rational numbers and prove their basic field properties.
Using this definition of approximate probability, we can show the following properties.

Corollary 86. ( HARDA `) Let X , X c := {0, 1}n \ X , Y , and X1, . . . ,Xk be subsets of {0, 1}n definable by
circuits. Then for all sufficiently small ε = 1/poly(n),

1. If X ⊆ Y , then Pε
X∈{0,1}n [X ∈ X ] ≤ Pε

X∈{0,1}n [X ∈ Y ].

2. If X = Y , then Pε
X∈{0,1}n [X ∈ X ] = Pε

X∈{0,1}n [X ∈ Y ].

3. If X =
⋃k

i=1 Xi, then Pε
X∈{0,1}n [X ∈ X ] ≤ ∑k

i=1 Pε
X∈{0,1}n [X ∈ Xi]. (union bound)

4. If X =
⊎k

i=1 Xi, then Pε
X∈{0,1}n [X ∈ X ] = ∑k

i=1 Pε
X∈{0,1}n [X ∈ Xi].

5. If Pε
X∈{0,1}n [X ∈ X ] = β, then Pε

X∈{0,1}n [X ∈ X c] = 1− β.

6. Pε
X∈{0,1}n [X ∈ X ] ≤ β iff Pε

X∈{0,1}n [X ∈ X c] ≥ 1− β.

Proof. Follows from Lemma 83.

Corollary 87. ( HARDA `) Let X ,Y ⊆ {0, 1}n, U ⊆ {0, 1}p and V ⊆ {0, 1}q, where p + q = n and all of
these sets are definable by circuits. Let γ, δ ≤ 1 and δ > 0. Then for all sufficiently small ε = 1/poly(n),

1. If X -γ Y , then Pε
X∈{0,1}n [X ∈ X ] ≤ Pε

X∈{0,1}n [X ∈ Y ] + (γ + 2ε + δ).
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2. If X ≈γ Y , then Pε
X∈{0,1}n [X ∈ X ] = Pε

X∈{0,1}n [X ∈ Y ]± (γ + 2ε + δ).

3. If X -γ U × V , then Pε
X∈{0,1}n [X ∈ X ] ≤ Pε

X∈{0,1}p [X ∈ U ]Pε
X∈{0,1}q [X ∈ V ] + (γ + 3ε + ε2 + δ).

4. If X ≈γ U × V , then Pε
X∈{0,1}n [X ∈ X ] = Pε

X∈{0,1}p [X ∈ U ]Pε
X∈{0,1}q [X ∈ V ]± (γ + 3ε + ε2 + δ).

5. If X -γ U × {0, 1}q, then Pε
X∈{0,1}n [X ∈ X ] ≤ Pε

X∈{0,1}p [X ∈ U ] + (γ + 2ε + δ).

6. If X ≈γ U × {0, 1}q, then Pε
X∈{0,1}n [X ∈ X ] = Pε

X∈{0,1}p [X ∈ U ]± (γ + 2ε + δ).

Proof. Follows from Lemma 84.

6.1.2 Averaging principles

In [30], Jeřábek formalized a version of the averaging principle which says that the average size of a
family of sets must be smaller than or to equal to the size of at least one set in the family. We will need
a slightly more general proposition:

Theorem 88 (Averaging principles). ( HARDA `) Let X ⊆ {0, 1}n × {0, 1}m and Y ⊆ {0, 1}m be definable
by circuits. Let XY := {X | 〈X, Y〉 ∈ X } and γ = 1/poly(n).

1. If XY -ε [S) for every Y ∈ Y and Y -δ [T), then X ∩ ({0, 1}n ×Y) -ε+δ+εδ+γ [ST).

2. If XY %ε [S) for every Y ∈ Y and Y %δ [T), then X ∩ ({0, 1}n ×Y) %ε+δ+εδ+γ [ST).

It might be more intuitive to read Part (1) of Theorem 88 contrapositively: if we have a family of at
most T sets, such that the size of their union is more than ST, then one of the sets must be of size at
least ST/T = S. Part (2) is simply the dual of Part (1).

Proof. Since Part (1) was already shown in [30], we only need to prove Part (2). This also helps us
review the common techniques used in [30].

We know by Theorem 81 applied to (2.8) there exist functions F and v definable by circuits such that

F(Y, •) : [v(Y))×
(
XY ] [γ2n)

)
� [v(Y))×

[
Size(XY, γ)

)
.

By letting γ be a sufficiently small γ0, we can assume that v(Y) does not depend on Y. Also for each
Y ∈ Y , since [Size(XY, γ0)) %γ0 XY %ε [S), by Lemma 14 (4) we have Size(XY, γ0) + (ε + 2γ0)2n ≥ S.
Thus by Lemma 13 (3) we can obtain a function F′ such that

F′(Y, •) : [v)×
(
XY ] [(ε + 3γ0)2n)

)
� [v)×

[
S
)

for every Y ∈ Y .
Again by Theorem 11 there is a function G definable by circuit and a number w such that

G : [w)×
(
Y ] [δ2m)

)
� [w)× [T).

Thus, suitable composition of F′ and G and a slight extension of the domain give us a surjection

[vw)×
((
X ∩ ({0, 1}n ×Y

)
]
[
(ε + δ + δε + 3γ0 + 3δγ0)2m+n))� [vw)×

[
ST
)
.
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For sufficiently small γ0, we have

ε + δ + δε + 3γ0 + 3δγ0 ≤ ε + δ + δε + γ,

and thus the result follows.

From Theorem 88, we can prove another useful version of the averaging principle using the
approximate probability language developed above.

Proposition 89. ( HARDA `) Let Q : {0, 1}n × {0, 1}m → {0, 1} be a predicate defined by a polysize circuit.
Let 0 ≤ γ ≤ β < 1. For every sufficiently small ε = 1/poly(n), if

Pε
(X,R)∈{0,1}n×{0,1}m

[
Q(X, R)

]
≥ β,

then we have
Pε

X∈{0,1}n

[
Pε

R∈{0,1}m

[
Q(X, R)

]
≥ γ

]
≥ β− γ− 7ε.

Proof. Let
U =

{
(X, R) ∈ {0, 1}n × {0, 1}m | Q(X, R)

}
.

Let P(X) be the predicate asserting that

Pε
R∈{0,1}m

[
Q(X, R)

]
≥ γ,

and thus P(X) is definable within HARDA. Let

S = {X ∈ {0, 1}n | P(X)} .

Since

U =
{
(X, R) ∈ {0, 1}n×{0, 1}m | P(X)∧Q(X, R)

}
∪
{
(X, R) ∈ {0, 1}n×{0, 1}m | ¬P(X)∧Q(X, R)

}
,

for we can choose sufficiently small ε and apply Lemma 83 (3) to get,

Size(U , ε)

≤ Size
({

(X, R) ∈ {0, 1}n × {0, 1}m | P(X) ∧Q(X, R)
}

, ε
)

+ Size
({

(X, R) ∈ {0, 1}n × {0, 1}m | ¬P(X) ∧Q(X, R)
}

, ε
)

≤ Size
({

(X, R) ∈ {0, 1}n × {0, 1}m | P(X)
}

, ε
)

+ Size
({

(X, R) ∈ {0, 1}n × {0, 1}m | ¬P(X) ∧Q(X, R)
}

, ε
)

≤ Size (S × {0, 1}m, ε) + Size
({

(X, R) ∈ {0, 1}n × {0, 1}m | ¬P(X) ∧Q(X, R)
}

, ε
)

.

Claim 1: Size
({

(X, R) ∈ {0, 1}n × {0, 1}m | ¬P(X) ∧Q(X, R)
}

, ε
)
≤ γ · 2n+m + 4ε2n+m.

Proof of Claim 1. Let RX denote the set {R ∈ {0, 1}m | Q(X, R)}. Then we observe that for all X
satisfying ¬P(X), i.e., X ∈ S c = {0, 1}n \ S , it follows from how P(X) is defined that

Size(RX , ε) ≤ γ · 2m,
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which implies that
RX -ε [γ2m) .

Since we also have S c -0 {0, 1}n, by applying Theorem 88 we can show that

{
(X, R) ∈ {0, 1}n × {0, 1}m | ¬P(X) ∧Q(X, R)

}
=
{
(X, R) ∈ {0, 1}n × {0, 1}m | X ∈ S c ∧ R ∈ RX

}
-2ε [2n · γ · 2m)

Since

[
Size

({
(X, R) ∈ {0, 1}n × {0, 1}m | ¬P(X) ∧Q(X, R)

}
, ε
))
-ε

{
(X, R) ∈ {0, 1}n×{0, 1}m | ¬P(X)∧Q(X, R)

}
,

it follows by Lemma 14 (4) that

Size
({

(X, R) ∈ {0, 1}n × {0, 1}m | ¬P(X) ∧Q(X, R)
}

, ε
)
≤ γ · 2n+m + 4ε2n+m.

We can apply Lemma 84 to show that

Size (S × {0, 1}m, ε) ≤ Size (S , ε) · 2m + 3ε2n+m.

