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1 Introduction

Mazurkiewicz traces or partially commutative monoids [1, 5] are quotient monoids
over sequences (or words). They have been used to model various aspects of con-
currency theory since the late seventies and their theory is substantially devel-
oped [5]. As a language representation of partial orders, they can nicely model
“true concurrency.”

For Mazurkiewicz traces, the basic monoid (whose elements are used in the
equations that define the trace congruence) is just a free monoid of sequences. It
is assumed that generators, i.e. elements of trace alphabet, have no visible inter-
nal structure, so they could be interpreted as just names, symbols, letters, etc.
This can be a limitation, as when the generators have some internal structure,
for example if they are sets, this internal structure may be used when defining
the set of equations that generate the quotient monoid. In this paper we will
assume that the monoid generators have some internal structure. We refer to
such generators as ‘compound’, and we will use the properties of that internal
structure to define an appropriate quotient congruence.

One of the limitations of traces and the partial orders they generate is that
neither traces nor partial orders can model the “not later than” relationship [9]. If
an event a is performed “not later than” an event b, and let the step {a, b} model
the simultaneous performance of a and b, then this “not later than” relationship
can be modelled by the following set of two step sequences s = {{a}{b}, {a, b}}.
But the set s cannot be represented by any trace. The problem is that the trace
independency relation is symmetric, while the “not later than” relationship is
not, in general, symmetric.
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To overcome those limitations the concept of a comtrace (combined trace)
was introduced in [10]. Comtraces are finite sets of equivalent step sequences
and the congruence is determined by a relation ser, which is called serialisabil-
ity and is, in general, not symmetric. Monoid generators are ‘steps’, i.e. finite
sets, so they have internal structure. The set union is used to define comtrace
congruence. Comtraces provide a formal language counterpart to stratified order
structures and were used to provide a semantic of Petri nets with inhibitor arcs.
However [10] contains very little theory of comtraces, and only their relationship
to stratified order structures has been substantially developed.

Stratified order structures [6, 8, 10, 11] are triples (X,≺,@), where ≺ and @
are binary relations on X. They were invented to model both “earlier than”
(the relation ≺) and “not later than” (the relation @) relationships, under the
assumption that all system runs are modelled by stratified partial orders, i.e. step
sequences. They have been successfully applied to model inhibitor and priority
systems, asynchronous races, synthesis problems, etc. (see for example [10, 12,
13] and others). It was shown in [10] that each comtrace defines a finite stratified
order structure. However, thus far, comtraces have been used much less often
than stratified order structures, even though in many cases they appear to be
more natural than stratified order structures. Perhaps this is due to the lack
of substantial theory development of quotient monoids different from that of
Mazurkiewicz traces.

It appears that comtraces are a special case of a more general class of quo-
tient monoids, which will be called absorbing monoids. For absorbing monoids,
generators are still steps, i.e. sets. When sets are replaced by arbitrary com-
pound generators (together with appropriate rules for the generating equations),
a new model, called absorbing monoids with compound generators, is created.
This model allows us to describe formally asymmetric synchrony.

Both comtraces and stratified order structures can adequately model concur-
rent histories only when the paradigm π3 of [9, 11] is satisfied. For the general
case, we need generalised stratified order structures, which were introduced and
analysed in [7]. Generalised stratified order structures are triples (X, <>,@),
where <> and @ are binary relations on X modelling “earlier than or later
than” and “not later than” relationships respectively under the assumption that
all system runs are modelled by stratified partial orders.

In this paper a sequence counterpart of generalised stratified order struc-
tures, called generalised comtraces, and their equational generalisation, called
partially commutative absorbing monoids, are introduced and their properties
are discussed.

In the next section we recall the basic concepts of partial orders and the
theory of monoids. Section 3 introduces equational monoids with compound gen-
erators and other types of monoids that are discussed in this paper. In Section
4 the concept of canonical representations of traces is reviewed; while Section 5
proves the uniqueness of canonical representations for comtraces. In Section 6
the notion of generalised comtraces is introduced and the relationship between
comtraces, generalised comtraces and their respective order structures is thor-
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oughly discussed. Section 7 briefly describes the relationship between comtraces
and different paradigms of concurrent histories, and Section 8 contains some
final comments.

2 Orders, Monoids, Sequences and Step Sequences

Let X be a set. A relation ≺ ⊆ X×X is a (strict) partial order if it is irreflexive
and transitive, i.e. if ¬(a ≺ a) and a ≺ b ≺ c ⇒ a ≺ c, for all a, b, c ∈ X.

We write a '≺ b if ¬(a ≺ b) ∧ ¬(b ≺ a), that is if a and b are either distinct
incomparable (w.r.t. ≺) or identical elements of X; and a _≺ b if a '≺ b∧a 6= b.

We will also write a ≺_ b if a ≺ b ∨ a _≺ b.
The partial order ≺ is total (or linear) if _≺ is empty, and stratified (or weak)

if '≺ is an equivalence relation.
The partial order ≺2 is an extension of ≺1 iff ≺1⊆≺2. Every partial order is

uniquely represented by the intersection of all its total extensions.
A triple (X, ◦, 1), where X is a set, ◦ is a total binary operation on X, and

1 ∈ X, is called a monoid, if (a ◦ b) ◦ c = a ◦ (b ◦ c) and a ◦ 1 = 1 ◦ a = a, for all
a, b, c ∈ X.

A nonempty equivalence relation ∼ ⊆ X ×X is a congruence in the monoid
(X, ◦, 1) if

a1 ∼ b1 ∧ a2 ∼ b2 ⇒ (a1 ◦ a2) ∼ (b1 ◦ b2),
for all a1, a2, b1, b2 ∈ X. Standardly X/ ∼ denotes the set of all equivalence
classes of ∼ and [a]∼ (or simply [a]) denotes the equivalence class of ∼ containing
the element a ∈ X. The triple (X/∼, ◦̂, [1]), where [a]◦̂[b] = [a ◦ b], is called the
quotient monoid of (X, ◦, 1) under the congruence∼. The mapping φ : X → X/∼
defined as φ(a) = [a] is called the natural homomorphism generated by the
congruence ∼ (for more details see for example [2]). The symbols ◦ and ◦̂ are
often omitted if this does not lead to any discrepancy.

By an alphabet we shall understand any finite set. For an alphabet Σ, Σ∗

denotes the set of all finite sequences of elements of Σ, λ denotes the empty
sequence, and any subset of Σ∗ is called a language. In this paper all sequences
are finite. Each sequence can be interpreted as a total order and each finite total
order can be represented by a sequence. The triple (Σ∗, ·, λ), where · is sequence
concatenation (usually omitted), is a monoid (of sequences).

For each set X, let P(X) denote the set of all subsets of X and P∅(X) denote
the set of all non-empty subsets of X. Consider an alphabet Σstep ⊆P∅(X) for
some finite X. The elements of Σstep are called steps and the elements of Σ∗

step

are called step sequences. For example if Σstep = {{a}, {a, b}, {c}, {a, b, c}} then
{a, b}{c}{a, b, c} ∈ Σ∗

step is a step sequence. The triple (Σ∗
step, •, λ), where • is

step sequence concatenation (usually omitted), is a monoid (of step sequences)
(see for example [10] for details).