Together with Claim 1, we have

Size(U , ε) ≤ Size (S × {0, 1}m, ε) + Size
({

(X, R) ∈ {0, 1}n × {0, 1}m | ¬P(X) ∧Q(X, R)
}

, ε
)

≤ Size (S , ε) · 2m + γ · 2n+m + 7ε2n+m.

Since we have Size(U , ε) ≥ β2n+m by the assumption of the lemma, it follows that

β2n+m ≤ Size (S , ε) · 2m + γ · 2n+m + 7ε2n+m.

After simplification, we get
Size (S , ε) ≥ (β− γ)2n − 7ε2n.

Hence,
Pε

X∈{0,1}n

[
Pε

R∈{0,1}m

[
Q(X, R)

]
≥ γ

]
= Pε

X∈{0,1}n [X ∈ S ] ≥ β− γ− 7ε.

6.1.3 Approximate expectation

A feasible random variable is a circuit computing a function

F : {0, 1}n → {α1, . . . , αm},

where α1, . . . , αm are arbitrary binary rational numbers, and m = poly(n). Note that the sample space
here is the set of binary strings {0, 1}n with the uniform distribution
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Define the ε-approximate expectation of F as

Eε[F] :=
m

∑
i=1

αi ·Pε
X∈{0,1}n [F(X) = αi]. (6.1)

Lemma 90 (Markov’s inequality). ( HARDA `) Let F : {0, 1}n → {α1, . . . , αm} be a feasible random
variable. Let β > 0. Then for all sufficiently small ε = 1/poly(n),

Pε
X∈{0,1}n [F(X) ≥ β] ≤ Eε[F]

β

Proof. We have

Eε[F] =
m

∑
i=1

αi ·Pε
X∈{0,1}n [F(X) = αi]

= ∑
i:αi<β

αi ·Pε
X∈{0,1}n [F(X) = αi] + ∑

i:αi≥β

αi ·Pε
X∈{0,1}n [F(X) = αi]

≥ ∑
i:αi≥β

αi ·Pε
X∈{0,1}n [F(X) = αi]

≥ β · ∑
i:αi≥β

Pε
X∈{0,1}n [F(X) = αi]

Thus, it only remains to relate the sum ∑i:αi≥β Pε
X∈{0,1}n [F(X) = αi] with Pε

X∈{0,1}n [F(X) ≥ β].

Let Qi = {X ∈ {0, 1}n | F(X) = αi}, and let Q = {X ∈ {0, 1}n | F(X) ≥ β}. Since Qi and Qj are
disjoint for every i 6= j, we have

Q =
⊎

i:Si≥β

Qi.

Thus for sufficiently small ε = 1/poly(n) we can apply Corollary 86(4) to get

∑
i:αi≥β

Pε
X∈{0,1}n [F(X) = αi] = ∑

i:αi≥β

Pε
X∈{0,1}n [X ∈ Qi] = Pε

X∈{0,1}n [X ∈ Q] = Pε
X∈{0,1}n [F(X) ≥ β].

Putting everything together, we have

Eε[F] ≥ β · ∑
i:Si≥β

Pε
X∈{0,1}n [F(X) = αi]

≥ β ·Pε
X∈{0,1}n [F(X) ≥ β].

Lemma 91. ( HARDA `) Let F : {0, 1}n → {α1, . . . , αm} be a feasible random variable. Let

Qi = {X ∈ {0, 1}n | F(X) = αi},

be defined by circuits of poly(n) size. Let

NWn,ε : {0, 1}t → {0, 1}n
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be the Nisan-Wigderson constructed as in Jeřábek’s proof of [30, Theorem 2.7], where t = O(log n). Then for
all sufficiently small ε = 1/poly(n),

Eε[F] =
1
2t ∑

S∈{0,1}t

F(NWn,ε(S)).

Proof. Note that since 2t = poly(n), we can compute the cardinalities of subsets of {0, 1}t directly.

Eε[F] =
m

∑
i=1

αi ·Pε
X∈{0,1}n [F(X) = αi]

=
m

∑
i=1

αi ·
|{X ∈ {0, 1}t | F(NWn,ε(X)) = αi}|

2t

=
1
2t ∑

S∈{0,1}t

F(NWn,ε(S)).

Lemma 92 (linearity of expectation). ( HARDA `) Let F1, . . . , Fm be feasible random variables, where

Fi : {0, 1}n → {α1, . . . , αk}.

Let β1, . . . , βm be binary rational numbers and m = poly(n) such that the size of the range of the function
β1 · F1 + . . . + βm · Fm is small, i.e.

(β1 · F1 + . . . + βm · Fm) : {0, 1}n → {γ1, . . . , γ`}

for binary rational numbers γ1, . . . , γ` and ` = poly(n). Then for all sufficiently small ε = 1/poly(n),

Eε

[
m

∑
i=1

βi · Fi

]
=

m

∑
i=1

βi ·Eε[Fi].

Proof. Then by Lemma 91 for sufficiently small ε > 0, there exists a Nisan-Wigderson generator
NWn,ε : {0, 1}t → {0, 1}n such that

Eε

[
m

∑
i=1

βi · Fi

]
=

1
2t ∑

S∈{0,1}t

(
m

∑
i=1

βi · Fi

)
(NWn,ε(S))

=
m

∑
i=1

 1
2t ∑

S∈{0,1}t

βi · Fi (NWn,ε(S))


=

m

∑
i=1

βi ·Eε[Fi]
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6.1.4 Approximate variance of a feasible random variable

Let F : {0, 1}n → {α1, . . . , αm} be a feasible random variable. Let µ = Eε[F]. Let ε = 1/poly(n). Define
the ε-approximate variance of F as

Varε[F] := Eε[(F− µ)2]. (6.2)

For all sufficiently small ε, it follows from linearity of expectation that

Varε[F] = Eε[F2]− µ2. (6.3)

Lemma 93 (Chebyshev’s inequality). ( HARDA `) Let F : {0, 1}n → {α1, . . . , αm} be a feasible random
variable. Then for all sufficiently small ε = 1/poly(n),

Pε
X∈{0,1}n [|F(X)−Eε[F]| ≥ β] ≤ Varε[F]

β2

Proof. First we observe that

{X ∈ {0, 1}n | |F(X)−Eε[F]| ≥ β} = {X ∈ {0, 1}n | (F(X)−Eε[F])2 ≥ β2}.

Thus for sufficiently small ε = 1/poly(n) we have

Pε
X∈{0,1}n [|F(X)−Eε[F]| ≥ β] = Pε

X∈{0,1}n

[
(F(X)−Eε[F])2 ≥ β2

]
≤

Eε
[
(F(X)−Eε[F])2]

β2 (by Markov’s inequality)

=
Varε[F]

β2

Lemma 94 (linearity of variance). ( HARDA `) Let F1, . . . , Fm be feasible random variables, where Fi :
{0, 1}n → {α1, . . . , αk}. Assume the size of the range of the function F1 + . . . + Fm is small, i.e.

(F1 + . . . + Fm) : {0, 1}n → {γ1, . . . , γ`}

for binary rational numbers γ1, . . . , γ` and ` = poly(n). Let δ = 1/poly(n) such that for all distict i, j ∈ [m],
F1, . . . , Fm are δ-close to being pairwise independent, i.e.,

Eε[Fi · Fj] = Eε[Fi]E
ε[Fi]± δ

Then for all sufficiently small ε = 1/poly(n),

Varε

[
m

∑
i=1

Fi

]
=

m

∑
i=1

Varε[Fi]±m2δ.
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Proof. For sufficiently small ε = 1/poly(n), we can apply linearity of expectation to get

Varε

[
m

∑
i=1

Fi

]
=

m

∑
i=1

Varε[Fi] + 2 ∑
i<j

Covε(Fi, Fj),

where
Covε(Fi, Fj) = Eε[Fi · Fj]−Eε[Fi]E

ε[Fj] = ±δ.

From this we get

Varε

[
m

∑
i=1

Fi

]
=

m

∑
i=1

Varε[Fi]±m2δ.

6.2 A collection of pairwise independent random variables

Our sample space is the set of all m × n 0-1 valued matrices equipped with the uniform measure.
For each non-empty S ⊆ [m], FS(M) is the string obtained by xor’ing together the rows of M whose
index appears in S. In this section we will show that this collection of random variables is pairwise
independent (which will contribute in an important way in the proof of the Goldreich-Levin Theorem).

Note that the columns of each of the FS are independent of each other, so we start by analyzing one
column at a time. In other words, we first consider the case when n = 1.

We will use the following notation for the rest of this section. For a nonempty S ⊆ [m], and a single
bit b ∈ {0, 1}, let

XS,b = F−1
S (b) =

{
X ∈ {0, 1}m |

⊕
i∈S

Xi = b
}

.

We also use the notation A ≈ B to denote that there is a bijection between A and B. It important
to note that A ≈ B implies A ≈0 B, but it is not known if we can prove within HARDA that A ≈0 B
implies A ≈ B.

Lemma 95. (VPV `) For every nonempty subset S of [m] and for every b ∈ {0, 1},

XS,b ≈ {0, 1}m−1.

Informally, this proposition say that PX∈{0,1}m [FS(X) = b] = |XS,b|/2m = 1/2, which is a way to
show that the random bit FS(X) =

⊕
i∈S Xi is uniform.

Proof. We need to construct a bijection G1 from XS,b onto {0, 1}m−1.

Let i ∈ [m] be the smallest index in S (i.e. i = min S). Let Y = G1(X) ∈ {0, 1}m−1 be the sequence
produced from X by discarding the ith bit.

G1 is easily seen to be injective, surjective and polytime computable. (In fact, G1 is simply a
projection function and can be computed by an NC0 function.)

To invert G1, we need to show how to recover the discarded bit Xi. But this is easy: since we have
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all but one of the bits of the sequence
〈

Xj | j ∈ S
〉
, and their xor (i.e. b), Xi is uniquely determined as

Xi =

 ⊕
j∈S\{i}

Yj

⊕ b.

Lemma 96. (VPV `) For all nonempty subsets S 6= T of [m] and boolean values a and b,

XS,a ∩ XT,b ≈ {0, 1}m−2.

Informally, this proposition say that PX∈{0,1}m [FS(X) = a ∧ FT(X) = b] = |XS,a ∩ XT,b|/2m = 1/4,
which shows that the two random bits FX(X) and FT(X) are independent.

Proof. Here we need to construct a bijection G2 from XS,a ∩ XT,b onto {0, 1}m−2.

Since S 6= T, we can suppose, without loss of generality, that T \ S 6= ∅. Let i = min S, j = min T \ S.
Let Y = G2(X) ∈ {0, 1}m−1 be the sequence produced from X by discarding the ith and the jth bits.

G2 is easily seen to be injective, surjective and efficiently computable. It remains to be shown that
G2 is efficiently invertible.

If we can show how to recover Xi, Xj, we are done. So we must chose Xi, Xj such that

⊕
k∈S

Xk = a (6.4)

⊕
k∈T

Xk = b (6.5)

The point is that since j was chosen to be an index in T but not S, there is only one unknown in (6.4),
namely Xi. Once we have recovered Xi, we can solve for Xj in (6.5).

Corollary 97. (VPV `) For all nonempty subsets S 6= T of [m] and boolean values a and b,

(XS,a ∩ XT,b)× {0, 1}m ≈ XS,a ×XT,b.

Proof. From Lemmas 95 and 96,

(XS,a ∩ XT,b)× {0, 1}m ≈ {0, 1}m−2 × {0, 1}m ≈ {0, 1}m−1 × {0, 1}m−1 ≈ XS,a ×XT,b.

We can extend Lemma 95 and Corollary 97 to the more general case where we generate pairwise
independent binary sequences of length n ≥ 1. For S ⊆ [m], B ∈ {0, 1}n, let

YS,B = F−1
S (B) =

{
M ∈ {0, 1}mn | (⊕i∈S Row(i, M)) = B

}
.

Lemma 98. (VPV `) For every nonempty subset S of [m] and for every B ∈ {0, 1}n,

YS,B ≈ {0, 1}(m−1)n.
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Proof. We need to construct a bijection H1 from YS,B onto {0, 1}(m−1)n. The function H1 take as input
an m× n Boolean matrix M, and produces an (m− 1)× n matrix M′ as follows. Each column Col(i, M′)
is the the Boolean sequence produced by the bijection from Lemma 95 on input sequence Col(i, M). It
is not hard to check that H1 is a bijection.

Lemma 99. (VPV `) For all nonempty subsets S 6= T of [m] and boolean sequences A, B ∈ {0, 1}n,

(YS,A ∩ YT,B)× {0, 1}mn ≈ YS,A ×YT,B.

Proof. We need to construct a bijection H2 from (YS,A ∩ YT,B)×{0, 1}mn onto YS,A×YT,B. The function
H2 takes as input a pair (M, N) ∈ (YS,A ∩ YT,B)× {0, 1}mn, where M and N are interpreted as m× n
Boolean matrices, and produces a pair of m× n matrices M′ and N′ as follows. For every i ∈ [n],
the columns Col(i, M′) and Col(i, N′) are the two Boolean sequences produced by the bijection from
Corollary 97 on input sequences Col(i, M) and Col(i, N). It is not hard to check that H2 is a bijection.

Now we can show that this pairwise independence guarantees approximately zero covariance.

Proposition 100. ( HARDA `) Let P : {0, 1}n → {0, 1} and Q : {0, 1}n → {0, 1} be predicates definable by
circuits. Let ε = 1/poly(n). Then for all nonempty subsets S 6= T of [m],

1. Pε
M∈{0,1}mn [P ◦ FS(M) ∧Q ◦ FT(M)] = Pε

M∈{0,1}mn [P ◦ FS(M)]Pε
M∈{0,1}mn [Q ◦ FT(M)]± 4ε, and

2. Eε[(P ◦ FS) · (Q ◦ FT)] = Eε[P ◦ FS]E
ε[Q ◦ FT ]± 4ε.

Proof. Let

S =
{

Mm×n ∈ {0, 1}mn | P ◦ FS(M) ∧Q ◦ FT(M)
}

,

U =
{

Mm×n ∈ {0, 1}mn | P ◦ FS(M)
}

,

V =
{

Mm×n ∈ {0, 1}mn | Q ◦ FT(M)
}

.

We want to show the following claim.

Claim 1: S × {0, 1}mn ≈ U × V .

Proof of Claim 1. We will construct a bijection G from S × {0, 1}mn onto U × V as follows. The input
of G is a pair (M, N) ∈ S × {0, 1}mn, where M and N are interpreted as m× n Boolean matrices. Let
A = FS(M) and B = FT(M). Then M ∈ YS,A ∩ YT,B, and thus we can let G map (M, N) to a pair
(M′, N′) ∈ YS,A × YT,B using the bijection from Lemma 99. It is not hard to check that G is also a
bijection.

We also have S ≈ε

[
Size(S , ε)

)
, U ≈ε

[
Size(U , ε)

)
, and V ≈ε

[
Size(V , ε)

)
. Thus,

[
Size(S , ε) · 2mn) ≈ε S × {0, 1}mn

≈0 U × V (by Claim 1)

≈2ε+ε2
[
Size(U , ε)Size(V , ε)

)
(by Lemma 13 (5))

By Lemma 13 (3), it follows that

[
Size(S , ε) · 2mn) ≈3ε+ε2

[
Size(U , ε)Size(V , ε)

)
.
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Then we can apply Lemma 14 (2) to get

Size(S , ε) · 2mn = Size(U , ε)Size(V , ε)± (3ε + ε2 + γ)22mn.

By choosing γ ≤ ε− ε2, we have

Size(S , ε) · 2mn = Size(U , ε)Size(V , ε)± 4ε22mn.

This implies part (1) of this proposition. Since P ◦ FS and Q ◦ FT are 0-1 valued random variables, part
(2) also follows.

The following proposition is also useful when dealing with pairwise independent sequences since we
want to show that running a randomized algorithm on a pairwise independent distribution constructed
above will produce “identical” results to running on a uniform distribution.

Proposition 101. ( HARDA `) Let P : {0, 1}n → {0, 1} be a predicate definable by a circuit. Let ε =

1/poly(n). Then for every nonempty S ⊆ [m],

Pε
M∈{0,1}mn [P ◦ FS(M)] = Pε

X∈{0,1}n [P(X)]± 3ε.

Proof. Let U =
{

Mm×n ∈ {0, 1}mn | P ◦ FS(M)
}

and V =
{

X ∈ {0, 1}n | P(X)
}

. By Corollary 87 (6), it
suffices to show that U ≈ V × {0, 1}m(n−1).

We want to construct a bijection G from U onto V ×{0, 1}m(n−1). On input M of G, we let B = FS(M).
Since M ∈ YS,B, we can let M′ = H1(M), where H1 is the bijection in the proof of Lemma 98. Then we
define G(M) = (B, M′). We can easily check that G is a bijection.

6.3 Formalizing the Goldreich-Levin Theorem

The Goldreich-Levin Theorem is the result that every one-way function can be modified to have a
hardcore predicate. The informal statement without specifying the approximation parameters can be
stated as follows.

Theorem 102 (Goldreich-Levin [24]). Let F : {0, 1}n → {0, 1}n be a one-way function and let F′ : {0, 1}n ×
{0, 1}n → {0, 1}n × {0, 1}n be the following function F′(X, R) = (F(X), R). Define

gl(X, R) =
n⊕

i=1

Xi · Ri.

Then F′ is also a one-way function and gl is a hardcore predicate for F′.

In other words, the theorem says that if F is a one-way function, and we pick a random sequence
X ∈ {0, 1}n and a random subset S ⊆ [n], then given the value of F(X) and the set S it is hard for the
adversary to guess the value

⊕
i∈S X(i) with probability significantly better than 1/2.