3 Equational Monoids with Compound Generators

In this section we will define all types of monoids that are discussed in this paper.
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3.1 Equational Monoids and Mazurkiewicz Traces

Let M = (X, ◦, 1) be a monoid and let EQ = { x1 = y1 , ... , xn = yn }, where
xi, yi ∈ X, i = 1, ..., n, be a finite set of equations. Define ≡EQ (or just ≡) as
the least congruence on M satisfying, xi = yi =⇒ xi ≡EQ yi, for each equation
xi = yi ∈ EQ. We will call the relation ≡EQ the congruence defined by EQ, or
EQ-congruence.

The quotient monoid M≡ = (X/≡, ◦̂, [1]≡), where [x]◦̂[y] = [x ◦ y], will be
called an equational monoid (see for example [15]).

The following folklore result shows that the relation ≡EQ can also be defined
explicitly.

Proposition 1. For equational monoids the EQ-congruence ≡ can be defined
explicitly as the reflexive and transitive closure of the relation ≈ ∪ ≈−1, i.e.
≡ = (≈ ∪ ≈−1)∗, where ≈ ⊆ X ×X, and

x ≈ y ⇐⇒ ∃ x1, x2 ∈ X. ∃ (u = w) ∈ EQ. x = x1◦u◦x2 ∧ y = x1◦w◦x2.

Proof. Define ≈̇ = ≈ ∪ ≈−1. Clearly (≈̇)∗ is an equivalence relation. Let x1 ≡ y1

and x2 ≡ y2. This means x1(≈̇)ky1 and x2(≈̇)ly2 for some k, l ≥ 0. Hence
x1◦x2 (≈̇)k y1◦x2 (≈̇)l y1◦y2, i.e. x1◦x2 ≡ y1◦y2. Therefore ≡ is a congruence.
Let ∼ be a congruence that satisfies (u = w) ∈ EQ =⇒ u ∼ w for each u = w
from EQ. Clearly x≈̇y =⇒ x ∼ y. Hence x ≡ y ⇐⇒ x(≈̇)my =⇒ x ∼m y ⇒
x ∼ y. Thus ≡ is the least. 2

If M = (E∗, ◦, λ) is a free monoid generated by E, ind ⊆ E × E is an
irreflexive and symmetric relation (called independency or commutation), and
EQ = {ab = ba | (a, b) ∈ ind}, then the quotient monoid M≡ = (E∗/≡, ◦̂, [λ])
is a partially commutative free monoid or monoid of Mazurkiewicz traces [5, 14].
The tuple (E, ind) is often called concurrent alphabet.

Example 1. Let E = {a, b, c}, ind = {(b, c), (c, b)}, i.e. EQ = { bc = cb }. For ex-
ample abcbca ≡ accbba (since abcbca ≈ acbbca ≈ acbcba ≈ accbba), t1 = [abc] =
{abc, acb}, t2 = [bca] = {bca, cba} and t3 = [abcbca] = {abcbca, abccba, acbbca,
acbcba, abbcca, accbba} are traces, and t3 = t1◦̂t2 (as [abcbca] = [abc]◦̂[bca]). For
more details the reader is referred to [5, 14] (and [15] for equational representa-
tions). 2

3.2 Absorbing Monoids and Comtraces

The standard definition of a free monoid (E∗, ◦, λ) assumes the elements of
E have no internal structure (or their internal structure does not affect any
monoidal properties), and they are often called ‘letters’, ‘symbols’, ‘names’, etc.
When we assume the elements of E have some internal structure, for instance
they are sets, this internal structure may be used when defining the set of equa-
tions EQ.
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Let E be a finite set and S ⊆ P∅(E) be a non-empty set of non-empty
subsets of E satisfying

⋃
A∈S A = E. The free monoid (S∗, ◦, λ) is called a free

monoid of step sequences over E, with the elements of S called steps and the
elements of S∗ called step sequences. We assume additionally that the set S is
subset closed i.e. for all A ∈ S, B ⊆ A and B is not empty, implies B ∈ S.

Let EQ be the following set of equations:

EQ = { C1 = A1B1 , ... , Cn = AnBn },

where Ai, Bi, Ci ∈ S, Ci = Ai∪Bi, Ai∩Bi = ∅, for i = 1, ..., n, and let ≡ be EQ-
congruence (i.e. the least congruence satisfying Ci = AiBi implies Ci ≡ AiBi).

The quotient monoid (S∗/≡, ◦̂, [λ]) will be called an absorbing monoid
over step sequences.

Example 2. Let E = {a, b, c}, S = {{a, b, c}, {a, b}, {b, c}, {a, c}, {a}, {b}, {c}},
and EQ be the following set of equations:

{a, b, c} = {a, b}{c} and {a, b, c} = {a}{b, c}.
In this case, for example, {a, b}{c}{a}{b, c} ≡ {a}{b, c}{a, b}{c} (as we have
{a, b}{c}{a}{b, c} ≈ {a, b, c}{a}{b, c} ≈ {a, b, c}{a, b, c} ≈ {a}{b, c}{a, b, c} ≈
{a}{b, c}{a, b}{c}), x = [{a, b, c}] and y = [{a, b}{c}{a}{b, c}] belong to S∗/≡,
and

x = {{a, b, c}, {a, b}{c}, {a}{b, c}},
y = {{a, b, c}{a, b, c}, {a, b, c}{a, b}{c}, {a, b, c}{a}{b, c}, {a, b}{c}{a, b, c},
{a, b}{c}{a, b}{c}, {a, b}{c}{a}{b, c}, {a}{b, c}{a, b, c},
{a}{b, c}{a, b}{c}, {a}{b, c}{a}{b, c}}.

Note that y = x◦̂x as {a, b}{c}{a}{b, c} ≡ {a, b, c}{a, b, c}. 2

Comtraces, introduced in [10] as an extension of Mazurkiewicz traces to dis-
tinguish between “earlier than” and “not later than” phenomena, are a special
case of absorbing monoids of step sequences. The equations EQ are in this case
defined implicitly via two relations simultaneity and serialisability.

Let E be a finite set (of events), ser ⊆ sim ⊂ E × E be two relations called
serialisability and simultaneity respectively. The triple (E, sim, ser) is called
comtrace alphabet. We assume that sim is irreflexive and symmetric. Intuitively,
if (a, b) ∈ sim then a and b can occur simultaneously (or be a part of a syn-
chronous occurrence in the sense of [12]), while (a, b) ∈ ser means that a and b
may occur simultaneously and a may occur before b (and both happenings are
equivalent). We define S, the set of all (potential) steps, as the set of all cliques
of the graph (E, sim), i.e.