The proof we present here is due to Charles Rackoff, and is a simplification of the original proof in
[24]. Our formal proof of this theorem will be based on the excellent exposition in [31].
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6.3.1 Formalizing basic cryptography definitions

Definition 103 (One-way function – finite version). (in HARDA) A function F : {0, 1}n → {0, 1}n

is (s, ε)-one-way if it is computable by a circuit of size poly(n), but for every (randomized) circuit
C : {0, 1}n × {0, 1}r → {0, 1} of size at most s, there exits γ > 0 such that for all 0 < δ < γ with
δ = 1/poly(n, r),

Pδ
(X,R)∈{0,1}n×{0,1}r

[
F
(
C(F(X), R)

)
= F(X)

]
< ε.

A function F : {0, 1}n → {0, 1}n which is both (s, ε)-one-way and bijective is called an (s, ε)-one-way
permutation.

Using the above definition, we can show the following property of one-way functions.

Proposition 104. ( HARDA `) If F : {0, 1}n → {0, 1}n is (s, ε)-one-way with s = poly(n) and ε =

1/poly(n), then the function F′ : {0, 1}n × {0, 1}q → {0, 1}n × {0, 1}q defined as F′(X, R) = (F(X), R) is
also (s, ε)-one-way.

Proof. We prove the contrapositive. Suppose F′ is not (s, ε)-one-way. Then by Definition 103 there exists
a circuit C of size at most s such that for all γ > 0, there exists 0 < δ < γ with δ = 1/poly(n, q, r),

Pδ
(X,R,R′)∈{0,1}n×{0,1}q×{0,1}r

[
F′
(
C(F′(X, R), R′)

)
= (F(X), R)

]
≥ ε.

For sufficiently small δ = 1/poly(n, q, r), this together with Corollary 86 (1) implies that

Pδ
(X,R)∈{0,1}n×{0,1}q+r

[
F
(
C(F(X), R)

)
= F(X)

]
≥ ε,

where F simply acts on the first n output bits of C. Thus, F : {0, 1}n → {0, 1}n is also not (s, ε)-one-
way.

Definition 105 (Hardcore predicate – finite version). (in HARDA) A predicate B : {0, 1}n → {0, 1} is
an (s, ε)-hardcore predicate for a function F : {0, 1}n → {0, 1}n if it is computable by a circuit of size
poly(n), but for every (randomized) circuit C : {0, 1}n × {0, 1}r → {0, 1} of size at most s, there exits
γ > 0 such that for all 0 < δ < γ with δ = 1/poly(n, r),

Pδ
(X,R)∈{0,1}n×{0,1}r

[
C(F(X), R) = B(X)

]
< 1/2 + ε.

6.3.2 A special case of the Goldreich-Levin Theorem

In this section, we will formalize the following weaker version of the Goldreich-Levin Theorem, which
we state in the contrapositive.

Theorem 106 (Goldreich-Levin – weak version). Let F : {0, 1}n → {0, 1}n be a function computed by a
circuit of size t, and suppose that there exists a circuit C of size s such that

Pε
(X,R)∈{0,1}2n

[
C(F(X), R) = gl(X, R)

]
≥ 3

4
+

1
p(n)

. (6.6)

If ε = 1/poly(n) is sufficiently small, then there is a circuit C′ of size at most s · poly(n, 1/ε) and q = poly(n)
such that

Pε
(X,R′)∈{0,1}n×{0,1}q

[
C′(F(X), R′) = X

]
≥ 1

4p(n)
− 15ε

2
(6.7)
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Note that (6.7) automatically implies by Corollary 86 (1) that

Pε
(X,R′)∈{0,1}n×{0,1}q

[
F(C′(F(X), R′)) = F(X)

]
≥ 1

4p(n)
− 15ε

2

This version of the theorem is weak in the sense that the right-hand side of (6.6) is 3/4+ 1
p(n) instead

of 1/2 + 1
p(n) . The main observation is that for every R ∈ {0, 1}n, the values gl(X, R) and gl(X, R⊕ Ei)

together determine X(i) (here Ei denotes the n-bit binary string with zeros in all but the ith position).
This follows from the property of the ⊕ operator, which implies the following equality:

gl(X, R)⊕ gl(X, R⊕ Ei) = X(i). (6.8)

Thus if C answers correctly on both (F(X), R) and (F(X), R ⊕ Ei), then we can correctly compute
X(i) using the identity (6.8). However we are only guaranteed that C computes gl correctly with
high probability, so we are left with a noisy guess for X(i). To overcome this, we take a majority of
polynomially many noisy guesses, which will result in a correct guess of X(i) with sufficiently high
probability.

Note that the probability that C computes gl correctly is over both X and R. As we are building an
inverter for F, we will be asked to invert F for a particular X. So C will only be useful if it answers
gl(X, R) correctly for the same X and many R. Thus if we let Q(X, R) be the predicate:

Q(X, R) := (C(F(X), R) = gl(X, R))

then we will be interested in X’s such that Pε
R∈{0,1}n

[
Q(X, R)

]
is large. Thanks to Proposition 89, we

have the following lemma:

Lemma 107. ( HARDA `) For sufficiently small ε = 1/poly(n), if

Pε
(X,R)∈{0,1}2n

[
Q(X, R)

]
≥ 3

4
+

1
p(n)

, (6.9)

then we have
Pε

X∈{0,1}n

[
Pε

R∈{0,1}n

[
Q(X, R)

]
≥ 3

4
+

1
2p(n)

]
≥ 1

2p(n)
− 7ε.

For the task of inverting F, it will suffice to invert F on X’s where

Pε
R∈{0,1}n

[
Q(X, R)

]
≥ 3

4
+

1
2p(n)

(as, when X is chosen uniformly at random, this occurs with significant probability). Let P(X) be the
predicate that is true when the above inequality holds, i.e.

P(X) :=
(

Pε
R∈{0,1}n

[
Q(X, R)

]
≥ 3

4
+

1
2p(n)

)
For the purposes of exposition and as suggested in the sketch of the proof of 106, C′ is constructed
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primarily from C′i sub-circuits, each of which guesses X(i) with considerable accuracy; in turn, C′i is
constructed by taking the majority vote from m copies of circuit Cnoisy

i , each of which takes F(X) and a
random string R ∈ {0, 1}n as inputs and uses the circuit C and the identity (6.8) to produce a noisy
guess for X(i). In other words, we define

C′i(F(X), R1, . . . , Rm) = Maj
(

Cnoisy
i (F(X), R1), . . . , Cnoisy

i (F(X), Rm)
)

C′i(F(X), R1, . . . , Rm) := Maj
(

Cnoisy
i (F(X), R1), . . . , Cnoisy

i (F(X), Rm)
)

Cnoisy
i (F(X), Rj) := C(F(X), Rj)⊕ C(F(X), R⊕ Ei)

We begin by showing how well Cnoisy
i guesses X(i). This is the probability that C answers correctly

for both (F(X), R) and (F(X), R⊕ Ei).

Lemma 108. ( HARDA `) For sufficiently small ε = 1/poly(n), and for every X satisfying P(X) we have

Pε
R∈{0,1}n

[
Q(X, R) ∧Q(X, R⊕ Ei)

]
≥
(

1
2
+

1
p(n)

)
− 3ε.

Proof. Let B denote the set {R ∈ {0, 1}n | ¬Q(X, R) ∨ ¬Q(X, R ⊕ Ei)}, which contains the “bad”
sequences R’s. We want to upper-bound the probability that R is a bad sequence.

Since
B =

{
R ∈ {0, 1}n | ¬Q(X, R)

}
∪
{

R ∈ {0, 1}n | ¬Q(X, R⊕ Ei)
}

,

it follows by Corollary 86 (3) (union bound) that

Pε
R∈{0,1}n [X ∈ B] ≤ Pε

R∈{0,1}n [¬Q(X, R)] + Pε
R∈{0,1}n [¬Q(X, R⊕ Ei)].

We next upper-bound the two probabilities in this sum.

It follows from the assumption of this lemma and Corollary 86 (5), we have

Pε
R∈{0,1}n [¬Q(X, R)] ≤

(
1
4
− 1

2p(n)

)
. (6.10)

To bound Pε
R∈{0,1}n [¬Q(X, R⊕ Ei)], we observe that

{R ∈ {0, 1}n | ¬Q(X, R⊕ Ei)} ≈ {R ∈ {0, 1}n | ¬Q(X, R)},

where we recall that ≈ denotes the existence of a bijection between these two sets. Thus we can apply
Corollary 87 (2) (with γ = ε) to get

Pε
R∈{0,1}n [¬Q(X, R⊕ Ei)] ≤ Pε

R∈{0,1}n [¬Q(X, R)] + 3ε =

(
1
4
− 1

2p(n)

)
+ 3ε. (6.11)
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From (6.10) and (6.11), we have

Pε
R∈{0,1}n [R ∈ B] ≤ Pε

R∈{0,1}n [¬Q(X, R)] + Pε
R∈{0,1}n [¬Q(X, R⊕ Ei)]

≤
(

1
4
− 1

2p(n)

)
+

(
1
4
− 1

2p(n)

)
+ 3ε

=

(
1
2
− 1

p(n)

)
+ 3ε.