S = {A | A 6= ∅ ∧ (∀a, b ∈ A. a = b ∨ (a, b) ∈ sim)}.
The set of equations EQ can now be defined as:

EQ = {C = AB | C = A ∪B ∈ S ∧A ∩B = ∅ ∧A×B ⊆ ser}.
Let ≡ be the EQ-congruence defined by the above set of equations. The ab-

sorbing monoid (S/≡, ◦̂, [λ]) is called a monoid of comtraces.
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Example 3. Let E = {a, b, c} where a, b and c are three atomic operations defined
as follows (we assume simultaneous reading is allowed):

a : y ← x + y, b : x← y + 2, c : y ← y + 1.
Only b and c can be performed simultaneously, and the simultaneous execution of
b and c gives the same outcome as executing b followed by c. We can then define
sim = {(b, c), (c, b)} and ser = {(b, c)}, and we have S = {{a}, {b}, {c}, {b, c}},
EQ = {{b, c} = {b}{c}}. For example x = [{a}{b, c}] = {{a}{b, c}, {a}{b}{c}}
is a comtrace. Note that {a}{c}{b} /∈ x. 2

Even though Mazurkiewicz traces are quotient monoids over sequences and
comtraces are quotient monoids over step sequences, Mazurkiewicz traces can be
regarded as a special case of comtraces. In principle, each trace commutativity
equation ab = ba corresponds to two comtrace absorbing equations {a, b} =
{a}{b} and {a, b} = {b}{a}. This relationship can formally be formulated as
follows.

Proposition 2. If ser = sim then for each comtrace t ∈ S∗/ ≡ser there is a
step sequence x = {a1} . . . {ak} ∈ S∗, where ai ∈ E, i = 1, ..., k such that t = [x].

Proof. Let t = [A1...Am], where Ai ∈ S, i = 1, ...,m. Hence t = [A1]...[Am].
Let Ai = {ai

1, ..., a
i
ki
}. Since ser = sim, we have [Ai] = [{ai

1}]...[{ai
ki
}], for

i = 1, . . . ,m, which ends the proof. 2

This means that if ser = sim, then each comtrace t ∈ S∗/ ≡ser can be rep-
resented by a Mazurkiewicz trace [a1 . . . ak] ∈ E∗/≡ind, where ind = ser and
{a1} . . . {ak} is a step sequence such that t = [{a1} . . . {ak}]. Proposition 2 guar-
antees the existence of a1 . . . ak.

While every comtrace monoid is an absorbing monoid, not every absorbing
monoid can be defined as a comtrace. For example the absorbing monoid anal-
ysed in Example 2 cannot be represented by any comtrace monoid.

It appears the concept of the comtrace can be very useful to formally de-
fine the concept of synchrony (in the sense of [12]). In principle the events are
synchronous if they can be executed in one step {a1, ..., ak} but this execution
cannot be modelled by any sequence of proper subsets of {a1, ..., ak}. In general
‘synchrony’ is not necessarily ‘simultaneity’ as it does not include the concept of
time [4]. However, it appears that the mathematics used to deal with synchrony
is very close to that to deal with simultaneity.

Let (E, sim, ser) be a given comtrace alphabet. We define the relations ind,
syn and the set Ssyn as follows:

– ind ⊆ E × E, called independency and defined as ind = ser ∩ ser−1,
– syn ⊆ E × E, called synchrony and defined as:

(a, b) ∈ syn ⇐⇒ (a, b) ∈ sim ∧ (a, b) /∈ ser ∪ ser−1,
– Ssyn ⊆ S, called synchronous steps, and defined as:

A ∈ Ssyn ⇐⇒ A 6= ∅ ∧ (∀a, b ∈ A. (a, b) ∈ syn).
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If (a, b) ∈ ind then a and b are independent, i.e. they may be executed either
simultaneously, or a followed by b, or b followed by a, with exactly the same
result. If (a, b) ∈ syn then a and b are synchronous, which means they might
be executed in one step, either {a, b} or as a part of bigger step, but such an
execution is not equivalent to neither a followed by b, nor b followed by a. In
principle, the relation syn is a counterpart of ‘synchrony’ as understood in [12].
If A ∈ Ssyn then the set of events A can be executed as one step, but it cannot
be simulated by any sequence of its subsets.

Example 4. Let E = {a, b, c, d, e}, sim = {(a, b), (b, a), (a, c), (c, a), (a, d), (d, a)},
and ser = {(a, b), (b, a), (a, c)}. Hence
S = {{a, b}, {a, c}, {a, d}, {a}, {b}, {c}, {e}}, ind = {(a, b), (b, a)},
syn = {(a, d), (d, a)}, Ssyn = {{a, d}}.

Since {a, d} ∈ Ssyn the step {a, d} cannot be split. For example the comtraces
x1 = [{a, b}{c}{a}], x2 = [{e}{a, d}{a, c}], x3 = [{a, b}{c}{a}{e}{a, d}{a, c}],
are the following sets of step sequences:

x1 = {{a, b}{c}{a}, {a}{b}{c}{a}, {b}{a}{c}{a}, {b}{a, c}{a}},
x2 = {{e}{a, d}{a, c}, {e}{a, d}{a}{c}},
x3 = {{a, b}{c}{a}{e}{a, d}{a, c}, {a}{b}{c}{a}{e}{a, d}{a, c},

{b}{a}{c}{a}{e}{a, d}{a, c}, {b}{a, c}{a}{e}{a, d}{a, c},
{a, b}{c}{a}{e}{a, d}{a}{c}, {a}{b}{c}{a}{e}{a, d}{a}{c},
{b}{a}{c}{a}{e}{a, d}{a}{c}, {b}{a, c}{a}{e}{a, d}{a}{c}}.

Notice that we have {a, c} ≡ser {a}{c} 6≡ser {c}{a}, since (c, a) /∈ ser. We also
have x3 = x1◦̂x2. 2

3.3 Partially Commutative Absorbing Monoids and Generalised
Comtraces

There are reasonable concurrent histories that cannot be modelled by any ab-
sorbing monoid. In fact, absorbing monoids can only model concurrent histories
conforming to the paradigm π3 of [9] (see the Section 7 of this paper). Let us
analyse the following example.

Example 5. Let E = {a, b, c} where a, b and c are three atomic operations de-
fined as follows (we assume simultaneous reading is allowed):

a : x← x + 1, b : x← x + 2, c : y ← y + 1.
It is reasonable to consider them all as ‘concurrent’ as any order of their execu-
tions yields exactly the same results (see [9, 11] for more motivation and formal
considerations). Note that while simultaneous execution of {a, c} and {b, c} are
allowed, the step {a, b} is not!

Let us consider set of all equivalent executions (or runs) involving one occur-
rence of a, b and c

x = {{a}{b}{c}, {a}{c}{b}, {b}{a}{c}, {b}{c}{a}, {c}{a}{b}, {c}{b}{a},
{a, c}{b}, {b, c}{a}, {b}{a, c}, {a}{b, c}}.

Although x is a valid concurrent history or behaviour [9, 11], it is not a comtrace.
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The problem is that we have here {a}{b} = {b}{a} but {a, b} is not a valid step,
so no absorbing monoid can represent this situation. 2

The concurrent behaviour described by x from Example 5 can easily be mod-
elled by a generalised order structure of [7]. In this subsection we will introduce
the concept of generalised comtraces, quotient monoids representations of gen-
eralised order structures. But we start with a slightly more general concept of
partially commutative absorbing monoid over step sequences.