Hence, by Corollary 86 (5), we can lower-bound the probablity that R is a good sequence as follows

Pε
R∈{0,1}n [X 6∈ B] ≥ 1−

(
1
2
− 1

p(n)

)
− 3ε =

(
1
2
+

1
p(n)

)
− 3ε.

Now we will consider how well C′i recovers X(i). Recall that

C′i(F(X), ~R) := Maj
(

Cnoisy
i (F(X), R1), . . . , Cnoisy

i (F(X), Rm)
)

,

where ~R = 〈R1, . . . , Rm〉.

Lemma 109. Given X satisfying P(X). For sufficiently small ε = 1/poly(n) and sufficiently large m =

poly(n),

Pε
~R∈{0,1}nm

[
C′i(F(X), ~R) 6= X(i)

]
≤ 2

n2

Proof. Let G(R) : {0, 1}n → {0, 1} be the indicator random variable for the event that Cnoisy
i (F(X), R)

guesses the value of X(i) correctly (i.e. that Q(X, R)∧Q(X, R⊕ Ei) holds). Define the random variable

Z(R1, . . . , Rm) =
m

∑
j=1

G(Rj).

Note that C′i errs if and only if Z < m/2. As we will use Chebyshev’s inequality to bound this
probability, we will need information about the moments of Z. We need to show the following two
facts:

Eε[Z] ≥ m/2 + m/p(n)− 3mε (6.12)

Varε[Z] ≤ m/4 + m24ε (6.13)

Inequality (6.12) follows directly from Lemma 92 and Lemma 108.

Intuitively, since Z is a sum of independent random variables, (6.13) will follow from Lemma 94.
We proceed with the detailed proof. It suffices to show that the approximate covariance of {G(Rj)}m

j=1
is within 4ε. We note that

{(Rj, Rk) ∈ {0, 1}n × {0, 1}n | G(Rj) = 1∧ G(Rk) = 1}

≈0{Rj ∈ {0, 1}n | G(Rj) = 1} × {Rk ∈ {0, 1}n | G(Rk) = 1}
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Following Corollary 87 (4), we have that

Eε[G(Rj)G(Rk)] = Eε[G(Rk)]E
ε[G(Rk)]± 4ε

Applying Lemma 94 we have that

Varε[Z] = mVarε[G] + 4m2ε

To upperbound Varε[G], we start with (6.3) which simplifies to

Varε[G] = Eε[G2]− (Eε[G])2 = Eε[G]− (Eε[G])2

since G(R) is an indicator random variable (i.e. 0-1 valued). Now consider the function f (γ) = γ− γ2,
where γ = Eε[G]. By rewriting

f (γ) = −(γ− 1/2)2 + 1/4,

it is clear that f takes its maximum at 1/4. So we get Varε[G] ≤ 1/4. Thus, (6.13) follows.

We can bound the event that Z(~R) < m/2 as follows. We rewrite

Pε
~R∈{0,1}nm

[
Z(~R) < m/2

]
= Pε

[
Z(~R)− (m/2 + m/p(n)− 3mε) < −(m/p(n)− 3mε)

]
Then for sufficiently small ε, we have that −(m/p(n)− 3mε) < 0, and thus

Pε
~R∈{0,1}nm

[
Z(~R) < m/2

]
≤ Pε

[
Z(~R)−Eε[Z] < −(m/p(n)− 3mε)

]
(by (6.12))

≤ Pε
[∣∣∣Z(~R)−Eε[Z]

∣∣∣ > (m/p(n)− 3mε)
]

≤ Varε[Z]
(m/p(n)− 3mε)2

≤ m/4 + 4m2ε

m2(1/p(n)− 3ε)2

=
1

4m(1/p(n)− 3ε)2 +
4ε

(1/p(n)− 3ε)2

≤ 1

4m
(

1
2p(n)

)2 +
4ε(
1

2p(n)

)2 (by choosing ε ≤ 1
6p(n) )

=
p2(n)

m
+ 16εp2(n)

Note that when m ≥ n2 p2(n) and ε ≤ 1
(4np(n))2 , we get

Pε
~R∈{0,1}nm [C

′
i(F(X), ~R) 6= X(i)] ≤ 1

n2 +
1
n2 =

2
n2

From here, we can now show the correctness of C′ inverting F on ‘good’ X’s.

Lemma 110. For sufficiently small ε = 1/poly(n) and sufficiently large n and m = poly(n), if X satisfies
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P(X), then
Pε

~R′∈{0,1}n2m [C
′(F(X), ~R′) 6= X] < 1/2

where ~R′ =
〈
~R1, ..., ~Rn

〉
are the random strings used by C′, and each ~Ri consists of nm bits used by circuit C′i .

Proof. Since we can recover each bit with high probability, it only remains to show that we recover all
bits with high probability, which comes to us through the union bound (and our judicious choice of m
and ε).

Pε
~R∈{0,1}n2m

[
C′(F(X), ~R′) 6= X

]
= Pε

~R∈{0,1}n2m

[
n∨

i=1

C′i(F(X), ~Ri) 6= X(i)

]

≤
n

∑
i=1

Pε
~R∈{0,1}n2m [C

′
i(F(X), ~Ri) 6= X(i)] (by Proposition 86 (3))

At this point, we would like to apply Lemma 109 to upperbound each Pε
~R∈{0,1}n2m

[C′i(F(X), ~Ri) 6=
X(i)]. However, before doing so, we need to apply Corollary 87 (6) to get

Pε
~R∈{0,1}n2m [C

′
i(F(X), ~Ri) 6= X(i)] = Pε

~Rj∈{0,1}nm [C
′
i(F(X), ~Rj) 6= X(i)]± 3ε

Putting things together, we have

Pε
~R∈{0,1}n2m

[
C′(F(X), ~R′) 6= X

]
≤
(

n

∑
i=1

Pε
~R∈{0,1}n2m

[
C′i(F(X), ~Ri) 6= X(i)

])
+ 3nε

≤ n
(

2
n2

)
+ 3nε (by Lemma 109)

=
2
n
+ 3nε

< 1/2

for sufficiently small ε = 1/poly(n) and large enough m and n.

Now the proof of Theorem 106 follows easily from this development and the earlier Averaging
Principle, Theorem 88 (2).

Proof of Theorem 106. Let

I =
{
(X, R) ∈ {0, 1}n × {0, 1}n2m | C′(F(X), R) = X ∧ P(X)

}
IX =

{
R ∈ {0, 1}n2m | C′(F(X), R) = X

}
P = {X ∈ {0, 1}n | P(X)}

Lemma 107 gives us that

Pε
X∈{0,1}n [X ∈ P ] ≥

1
2p(n)

− 7ε.

Hence,
[
2n · ( 1

2p(n) − 7ε)
)
-ε P .
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Meanwhile, for X ∈ P , Lemma 110 gives us that

Pε

R∈{0,1}n2m [C
′(F(X), R) = X] ≥ 1/2.

It follows that [2n2m−1) -ε IX .
Applying Theorem 88 (2) (with I playing the role of X and P playing the role of Y , we have that[(

1
4p(n)

− 7ε

2

)
× 2n2m

)
-2ε+ε2+γ I

Thus we have the upperbound

Pε

(X,R)∈{0,1}n×{0,1}n2m [(X, R) ∈ I ] ≥
(

1
4p(n)

− 7ε

2

)
− 4ε =

(
1

4p(n)
− 15ε

2

)
by choosing γ = ε− ε2.

Given that I ⊆
{
(X, R) ∈ {0, 1}n × {0, 1}n2m | C′(F(X), R) = X

}
, the set whose probability we are

computing, the result follows by Corollary 86 (1).

6.3.3 The Goldreich-Levin Theorem

We are now ready to proceed with the full version of the Goldreich-Levin Theorem.

Theorem 111 (Goldreich-Levin). Let F : {0, 1}n → {0, 1}n be a function computed by a circuit of size t, and
suppose that there exists a circuit C of size s such that

Pε
(X,R)∈{0,1}2n

[
C(F(X), R) = gl(X, R)

]
≥ 1

2
+

1
p(n)

(6.14)

If ε = 1/poly(n) is sufficiently small, then there is a circuit C′ of size at most (s + t) · poly(n, 1/ε) and
q = poly(n) such that

Pε
(X,R′)∈{0,1}n×{0,1}q

[
F(C′(F(X), R′)) = F(X)

]
≥ 1

4p(n)
− 15ε

2

For the general case of the Goldreich-Levin Theorem we have a weaker predictor of the gl predicate.
If we proceed similarly to the proof of Lemma 108, we can only get

Pε
R∈{0,1}n

[
Q(X, R) ∧Q(X, R⊕ Ei)

]
≥ 1

p(n)
−O(ε).

This means that if we construct a similar circuit that guesses X(i) then we can only guarantee that
the probability that the circuit succeeds is at least 1

p(n) , which is no better than randomly guessing the
value of Xi.

To overcome this, we will modify Cnoisy
i to query only C(X, Rj ⊕ Ei), and xor this with a guess of

gl(X, Rj). The naive way to make these guesses would be choosing the R1, . . . , Rm independently as
before and making an independent guess of gl(X, Rj) for each Rj. Unfotunately the probabilty that all
guesses are correct would be negligible because m is polynomial in n.
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They key idea is that we can generate the Rj’s in a pairwise-independent manner as follows. In
order to generate R1, . . . , Rm , we choose ` = log(m + 1) independent and uniformly-distributed strings
Y1, . . . , Y` ∈ {0, 1}n. Let S1, . . . , Sm be an enumeration of all nonempty subsets of [`]. Then we define
Rj =

⊕
i∈Sj

Yi. It follows from the results we formalized in Section 6.2 that the collection of strings
R1, . . . , Rm is pairwise-independent and each string Rj when considered in isolation is uniformly
distributed.

It remains to guess correctly the values of gl(X, R1). . . . , gl(X, Rm). For this purpose we exploit the
linearity of gl:

if we have the correct values of gl(X, Y1), . . . , gl(X, Y`) and let bj =
⊕

i∈Sj
gl(X, Yj), then bj is

the correct value for gl(X, Rj).

Thus it suffices to guess correctly the values of gl(X, Y1), . . . , gl(X, Y`). But since ` is O(log n), we can
eventually get the correct values of gl(X, Y1), . . . , gl(X, Y`) by simply going through all possible binary
strings B of length `, where B(k) is a guess for the value of gl(X, Yk), and letting a circuit C′B carry
out the computation using B as the values of gl(X, Y1), . . . , gl(X, Y`). Furthermore we can verify if C′B
succeeds by checking if X̂ = C′B

(
F(X), R1, R2, . . . , Rm

)
satisfies

F(X̂) = F(X).

Hence we can go through all possible strings B of length ` and output the first X̂ satisfying F(X̂) = F(X).
If we fail to find any such X̂, we will output some arbitrary string, say~0.

Thus for the rest of the proof, we can assume for simplicity that the circuit C′ is provided with the
correct values of

gl(X, R1), . . . , gl(X, Rm).

Our exposition follows that of Theorem 106 closely. The parameter m will be fixed later. So we have
in mind that:

C′(F(X), R1, . . . , Rm) :=
(
C′1(F(X), R1, . . . , Rm), . . . , C′n(F(X), R1, . . . , Rm)

)
C′i(F(X), R1, . . . , Rm) := Maj

(
Cnoisy

i (F(X), R1), . . . , Cnoisy
i (F(X), Rm)

)
Cnoisy

i (F(X), Rj) := gl(X, Rj)⊕ C(F(X), Rj ⊕ Ei)

where R1, . . . , Rm are generated in a pairwise-independent manner as discussed above.

Similar to as before, we define the predicate P : {0, 1}n → {0, 1} as

P(X) :=
(

Pε
R∈{0,1}n [Q(X, R)] ≥ 1

2
+

1
2p(n)

)
Similarly to Lemma 107 we have

Pε
X∈{0,1}n [P(X)] ≥ 1

2p(n)
− 7ε (6.15)



Chapter 6. Formalizing the Goldreich-Levin Theorem 93

Lemma 112. Let X be fixed such that P(X). For sufficiently small ε = 1/poly(n) and sufficiently large m,

Pε
~Y∈{0,1}n`

[
C′i(F(X), R1, . . . , Rm) 6= X(i)

]
≤ 2

n2

Proof. Let G(R) be the indicator random variable for the event that Cnoisy
i (F(X), R) guesses X(i)

correctly (i.e. that Q(X, R) holds). Let Z be the random variable over ~Y = 〈Y1, . . . , Y`〉 ∈ {0, 1}n` where

Z(~Y) =
m

∑
j=1

G(Rj)

and recall that R1, . . . , Rm are the pairwise independent strings generated from the uniformly-distributed
strings Y1, . . . , Y` ∈ {0, 1}n.

Note that C′i errs iff Z(~R) < M/2. As we will use Chebyshev’s inequality to bound this probability,
we will need information about the moments of Z. The following facts will suffice:

Eε[Z] ≥ m
2
+

m
2p(n)

− 6mε (6.16)

Varε[Z] ≤ m
4
+ 4εm2 (6.17)

As Z is a sum of random variables, inequality (6.16) follows directly from Lemma 92, the fact that X
satisfies P(X), and an application of Proposition 101 since we are working with pairwise independent
strings Rj.

Inequality (6.17) follows from Lemma 94, where the bound on covariances comes from Proposi-
tion 100, and we also get Varε[G] ≤ 1/4 as in the proof of Lemma 109.

Now we proceed similarly as in the proof of Lemma 109 as follows

Pε[Z(~R) < m/2] ≤ Pε

[
Z(~R)−

(
m
2
+

m
2p(n)

− 6mε

)
< −

(
m

2p(n)
− 6mε

)]
≤ Pε

[
|Z(~R)−Eε[Z]| > m

2p(n)
− 6mε

]
≤ Varε[Z](

m
2p(n) − 6mε

)2

≤ m/4 + 4εm2(
m

2p(n) − 6mε
)2

=
1

4m
(

1
2p(n) − 6ε

)2 +
4ε(

1
2p(n) − 6ε

)2

≤ 1

4m
(

1
4p(n)

)2 +
4ε(
1

4p(n)

)2 (by choosing ε ≤ 1
24p(n) )

=
4p2(n)

m
+ 64εp2(n)

For m ≥ 4n2 p2(n) and ε ≤ 1
64n2 p2(n) this probability of error reduces to 2/n2.
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Lemma 113. For X satisfying P(X) and sufficiently small ε = 1/poly(n) and sufficiently large n and m =

poly(n), we have
Pε
~Y∈{0,1}n`

[
C′(F(X), R1, . . . , Rm) 6= X

]
< 1/2

Proof. This lemma follows from Lemma 112 exactly as Lemma 110 follows from Lemma 109.

From here the rest of the proof of the Goldreich-Levin Theorem is similar to that of the special case.

6.4 Construction of pseudorandom generators from the Goldreich-

Levin Theorem

One nice implication of the existence of hardcore predicates as shown in the Goldreich-Levin Theorem
is the construction of pseudorandom generators from one-way permutations. In our theory, we can
formalize the definition of a pseudorandom generator as follows.

Definition 114. A function G : {0, 1}m → {0, 1}n is a (s, ε)-pseudorandom generator if all circuits D of
size at most s, there exits γ such that for all 0 < δ < γ and δ = 1/poly(n),∣∣∣Pδ

X∈{0,1}n

[
C(X)

]
−Pδ

R∈{0,1}m

[
C(G(R))

]∣∣∣ < ε.

Then we would like to formalize the following simple textbook theorem that gives us a pseudoran-
dom generator that maps n random bits to n + 1 pseudorandom bits from a one-way permutation and
its hardcore predicate.

Theorem 115. Let F : {0, 1}n → {0, 1}n be a one-way permutation and let P(X) be an (s, ε)-hardcore
predicate of F, then

G(X) = F(X), P(X)

is a (s− d, ε + γ)-pseudorandom generator for some constant d and any γ = 1/poly(n).

To prove this theorem, we need to show that the outputs of the one-way permutation F are random
and uniformly distributed. Due to errors from approximate counting, we would need to show that

Pδ
X∈{0,1}n ,r∈{0,1}

[
D(X, r)

]
−Pδ

X∈{0,1}n ,r∈{0,1}
[
D(F(X), r)

]
= ±cδ,

for some constant c > 0. For this, we need to show that

{(X, r) ∈ {0, 1}n × {0, 1} | D(X, r)} ≈aδ {(X, r) ∈ {0, 1}n × {0, 1} | D(F(X), r)},

for some constant a > 0.
Due to the fact that F is a permutation, we can show that

F : {(X, r) ∈ {0, 1}n × {0, 1} | D(F(X), r)}� {(X, r) ∈ {0, 1}n × {0, 1} | D(X, r)}.

However since F is one-way, it is not clear how to construct a surjection to show that

{(X, r) ∈ {0, 1}n × {0, 1} | D(X, r)} %aδ {(X, r) ∈ {0, 1}n × {0, 1} | D(F(X), r)}.
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Thus we leave open the question of whether HARDA proves Theorem 115.



Chapter 7

Conclusion and future work

Our correctness proof of the reduction from Sm to Ccv in Section 3.7.2 is a nice example showing
the utility of three-valued logic for reasoning about uncertainty. Since an instance of Sm might not
have a unique solution, the fact that the fixed point Ic(n) =Mc(n)(I0) is three-valued indicates that
the construction cannot fully determine how all the men and women can be matched. Thus, different
Boolean fixed-point extensions of Ic(n) give us different stable marriages.

It is worth noting that Subramanian’s method is not the “textbook” method for solving Sm. The
most well-known is the Gale-Shapley algorithm [20]. In fact, our original motivation was to formalize
the correctness of the Gale-Shapley algorithm, but we do not know how to talk about the computation
of the Gale-Shapley algorithm in VCC due to the fan-out restriction in comparator circuits. Thus, we
leave open the question whether VCC proves the correctness of the Gale-Shapley algorithm.