Let E be a finite set and let (S∗, ◦, λ) be a free monoid of step sequences
over E. Assume also that S is subset closed.

Let EQ, EQ′, EQ′′ be the following sets of equations:

EQ′ = { C ′
1 = A′

1B
′
1 , ... , C ′

n = A′
nB′

n },

where A′
i, B

′
i, C

′
i ∈ S, C ′

i = A′
i ∪B′

i, A′
i ∩B′

i = ∅, for i = 1, ..., n,

EQ′′ = { B′′
1 A′′

1 = A′′
1B′′

1 , ... , B′′
kA′′

k = A′′
kB′′

k },

where A′′
i , B′′

i ∈ S, A′′
i ∩B′′

i = ∅, A′′
i ∪B′′

i /∈ S, for i = 1, ..., k, and

EQ = EQ′ ∪ EQ′′.

Let ≡ be the EQ-congruence defined by the above set of equations EQ (i.e. the
least congruence such that C ′

i = A′
iB

′
i =⇒ C ′

i ≡ A′
iB

′
i, for i = 1, ..., n and

B′′
i A′′

i = A′′
i B′′

i =⇒ B′′
i A′′

i ≡ A′′
i B′′

i , for i = 1, ..., k). The quotient monoid
(S/≡, ◦̂, [λ]) will be called aa partially commutative absorbing monoid
over step sequences.

There is a substantial difference between ab = ba for Mazurkiewicz traces,
and {a}{b} = {b}{a} for partially commutative absorbing monoids. For traces,
the equation ab = ba when translated into step sequences corresponds to {a, b} =
{a}{b}, {a, b} = {b}{a}, and implies {a}{b} ≡ {b}{a}. For partially commuta-
tive absorbing monoids, the equation {a}{b} = {b}{a} implies that {a, b} is
not a step, i.e. neither {a, b} = {a}{b} nor {a, b} = {b}{a} does exist. For
Mazurkiewicz traces the equation ab = ba means ‘independency’, i.e. any order
or simultaneous execution are allowed and are equivalent. For partially commu-
tative absorbing monoids, the equation {a}{b} = {b}{a} means that both orders
are equivalent but simultaneous execution does not exist.

We will now extend the concept of a comtrace by adding a relation that
generates the set of equations EQ′′.

Let E be a finite set (of events), ser, sim, inl ⊂ E × E be three rela-
tions called serialisability, simultaneity and interleaving respectively. The triple
(E, sim, ser, inl) is called generalised comtrace alphabet. We assume that both
sim and inl are irreflexive and symmetric, and

ser ⊆ sim, sim ∩ inl = ∅.

Intuitively, if (a, b) ∈ sim then a and b can occur simultaneously (or be a part
of a synchronous occurrence), (a, b) ∈ ser means that a and b may occur simul-
taneously and a may occur before b (and both happenings are equivalent), and
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(a, b) ∈ inl means a and b cannot occur simultaneously, but their occurrence in
any order is equivalent. As for comtraces, we define S, the set of all (potential)
steps, as the set of all cliques of the graph (E, sim).

The set of equations EQ can now be defined as EQ = EQ′ ∪ EQ′′, where:
EQ′ = {C = AB | C = A ∪B ∈ S ∧A ∩B = ∅ ∧A×B ⊆ ser}, and
EQ′′ = {BA = AB | A ∪B /∈ S ∧A ∩B = ∅ ∧A×B ⊆ inl}.

Let ≡ be the EQ-congruence defined by the above set of equations. The
quotient monoid (S∗/≡, ◦̂, [λ]) is called a monoid of generalised comtraces. If
inl is empty we have a monoid of comtraces.

Example 6. The set x from Example 5 is an element of the generalised comtrace
with E = {a, b, c}, ser = sim = {(a, c), (c, a), (b, c), (c, a)}, inl = {(a, b), (b, a)},
and S = {{a, c}, {b, c}, {a}, {b}, {c}}, and for example x = [{a, c}{b}]. 2

3.4 Absorbing Monoids with Compound Generators

One of the concepts that cannot easily be modelled by quotient monoids over
step sequences, is asymmetric synchrony. Consider the following example.

Example 7. Let a and b be atomic and potentially simultaneous events, and c1,
c2 be two synchronous compound events built entirely from a and b. Assume
that c1 is equivalent to the sequence a ◦ b, c2 is equivalent to the sequence b ◦ a,
but c1 in not equivalent to c2. This situation cannot be modelled by steps as
from a and b we can built only one step {a, b} = {b, a}. To provide more intuition
consider the following simple problem.

Assume we have a buffer of 8 bits. Each event a and b consecutively fills 4
bits. The buffer is initially empty and whoever starts first fills the bits 1–4 and
whoever starts second fills the bits 5–8. Suppose that the simultaneous start is
impossible (begins and ends are instantaneous events after all), filling the buffer
takes time, and simultaneous (i.e. time overlapping in this case) executions are
allowed. We clearly have two synchronous events c1 = ‘a starts first but overlaps
with b’, and c2 = ‘b starts first but overlaps with a’. We now have c1 = a ◦ b, and
c2 = b ◦ a, but obviously c1 6= c2 and c1 6≡ c2. 2

To adequately model situations like that in Example 7 we will introduce the
concept of absorbing monoid with compound generators.

Let (G∗, ◦, λ) be a free monoid generated by G, where G = E ∪ C, E ∩ C =
∅. The set E is the set of elementary generators, while the set C is the set
of compound generators. We will call (G∗, ◦, λ) a free monoid with compound
generators.

Assume we have a function comp : G → P∅(E), called composition that
satisfies: for all a ∈ E, comp(a) = {a} and for all a /∈ E, |comp(a)| ≥ 2.

For each a ∈ G, comp(a) gives the set of all elementary elements from which
a is composed. It may happen that comp(a) = comp(b) and a 6= b.
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The set of absorbing equations is defined as follows:
EQ = {ci = ai ◦ b1 | i = 1, ..., n}

where for each i = 1, ..., n, we have:

– ai, bi, ci ∈ G,
– comp(ci) = comp(ai) ∪ comp(bi),
– comp(ai) ∩ comp(bi) = ∅.

Let ≡ be the EQ-congruence defined by the above set of equations EQ. The
quotient monoid (G∗/≡, ◦̂, [λ]) is called an absorbing monoid with compound
generators.

Example 8. Consider the absorbing monoid with compound generators where:
E = {a, b, c1, c2}, comp(c1) = comp(c2) = {a, b}, comp(a) = {a}, comp(b) = {b},
and EQ = { c1 = a◦b, c2 = b◦a }. Now we have [c1] = {c1, a◦b} and
[c2] = {c2, b◦a}, which models the case from Example 7. 2

4 Canonical Representations

We will show that all of the kinds of monoids discussed in previous sections
have some kind of canonical representation, which intuitively corresponds to a
maximally concurrent execution of concurrent histories [3].

Let (E, ind) be a concurrent alphabet and (E∗/≡, ◦̂, [λ]) be a monoid of
Mazurkiewicz traces. A sequence x = a1...ak ∈ E∗ is called fully commutative if
(ai, aj) ∈ ind for all i 6= j and i, j = 1, ..., k.

A sequence x ∈ E∗ is in the canonical form if x = λ or x = x1...xn such that

– each xi if fully commutative, for i = 1, ..., n,
– for each 1 ≤ i ≤ n−1 and for each element a of xi+1 there exists an element

b of xi such that a 6= b and (a, b) /∈ ind.

If x is in the canonical form, then x is a canonical representation of [x].

Theorem 1 ([1, 3]). For every trace t ∈ E∗/≡, there exists x ∈ E∗ such that
t = [x] and x is in the canonical form. 2

With the canonical form as defined above, a trace may have more than one
canonical representations. For instance the trace t3 = [abcbca] from Example
1 has four canonical representations: abcbca, acbbca, abccba, acbcba. Intuitively,
x in the canonical form represents the maximally concurrent execution of a
concurrent history represented by [x]. In this representation fully commutative
sequences built from the same elements can be considered equivalent (this is
better seen when vector firing sequences of [16] are used to represent traces, see
[3] for more details). To get the uniqueness it suffices to order fully commutative
sequences. For example we may introduce an arbitrary total order on E, extend
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it lexicographically to E∗ and add the condition that in the representation x =
x1...xn, each xi is minimal with the lexicographic ordering. The canonical form
with this additional condition is called Foata canonical form.

Theorem 2 ([1]). Every trace has a unique representation in the Foata canon-
ical form. 2

A canonical form as defined at the beginning of this Section can easily be
adapted to step sequences and various equational monoids over step sequences,
as well as to monoids with compound generators. In fact, step sequences better
represent the intuition that canonical representation corresponds to the maxi-
mally concurrent execution [3].

Let (S∗, ◦, λ) be a free monoid of step sequences over E, and let
EQ = { C1 = A1B1 , ... , Cn = AnBn }

be an appropriate set of absorbing equations. Let Mabsorb = (S∗/≡, ◦̂, [λ]).
A step sequence t = A1...Ak ∈ S∗ is canonical (w.r.t. Mabsorb) if for all i ≥ 2

there is no B ∈ S satisfying:

( Ai−1 ∪B = Ai−1B ) ∈ EQ
( Ai = B(Ai −B) ) ∈ EQ

When Mabsorb is a monoid of comtraces, the above definition is equivalent to the
definition of canonical step sequence proposed in [10].

Let (S∗, ◦, λ) be a free monoid of step sequences over E, and let
EQ′ = { C ′

1 = A′
1B

′
1 , ... , C ′

n = A′
nB′

n },
EQ′′ = { B′′

1 A′′
1 = A′′

1B′′
1 , ... , B′′

kA′′
k = A′′

kB′′
k }

be an appropriate set of partially commutative absorbing equations. Then let
Mabs&pc = (S∗/≡, ◦̂, [λ]).

A step sequence t = A1...Ak ∈ S∗ is canonical (w.r.t. Mabs&pc) if for all i ≥ 2
there is no B ∈ S satisfying:

( Ai−1 ∪B = Ai−1B ) ∈ EQ′

( Ai = B(Ai −B) ) ∈ EQ′

Note that the set of equations EQ′′ does not appear in the above definition.
Clearly the above definition also applies to generalised comtraces.

Let (G∗, ◦, λ) be a free monoid with compound generators, and let
EQ = { c1 = a1b1 , ... , cn = anbn }

be an appropriate set of absorbing equations. Let Mcg&absorb = (G∗/≡, ◦̂, [λ]).

Finally, a sequence t = a1...ak ∈ G∗ is canonical (w.r.t. Mcg&absorb) if for all
i ≥ 2 there is no b, d ∈ G satisfying:

( c = ai−1b ) ∈ EQ
( ai = bd ) ∈ EQ
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For all above definitions, if x is in the canonical form, then x is a canonical
representation of [x].

Theorem 3. Let Mabsorb be an absorbing monoid over step sequences, S its set
of steps, and EQ its set of absorbing equations. For every step sequence t ∈ S∗
there is a canonical step sequence u such that t ≡ u.

Proof. For every step sequence x = B1...Br, let µ(x) = 1 · |B1| + ... + r · |Br|.
There is (at least one) u ∈ [t] such that µ(u) ≤ µ(x) for all x ∈ [t]. Suppose
u = A1...Ak is not canonical. Then there is i ≥ 2 and a step B ∈ S satisfying:

( Ai−1 ∪B = Ai−1B ) ∈ EQ
( Ai = B(Ai −B) ) ∈ EQ

If B = Ai then w ≈ u and µ(w) < µ(u), where

w = A1...Ai−2(Ai−1 ∪Ai)Ai+1...Ak.

If B 6= Ai, then w ≈ z and u ≈ z and µ(w) < µ(u), where

z = A1...Ai−2Ai−1B(Ai −B)Ai+1...Ak

w = A1...Ai−2(Ai−1 ∪B)(Ai −B)Ai+1...Ak.

In both cases it contradicts the minimality of µ(u). Hence u is canonical. 2

For partially commutative absorbing monoids over step sequences the proof
is virtually identical, the only change is to replace EQ with EQ′. The proof
can also be adapted (some ‘notational’ changes only) to absorbing monoids with
compound generators.

Corollary 1. Let M = (X, ◦̂, [λ]) be an absorbing monoid over step sequences,
or partially commutative absorbing monoid over step sequences, or absorbing
monoid with compound generators. For every x ∈ X there is a canonical sequence
u such that x = [u]. 2

Unless additional properties are assumed, the canonical representation is not
unique for all three kinds of monoids mentioned in Corollary 1. To prove this,
it suffices to show that this is not true for the absorbing monoids over step
sequences. Consider the following example.

Example 9. Let E = {a, b, c}, S = {{a, b}, {a, c}, {b, c}, {a}, {b}, {c}} and EQ
be the the following set of equations:

{a, b} = {a}{b}, {a, c} = {a}{c}, {b, c} = {b}{c}, {b, c} = {c}{b}.

Note that {a, b}{c} and {a, c}{b} are canonical step sequences, and {a, b}{c} ≈
{a}{b}{c} ≈ {a}{b, c} ≈ {a}{c}{b} ≈ {a, c}{b}, i.e. {a, b}{c} ≡ {a, c}{b}. Hence
[{a, b}{c}] = {{a, b}{c}, {a}{b}{c}, {a}{c}{b}, {a, c}{b}}, has two canonical rep-
resentations {a, b}{c} and {a, c}{b}. One can easily check that this absorbing
monoid is not a monoid of comtraces. 2
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The canonical representation is also not unique for generalised comtraces if
inl 6= ∅. For any generalised comtrace, if {a, b} ⊆ E, (a, b) ∈ inl, then x =
[{a}{b}] = {{a}{b}, {b}{a}} and x has two canonical representations {a}{b}
and {b}{a}.

All the canonical representations discussed above can be extended to unique
canonical representations by simply introducing some total order on step se-
quences, and adding a minimality requirement with respect to this total order
to the definition of a canonical form. The technique used in the definition of
Foata normal form is one possibility. However this has nothing to do with any
property of concurrency and hence will not be discussed in this paper.