Despite our recent effort, the following main complexity-theoretic question remains unanswered
about CC. Is Ccv complete for P? And if not, is CC comparable to NC? We conjecture that CC is
incomparable with the parallel class NC, and therefore CC is not P-complete. In the joint work with
Cook and Filmus [16], we provide evidence for our conjecture by giving oracle settings in which
relativized CC and relativized NC are incomparable, which implies that relativized CC is strictly
contained in relativized P.

The results in Chapter 4 only consider randomized matching algorithms for bipartite graphs. For
general undirected graphs, we need Tutte’s matrix (cf. [47]), a generalization of Edmonds’ matrix.
Since every Tutte matrix is a skew symmetric matrix where each variable appears exactly twice, we
cannot directly apply our technique for Edmonds’ matrices, where each variable appears at most once.
However, by using the recursive definition of the pfaffian instead of the cofactor expansion, we believe
that it is also possible to generalize our results to general undirected graphs. We also note that the
Hungarian algorithm only works for weighted bipartite graphs. To find a maximum-weight matching
of a weighted undirected graph, we need to formalize Edmonds’ blossom algorithm (cf. [32]). Once we
have the correctness of the blossom algorithm, the proof of the Isolating Lemma for undirected graph
perfect matchings will be the same as that of Theorem 69. We leave the detailed proofs for the general
undirected graph case for future work.

It is worth noticing that symbolic determinants of Edmonds’ matrices result in very special polyno-
mials, whose structures can be used to define the VPV surjections witnessing the probability bound in
the Schwartz-Zippel Lemma as demonstrated in this paper. It remains an open problem whether we
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can prove the full version of the Schwartz-Zippel Lemma using Jeřábek’s method within the theory
VPV or VPV + sWPHP(FP).

It was suggested to us by Russell Impagliazzo, Valentine Kabanets and Antonina Kolokolova
(personal communication) that there might be some hope of proving the Schwartz-Zippel Lemma
for multilinear arithmetic circuits and skew arithmetic circuits in VPV. Recall that skew circuits are
defined by restricting every multiplication gate to have at least one of its inputs equal to a variable or a
field constant. Since this class of arithmetic circuits has special structures, we hope to manipulate these
circuits more easily. Unfortunately the problem remains elusive even for this class of circuits.

We have shown that the correctness proofs for several randomized algorithms can be formalized in
the theory VPV for polynomial time reasoning. But some of the algorithms involved are in the subclass
DET of polynomial time, where DET is the closure of #L (and also of the integer determinant function
Det) under AC0 reductions. As mentioned in Section 2.1.3 the subtheory V#L of VPV can define all
functions in DET, but it is open whether V#L can prove properties of Det such as the expansion by
minors. However the theory V#L + CH can prove such properties [58], where CH is an axiom stating
the Cayley-Hamilton Theorem. Thus in the statements of Lemma 59 and Theorem 62 we could have
replaced (VPV `) by (V#L + CH `). We could have done the same for Theorem 63 if we changed the
argument ~W of the function H to M, where M is a permutation matrix encoding a perfect matching
for the underlying bipartite graph. This modified statement of the theorem still proves the interesting
direction of the correctness of the bipartite perfect matching algorithm in Section 4.2.3, since the
function H is used only to bound the error assuming that G does have a perfect matching.

We leave open the question of whether any of the other correctness proofs can be formalized in
V#L + CH.

In Chapter 5 we used Moser’s technique in [44] to show that if every clause of a k-CNF formula F
shares a variable with at most 2k/8 other clauses, then VPV + sWPHP(LFP) proves the existence of a
satisfying assignment for F. Messner and Thierauf [41] generalized Moser’s elegant proof to instances
of k-SAT with neighbourhood size up to 2k/e. Thus it will be an interesting future work to generalize
the result in Chapter 5 to k-SAT instances with neighbourhood size up to 2k/e. However, it is not
clear at all how to formalize the full proof in [45], which uses properties of infinite branching processes.
Thus we leave open the question of whether the constructive proof of the LLL by Moser-Tardos [45]
formalizable in VPV + sWPHP(FP).

In Chapter 6 we extended Jeřábek’s framework to formalize the Goldreich-Levin Theorem in the
conservative extension HARDA of VPV + sWPHP(FP). However we leave open of how to formalize
the construction of pseudorandom generators from one-way permutations.

I believe that Jeřábek’s framework deserves to be studied in greater depth since it helps us to
understand better the connection between probabilistic reasoning and weak systems of bounded
arithmetic. Even with all the work mentioned in this thesis, the most important goal of bounded reverse
mathematics in this context is to classify theorems that use probabilistic reasoning in their proofs
according to the theories needed to prove them. Abundant resources of theorems with probabilistic
flavor, which can easily be found in textbooks on the probabilistic method [3], randomized algorithms
[46, 42] and cryptography theory [22, 23], are still waiting for us to be explored.



Appendix A

The correctness proof of the Hungarian
algorithm

Before proceeding with the proof of Theorem 65 which implies the correctness of the Hungarian
algorithm, we need to formalize the two most fundamental theorems for bipartite matching: Berge’s
Theorem and Hall’s Theorem.

A.1 Formalizing Berge’s Theorem and the augmenting-path algo-

rithm

Let G = (X ] Y, E) be a bipartite graph, where X = {xi | 1 ≤ i ≤ n} and Y = {yi | 1 ≤ i ≤ n}.
Formally to make sure that X and Y are disjoint, we can let xi := i and yi := n + i. We encode the edge
relation E of G by a matrix En×n, where E(i, j) = 1 iff xi is adjacent to yj. Note that we often abuse
notation and write {u, v} ∈ E to denote that u and v are adjacent in G, which formally means either

u ∈ X ∧ v ∈ Y ∧ E(u, v− n), or

v ∈ X ∧ u ∈ Y ∧ E(v, u− n).

This complication is due to the usual convention of using an n× n matrix to encode the edge relation
of a bipartite graph with 2n vertices.

An n× n matrix M encodes a matching of G iff M is a permutation matrix satisfying

∀i, j ∈ [n], M(i, j)→ E(i, j).

We represent a path by a sequence of vertices 〈v1, . . . , vk〉 with {vi, vi+1} ∈ E for all i ∈ [k].
Given a matching M, a vertex v is M-saturated if v is incident with an edge in M. We will say v is

M-unsaturated if it is not M-saturated. A path P = 〈v1, . . . , vk〉 is an M-alternating path if P alternates
between edges in M and edges in E \M. More formally, P is an M-alternating path if either of the
following two conditions holds:

• For every i ∈ {1, . . . , k− 1}, {vi, vi+1} ∈ E \M if i is odd, and {vi, vi+1} ∈ M if i is even.
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• For every i ∈ {1, . . . , k− 1}, {vi, vi+1} ∈ E \M if i is even, and {vi, vi+1} ∈ M if i is odd.

An M-alternating path 〈v1, . . . , vk〉 is an M-augmenting path if the vertices v1 and vk are M-
unsaturated.

Theorem 116 (Berge’s Theorem). (VPV `) Let G = (X ] Y, E) be a bipartite graph. A matching M is
maximum iff there is no M-augmenting path in G.

Proof. (⇒): Assume that all matchings N of E satisfy |N| ≤ |M|. Suppose for a contradiction that there
is an M-augmenting path P. Let M⊕ P denote the symmetric difference of two sets of edges M and P.
Then M′ = M⊕ P is a matching greater than M, a contradiction.

(⇐): We will prove the contrapositive. Assume there is another matching M′ satisfying |M′| > |M|.
We want to construct an M-augmenting path in G.

Consider Q = M′ ⊕M. Since |M′| > |M|, it follows that |M′ \M| > |M \M′|, and thus

|Q ∩M′| > |Q ∩M| (A.1)

Note that we can compute cardinalities of the sets directly here since all the sets we are considering
here are small. Now let H be the graph whose edge relation is Q and whose vertices are simply the
vertices of G. We then observe the following properties of H:

• Since Q is constructed from two matchings M and M′, every vertex of H can only be incident
with at most two edges: one from M and another from M′. So every vertex of H has degree at
most 2.

• Any path of H must alternate between the edges of M and M′.

We will provide a polytime algorithm to extract from the graph H an augmenting path with respect to
M, which gives us the contradiction.

1: Initialize K = H and i = 1
2: while K 6= ∅ do
3: Pick the least vertex v ∈ K
4: Compute the connected component Ci containing v
5: if Ci is an M-augmenting path then
6: return Ci and halt.
7: end if
8: Update K = K \ Ci and i = i + 1.
9: end while

Note that since H has n vertices, the while loop can only iterate at most n times. It only remains to
show the following.

Claim: The algorithm returns an M-augmenting path assuming |M′| > |M|.

Suppose for a contradiction that the algorithm would never produce any M-augmenting path. Since
H has degree at most two, in every iteration of the while loop, we know that the connected component
Ci is

• either a cycle, which means |Ci ∩M| = |Ci ∩M′|, or
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• a path but not an M-augmenting path, which implies that |Ci ∩M| ≥ |Ci ∩M′|.