However the comtraces have a unique canonical representation as defined
above. This was not proved in [10] and will be proved in the next section.

5 Canonical Representations of Comtraces

In principle the uniqueness of canonical representation for comtraces follows the
fact that all equations can be derived from the properties of pairs of events. This
results in very strong cancellation and projection properties, and very regular
structure of the set of all steps S.

Let a ∈ E and w ∈ S∗. We can define a right cancellation operator ÷R as

λ÷R a = λ, wA÷R a =

 (w ÷R a)A if a 6∈ A
w if A = {a}

w(A \ {a}) otherwise.

Symmetrically, a left cancellation operator ÷L is defined as

λ÷L a = λ, Aw ÷L a =

 A(w ÷L a) if a 6∈ A
w if A = {a}

(A \ {a})w otherwise.

Finally, for each D ⊆ E, we define the function πD : S∗ → S∗, step sequence
projection onto D, as follows:

πD(λ) = λ, πD(wA) =
{

πD(w) if A ∩D = ∅
πD(w)(A ∩D) otherwise.

Proposition 3.

1. u ≡ v =⇒ u÷R a ≡ v ÷R a. (right cancellation)
2. u ≡ v =⇒ u÷L a ≡ v ÷L a. (left cancellation)
3. u ≡ v =⇒ πD(u) ≡ πD(v). (projection rule)

Proof. For each step sequence t = A1 . . . Ak ∈ S∗ let Σ(t) =
⋃k

i=1 Ai. Note that
for comtraces u ≈ v means u = xAy, v = xBCy, where A = B ∪ C, B ∩ C = ∅,
B × C ⊆ ser.
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1. It suffices to show that u ≈ v =⇒ u÷R a ≈ v ÷R a. There are four cases:
(a) a ∈ Σ(y). Let z = y ÷R a. Then u÷R a = xAz ≈ xBCz = v ÷R a.
(b) a /∈ Σ(y), a ∈ A∩C. Then u÷Ra = x(A\{a})y ≈ xB(C\{a})y = v÷Ra.
(c) a /∈ Σ(y), a ∈ A∩B. Then u÷Ra = x(A\{a})y ≈ x(B\{a})Cy = v÷Ra.
(d) a /∈ Σ(Ay). Let z = x÷R a. Then u÷R a = zAy ≈ zBCy = v ÷R a.

2. Dually to (1).
3. It suffices to show that u ≈ v =⇒ πD(u) ≈ πD(v). Note that πD(A) =

πD(B)∪πD(C), πD(B)∩πD(C) = ∅ and πD(B)×πD(C) ⊆ ser, so πD(u) =
πD(x)πD(A)πD(y) ≈ πD(x)πD(B)πD(C)πD(y) = πD(v). 2

Proposition 3 does not hold for an arbitrary absorbing monoid. For the
absorbing monoid from Example 2 we have u = {a, b, c} ≡ v = {a}{b, c},
u÷R b = u÷L b = π{a,c}(u) = {a, c} 6≡ {a}{c} = v ÷R b = v ÷L b = π{a,c}(v).

Note that (w ÷R a)÷R b = (w ÷R b)÷R a, so we can define

w ÷R {a1, ..., ak}
df
= (...((w ÷R a1)÷R a2)...)÷R ak, and

w ÷R A1...Ak
df
= (...((w ÷R A1)÷R A2)...)÷R Ak.

We define dually for ÷L.

Corollary 2. For all u, v, x ∈ S, we have

1. u ≡ v =⇒ u÷R x ≡ v ÷R x.
2. u ≡ v =⇒ u÷L x ≡ v ÷L x. 2

The uniqueness of canonical representation for comtraces follows directly
from the following result.

Lemma 1. For each canonical step sequence u = A1 . . . Ak, we have

A1 = {a | ∃w ∈ [u]. w = C1 . . . Cm ∧ a ∈ C1}.

Proof. Let A = {a | ∃w ∈ [u]. w = C1 . . . Cm ∧ a ∈ C1}. Since u ∈ [u],
A1 ⊆ A. We need to prove that A ⊆ A1. Definitely A = A1 if k = 1, so as-
sume k > 1. Suppose that a ∈ A \ A1, a ∈ Aj , 1 < j ≤ k and a /∈ Ai for
i < j. Since a ∈ A, there is v = Bx ∈ [u] such that a ∈ B. Note that Aj−1Aj

is also canonical and u′ = Aj−1Aj = (u ÷R (Aj+1...Ak)) ÷L (A1...Aj−2). Let
v′ = (v ÷R (Aj+1...Ak)) ÷L (A1...Aj−2). We have v′ = B′x′ where a ∈ B′. By
Corollary 2, u′ ≡ v′. Since u′ = Aj−1Aj is canonical then ∃c ∈ Aj−1. (c, a) /∈
ser or ∃b ∈ Aj . (a, b) /∈ ser. For the former case: π{a,c}(u′) = {c}{a} (if
c /∈ Aj) or π{a,c}(u′) = {c}{a, c} (if c ∈ Aj). If π{a,c}(u′) = {c}{a} then
π{a,c}(v′) equals either {a, c} (if c ∈ B′) or {a}{c} (if c /∈ B′), i.e. in both
cases π{a,c}(u′) 6≡ π{a,c}(v′), contradicting Proposition 3(3). If π{a,c}(u′) =
{c}{a, c} then π{a,c}(v′) equals either {a, c}{c} (if c ∈ B′) or {a}{c}{c} (if
c /∈ B′). However in both cases π{a,c}(u′) 6≡ π{a,c}(v′), contradicting Proposi-
tion 3(3). For the latter case, let d ∈ Aj−1. Then π{a,b,d}(u′) = {d}{a, b} (if
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d /∈ Aj), or π{a,b,d}(u′) = {d}{a, b, d} (if d ∈ Aj). If π{a,b,d}(u′) = {d}{a, b}
then π{a,b,d}(v′) is one of the following {a, b, d}, {a, b}{d}, {a, d}{b}, {a}{b}{d}
or {a}{d}{b}, and in either case π{a,b,d}(u′) 6≡ π{a,b,d}(v′), again contradict-
ing Proposition 3(3). If π{a,b,d}(u′) = {d}{a, b, d} then π{a,b,d}(v′) is one of
the following {a, b, d}{d}, {a, b}{d}{d}, {a, d}{b, d}, {a, d}{b}{d}, {a, d}{d}{b},
{a}{b}{d}{d}, {a}{d}{b}{d}, or {a}{d}{d}{b}. However in either case we have
π{a,b,d}(u′) 6≡ π{a,b,d}(v′), contradicting Proposition 3(3) as well. 2

The above lemma does not hold for an arbitrary absorbing monoid. For both
canonical representations of [{a, b}{c}] from Example 9, namely {a, b}{c} and
{a, c}{b}, we have A = {a | ∃w ∈ [u]. w = C1 . . . Cm ∧ a ∈ C1} = {a, b, c} /∈ S.
Adding A to S does not help as we still have A 6= {a, b} and A 6= {a, c}.

Theorem 4. For every comtrace t ∈ S∗/≡ there exists exactly one canonical
step sequence u such that t = [u].

Proof. The existence follows from Theorem 3. Suppose that u = A1 . . . Ak and
v = B1 . . . Bm are both canonical step sequences and u ≡ v. By Lemma 1, we
have B1 = A1. If k = 1, this ends the proof. Otherwise, let u′ = A2 . . . Ak and
v′ = B2 . . . Bm. By Corollary 2(2) we have u′ ≡ v′. Since u′ and v′ are also
canonical, by Lemma 1, we have A2 = B2, etc. Hence u = v. 2

6 Relational Representation of Traces, Comtraces and
Generalised Comtraces

It is widely known that Mazurkiewicz traces can represent partial orders. We
show the similar relational relational equivalence for both comtraces and gener-
alised comtraces.

6.1 Partial Orders and Mazurkiewicz Traces

Each trace can be interpreted as a partial order and each finite partial order can
be represented by a trace. Let t = {x1, ..., xk} be a trace, and let ≺xi

be a total
order defined by a sequence xi, i = 1, ..., k. The partial order generated by the
trace t can then be defined as: ≺t=

⋂k
i=1 ≺xi

. Moreover, the set {≺x1 , ...,≺xn
} is

the set of all total extensions of ≺t. Let X be a finite set, ≺ ⊂ X×X be a partial
order, {≺1, ...,≺k} be the set of all total extensions of ≺, and let x≺i ∈ X∗ be
a sequence that represents ≺i, for i = 1, ..., k. The set {x≺1 , ..., x≺k

} is a trace
over the concurrent alphabet (X, _≺).

6.2 Stratified Order Structures and Comtraces

Mazurkiewicz traces can be interpreted as a formal language representation of
finite partial orders. In the same sense comtraces can be interpreted as a formal
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language representation of finite stratified order structures. Partial orders can
adequately model “earlier than” relationship but cannot model “not later than”
relationship [9]. Stratified order structures are pairs of relations and can model
“earlier than” and “not later than” relationships.

A stratified order structure is a triple Sos = (X,≺,@), where X is a set, and
≺, @ are binary relations on X that satisfy the following conditions:

C1: a 6@ a C3: a @ b @ c ∧ a 6= c =⇒ a @ c

C2: a ≺ b =⇒ a @ b C4: a @ b ≺ c ∨ a ≺ b @ c =⇒ a ≺ c

C1–C4 imply that ≺ is a partial order and a ≺ b ⇒ b 6@ a. The relation ≺
is called “causality” and represents the “earlier than” relationship while @ is
called “weak causality” and represents the “not later than” relationship. The
axioms C1–C4 model the mutual relationship between “earlier than” and “not
later than” provided the system runs are defined as stratified orders.

Stratified order structures were independently introduced in [6] and [8] (the
defining axioms are slightly different from C1–C4, although equivalent). Their
comprehensive theory has been presented in [11]. It was shown in [10] that each
comtrace defines a finite stratified order structure. The construction from [10]
did not use the results of [11]. In this paper we present a construction based on
the results of [11], which will be intuitively closer to the one used to show the
relationship between traces and partial orders in Section 6.1.

Let Sos = (X,≺,@) be a stratified order structure. A stratified order � on X
is an extension of Sos if for all a, b ∈ X, a ≺ b =⇒ a�b and a @ b =⇒ a�_ b.
Let ext(Sos) denote the set of all extensions of Sos.

Let u = A1 . . . Ak be a step sequence. By u = A1 . . . Ak be the event enumer-
ated representation of t. We will skip a lengthy but intuitively obvious formal
definition (see for example [10]), but for instance if u = {a, b}{b, c}{c, a}{a},
then u = {a(1), b(1)}{b(2), c(1)}{a(2), c(2)}{a(3)}. Let Σu =

⋃k
i=1 Ai denote the

set of all enumerated events occurring in u, for u = {a, b}{b, c}{c, a}{a}, Σu =
{a(1), a(2), a(3), b(1), b(2), c(1), c(2)}. For each α ∈ Σu, let posu(α) denote the con-
secutive number of a step where α belongs, i.e. if α ∈ Aj then posu(α) = j.
For our example posu(a(2)) = 3, posu(b(2)) = 2, etc. For each enumerated even
α = e(i), let l(α) denote the label of α, i.e. l(α) = l(e(i)) = e. One can easily
show ([10]) that u ≡ v =⇒ Σu = Σv, so we can define Σ[u] = Σu.

Given a step sequence u, we define a stratified order �u on Σu by: α�uβ ⇐⇒
posu(α) < posu(β). Conversely, let � be a stratified order on a set X. The set
X can be partitioned into a unique sequence of non-empty sets Ω� = B1 . . . Bk

(k ≥ 0) such that

� =
⋃
i<j

(Bi ×Bj) and '�=
⋃
i

(Bi ×Bi).
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Unfortunately the proofs of two theorems below require introducing addi-
tional concepts and results, so we only provide sketches.

Theorem 5. Let t be a comtrace over (E, sim, ser) and let ≺t, @t be two binary
relations on Σt defined as:

α ≺t β ⇐⇒ ∀u ∈ t. α �u β,
α @t β ⇐⇒ ∀u ∈ t. α �_

u β.
We have:
1. Sost = (Σt,≺t,@t) is a stratified order structure,
2. ext(Sost) = {�u | u ∈ t}.

Proof (Sketch). The main part is to show that each stratified order � on Σt that
satisfies: α ≺t β =⇒ α � β and α @t β =⇒ α �_ β belongs to {�u | u ∈ t}.
This can be done by induction on the number of steps of w, where w is the
canonical step sequence such that [w] = t. The rest is a consequence of the
results of [9, 11]. 2

Theorem 6. Let Sos = (X,≺,@) be a stratified order structure, and let ∆ =
{Ω� | � ∈ ext(Sos)}. Let relations sim, ser ⊆ X ×X be defined as follows:
– (α, β) ∈ sim ⇐⇒ α _≺ β,
– (α, β) ∈ ser ⇐⇒ (α, β) ∈ sim ∧ (β 6@ α).

Then we have:
1. θ = (E, sim, ser) is a comtrace concurrent alphabet,
2. for each u, v ∈ ∆ we have u ≡ v, i.e. ∆ is a comtrace over the alphabet θ.

Proof (Sketch). (1) is straightforward. To prove (2) we first take the canonical
stratified extension of ≺ (see [10]), show that it belongs to ext(Sos), and then
show that it represents a canonical step sequence. Next we prove (2) by induction
on the number of steps of this canonical step sequence. 2

6.3 Generalised Stratified Order Structures and Generalised
Comtraces

A generalised stratified order structure is a triple GSos = (X, <>,@), where X is
a non-empty set, and <>, @ are two irreflexive relations on X, <> is symmetric,
and the triple (X,≺G,@), where ≺G = <> ∩ @, is a stratified order structure
(i.e. it satisfies C1–C4 from the previous subsection).

The relation <> is called “commutativity” and represents the “earlier than or
later than” relationship, while @, called “weak causality” represents “not later
than” relationship.

Generalised stratified order structures were introduced and their comprehen-
sive theory has been presented in [7]. They can model any concurrent history
when runs or observations are modelled by stratified orders (see [7]). We will
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show that each generalised comtrace defines a finite generalised stratified order
structure and that each finite generalised stratified order structure can be rep-
resented by a generalised comtrace.