Since Q = M′ ⊕M =
⋃

i Ci and all Ci are disjoint, we have

|Q ∩M| = |
⋃

i
(Ci ∩M)| ≥ |

⋃
i
(Ci ∩M′)| = |Q ∩M′|.

But this contradicts (A.1).

Algorithm 117 (The augmenting-path algorithm). As a corollary of Berge’s Theorem, we have the
following simple algorithm for finding a maximum matching of a bipartite graph G. We start from any
matching M of G, say empty matching. Repeatedly locate an M-augmenting path P and augment M
along P and replace M by the resulting matching. Stop when there is no M-augmenting path. Then we
know that M is maximum. Thus, it remains to show how to search for an M-augmenting path given a
matching M of G.

Algorithm 118 (The augmenting-path search algorithm). First, from G and M we construct a directed
graph H, where the vertices VH of H are exactly the vertices X ]Y of G, and the edge relation EH of H
is a 2n× 2n matrix defined as follows:

EH :=
{
(x, y) ∈ X×Y | {x, y} ∈ E \M

}
∪
{
(y, x) ∈ Y× X | {y, x} ∈ M

}
.

The key observation is that t is reachable from s by an M-alternating path in the bipartite graph G iff t
is reachable from s in the directed graph H.

After constructing the graph H, we can search for an M-augmenting path using the breadth first
search algorithm as follows. Let s be an M-unsaturated vertex in X. We construct two 2n× 2n matrices
S and T as follows.

1: The row Row(1, S) of S encodes the set {s}, the starting point of our search.
2: From Row(i, S), the set Row(i + 1, S) is defined as follows: j ∈ Row(i + 1, S) ↔ there exists some

k ∈ [n],
Row(i, S)(k) ∧ EH(k, j) ∧ ∀` ∈ [i],¬Row(`, S)(k).

After finish constructing Row(i+ 1, S), we can update T by setting T(j, k) to 1 for every k ∈ Row(i, S)
and j ∈ Row(i + 1, S) satisfying EH(k, j).

Intuitively, Row(i, S) encodes the set of vertices that are of distance i − 1 from s, and T is the
auxiliary matrix that can be used to recover a path from s to any vertex j ∈ Row(i, S) for all i ∈ [2n].

Remark 119. Let R =
⋃n

i=2 Row(i, S), then R the set of vertices reachable from s by an M-alternating
path. This follows from the fact that our construction mimics the construction of the formula δCONN,
which was used to define the theory VNL for NL in [14, Chapter 9]. The matrix T is constructed to help
us trace a path for every vertex v ∈ R to s.

By induction on i, we can prove that Row(i, S) ⊆ X for every odd i ∈ [2n], and Row(i, S) ⊆ Y for
every even i ∈ [2n]. Thus, after having S and T, we choose the largest even i∗ such that Row(i∗, S) 6= ∅,
and then search the set Row(i∗, S) ∩Y for an M-unsaturated vertex t. If such vertex t exists, then we
use T to trace back a path to s. This path will be our M-augmenting path. If no such vertex t exists, we
report that there is no M-augmenting path.
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A.2 Formalizing Hall’s Theorem

Theorem 120 (Hall’s Theorem). (VPV `) Let G = (X ] Y, E) be a bipartite graph. Then G has a perfect
matching if and only if for every subset S ⊆ X,

|S| ≤ |N(S)|,

where N(S) denotes the neighborhood of S in G.

The condition ∀S ⊆ X, |S| ≤ |N(S)|, which is necessary and sufficient for a bipartite graph to have
a perfect matching, is called Hall’s condition. We encode a set S ⊆ X in the theorem as a binary string
of length n, where S(i) = 1 iff xi ∈ S. Similarly, we encode the neighborhood N(S) as a binary string
of length n, and we define

N(S) :=
⋃{

Row(i, E) | xi ∈ S
}

,

where the union can be computed by taking the disjunction of all binary vectors in the set

{
Row(i, E) | xi ∈ S

}
componentwise. Note that we can compute the cardinalities of S and N(S) directly since both of these
sets are subsets of small sets X and Y.

Proof. (⇒): Assume M is a perfect matching of G. Given a subset S ⊆ X, the vertices in S are matched
to the vertices in some subset T ⊆ Y by the perfect matching M, where |S| = |T|. Since T ⊆ N(S), we
have |N(S)| ≥ |T| = |S|.

(⇐): We will prove the contrapositive. Assume G does not have a perfect matching, we want to
construct a subset S ⊆ X such that |N(S)| < |S|.

Let M be a maximum but not perfect matching constructed by the augmenting-path algorithm.
Since M is not a perfect matching, there is some M-unsaturated vertex s ∈ X. Let S and T be the
result of running the “augmenting-path search” algorithm from s, then R :=

⋃n
i=2 Row(i, S) is the set of

all vertices reachable from s by an M-alternating path. Since there is no M-augmenting path, all the
vertices in R are M-saturated. We want to show the following two claims.

Claim 1: The vertices in R ∩ X are all matched to the vertices in R ∩Y by M, and

|R ∩ X| = |R ∩Y|.

Suppose for a contradiction that some vertex v ∈ R is not matched to any vertex u ∈ R by M.
Since we already know that all vertices in R are M-saturated, v is matched by some vertex w 6∈ R by
M. But this is a contradiction since w must be reachable from s by an alternating path, and so the
augmenting-path search algorithm must already have added w to R. Thus, the vertices in R ∩ X are all
matched to the vertices in R ∩Y by M, which implies that |R ∩ X| = |R ∩Y|.

Claim 2: N(R ∩ X) = R ∩Y.

Since R ∩ X are matched to R ∩ Y, we know N(R ∩ X) ⊇ R ∩ Y. Suppose for a contradiction that
N(R ∩ X) ⊃ R ∩ Y. Let v ∈ N(R ∩ X) \ R ∩ Y, and u ∈ R ∩ X be the vertex adjacent to v. Since u is



Appendix A. The correctness proof of the Hungarian algorithm 102

reachable from s by an M-alternating path P, we can extend P to get an M-alternating path from s to v,
which contradicts that v is not added to R.

We note that N({s} ∪ (R ∩ X)) = R ∩Y. Then S = {s} ∪ (R ∩ X) is the desired set since

|N(S)| = |R ∩Y| = |R ∩ X| < |S|.

From the proof of Hall’s Theorem, we have the following corollary saying that if a bipartite graph
does not have a perfect matching, then we can find in polytime a subset of vertices violating Hall’s
condition.

Corollary 121. (VPV `) There is a VPV function that, on input a bipartite graph G that does not have a
perfect matching, outputs a subset S ⊆ X such that |S| > |N(S)|.

A.3 Proof of Theorem 65

Let H = H~u,~v be the equality subgraph for the weight cover (~u,~v), and let M be a maximum cardinality
matching of H. Recall Theorem 65 wants us to show that VPV proves equivalence of the following
three statements:

1. w(M) = cost(~u,~v)

2. M is a maximum-weight matching and the cover (~u,~v) is a minimum-weight cover of G

3. M is a perfect matching of H

Proof of Theorem 65. (1)⇒(2): Assume that cost(~u,~v) = w(M). By Lemma 64, no matching has weight
greater than cost(~u,~v), and no cover with weight less than w(M).

(2)⇒(3): Assume M is a maximum-weight matching and (~u,~v) is a minimum-weight cover of G.
Suppose for a contradiction that the maximum matching M is not a perfect matching of H. We will
construct a weight cover whose cost is strictly less than cost(~u,~v), which contradicts that (~u,~v) is a
minimum-weight cover.

Since the maximum matching M is not a perfect matching of H, by Corollary 121, we can construct
in polytime a subset S ⊆ X satisfying

|N(S)| < |S|.

Then we calculate the quantity

δ = min{ui + vj − wi,j | xi ∈ S ∧ yj 6∈ N(S)}.

Note that δ > 0 since H is the equality subgraph. Next we construct a pair of sequences ~u′ =
〈
u′i
〉n

i=1
and ~v′ =

〈
v′i
〉n

i=1, as follows:

u′i =

ui − δ if xi ∈ S

ui if xi 6∈ S
v′i =

vj + δ if yj ∈ N(S)

vj if yj 6∈ N(S)
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We claim that (~u′,~v′) is again a weight cover. The condition wi,j ≤ u′i + v′j might only be violated for
xi ∈ S and yi 6∈ N(S). But since we chose δ ≤ ui + vj − wi,j, it follows that

wi,j ≤ (ui − δ) + vj = u′i + v′j.

Since

cost(~u′,~v′) = ∑n
i=1(u

′
i + v′i)

= ∑n
i=1(ui + vi)︸ ︷︷ ︸
=cost(~u,~v)

+ δ|N(S)| − δ|S|︸ ︷︷ ︸
<0

,

it follows that cost(~u′,~v′) < cost(~u,~v).
(3)⇒(1): Suppose M is a perfect matching of H. Then wi,j = ui + vj holds for all edges in M.

Summing equalities wi,j = ui + vj over all edges of M yields the equality cost(~u,~v) = w(M).
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