Let GSos = (X, <>,@) be a generalised stratified order structure. A stratified
order � on X is an extension of GSos if for all a, b ∈ X, a <> b =⇒ a � b or
b � a, and a @ b =⇒ a �_ b. Let ext(GSos) denote the set of all extensions of
Sos.

Again the proofs of two theorems below require introducing additional con-
cepts and results, so we only provide sketches.

Theorem 7. Let t be a generalised comtrace over (S, sim, ser, inl) and let <>t,
@t be two binary relations on Σt defined as:

α <>t β ⇐⇒ ∀u ∈ t. (α �u β ∨ β �u α) ,
α @t β ⇐⇒ ∀u ∈ t. α �_

u β.
We have:
1. GSost = (Σt, <>t,@t) is a generalised stratified order structure,
2. ext(GSost) = {�u | u ∈ t}.

Proof (Sketch). The main part is to show that each stratified order � on Σt

that satisfies: α <>t β =⇒ α � β ∨ β � α and α @t β =⇒ α �_ β belongs
to {�u | u ∈ t}. This can be done by induction on the number of steps of w,
where w is the canonical step sequence such that [w] = t (we do not need a
canonical representation to be unique here). The rest follows from the results of
[7, 11]. 2

Theorem 8. Let Sos = (X, <>,@) be a generalised stratified order structure,
and let ∆ = {Ω� | � ∈ ext(GSos)}. Let relations sim, ser, inl ⊆ X × X be
defined as follows:
– (α, β) ∈ sim ⇐⇒ ¬(α <> β),
– (α, β) ∈ ser ⇐⇒ ¬(α <> β) ∧ β 6@ α,
– (α, β) ∈ inl ⇐⇒ α <> β ∧ ¬(α @ β ∨ β @ α).

Then we have:
1. θ = (E, sim, ser, inl) is a generalised comtrace concurrent alphabet,
2. for each u, v ∈ ∆ we have u ≡ v, i.e. ∆ is a generalised comtrace over the

generalised comtrace alphabet θ.

Proof (Sketch). (1) is straightforward. The proof of (2) is more complex than
the proof of (2) of Theorem 6, as we need to show that there is a stratified
order in ext(GSos) which can be represented as as an appropriate canonical
step sequence (no uniqueness needed). Next we prove (2) by induction on the
number of steps of this canonical step sequence. 2
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7 Paradigms of Concurrency

The general theory of concurrency developed in [9] provides a hierarchy of models
of concurrency, where each model corresponds to a so called “paradigm”, or
a general rule about the structure of concurrent histories, where concurrent
histories are defined as sets of equivalent partial orders representing particular
system runs. In principle, a paradigm describes how simultaneity is handled in
concurrent histories. The paradigms are denoted by π1 through π8. It appears
that only paradigms π1, π3, π6 and π8 are interesting from the point of view of
concurrency theory. The paradigms were formulated in terms of partial orders.
Comtraces are sets of step sequences, each step sequence uniquely defines a
stratified order, so the comtraces can be interpreted as sets of equivalent partial
orders, i.e. concurrent histories (see [10] for details). The most general paradigm,
π1, assumes no additional restrictions for concurrent histories, so each comtrace
conforms trivially to π1. The paradigms π3, π6 and π8, when translated into the
comtrace formalism, impose the following restrictions.

Let (E, sim, ser, inl) be a generalised comtrace alphabet. The monoid of
generalised comtraces (comtraces when inl = ∅) (S∗/≡, ◦̂, [λ]) conforms to:

paradigm π3 ⇐⇒ ∀a, b ∈ E. ({a}{b} ≡ {b}{a} ⇒ {a, b} ∈ S).
paradigm π6 ⇐⇒ ∀a, b ∈ E. ({a, b} ∈ S ⇒ {a}{b} ≡ {b}{a}).
paradigm π8 ⇐⇒ ∀a, b ∈ E. ({a}{b} ≡ {b}{a} ⇔ {a, b} ∈ S).

Proposition 4. 1. Every monoid of comtraces conforms to π3.
2. If π8 is satisfied then ind = ser = sim.

Proof. 1. Let {a}{b} ≡ {b}{a} for some a, b ∈ E. This means {a}{b} ≈−1

{a, b} ≈ {b}{a}, i.e. {a, b} ∈ S.
2. Clearly ind ⊆ ser ⊆ sim. Let (a, b) ∈ sim. This means {a, b} ∈ S, which, by

π8, implies {a}{b} ≡ {b}{a}, i.e. (a, b) ∈ ind. 2

From Proposition 4 it follows that comtraces cannot model any concurrent
behaviour (history) that does not conform to the paradigm π3. Generalised com-
traces conform only to π1, so they can model any concurrent history that is
represented by a set of equivalent step sequences.

If a monoid of comtraces conforms to π6 it also conforms to π8. Proposition 4
says all comtraces conforming to π8 can be reduced to equivalent Mazurkiewicz
traces.

8 Conclusion

The concepts of absorbing monoids over step sequences, partially commutative
absorbing monoids over step sequences, absorbing monoids with compound gen-
erators, and monoids of generalised comtraces have been introduced and anal-
ysed. They all are generalisations of Mazurkiewicz traces [5] and comtraces [10].



20

Some new properties of comtraces and their relationship to stratified order struc-
tures [11] have been discussed. The relationship between generalised comtraces
and generalised stratified order structures [7] was also analysed.

Despite some obvious advantages, for instance, very handy composition and
no need to use labels, quotient monoids (perhaps with the exception of Mazurkiewicz
traces) are much less popular in dealing with issues of concurrency than their re-
lational counterparts partial orders, stratified order structures, occurrence graphs,
etc. We believe that in many cases, quotient monoids could provide simpler and
more adequate models of concurrent histories than their relational equivalences.

Acknowledgement. The authors thanks all four referees for a number of very
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arrangements, Lecture Notes in Mathematics 85, Springer 1969.

2. P. M. Cohn, Universal Algebra, D. Reidel 1981.
3. R. Davillers, R. Janicki, M. Koutny, P. E. Lauer, Concurrent and Maximally

Concurrent Evolution of Non-sequential Systems, Theoretical Computer Science
43:213-238, 1986.

4. J. Desel, Private Information, Communicated to the authors by G. Juhás, 2007.
5. V. Diekert and G. Rozenberg (eds.), The Book of Traces. World Scientific 1995.
6. H. Gaifman and V. Pratt, Partial Order Models of Concurrency and the Compu-

tation of Function, Proc. of LICS’87, pp. 72-85.
7. G. Guo, R. Janicki, Modelling Concurrent Behaviours by Commutativity and Weak

Causality Relations, Proc. of AMAST’02, Lecture Notes in Computer Science 2422
(2002), 178-191.

8. R. Janicki and M. Koutny, Invariants and Paradigms of Concurrency Theory, Lec-
ture Notes in Computer Science 506, Springer 1991, pp. 59-74.

9. R. Janicki and M. Koutny, Structure of Concurrency, Theoretical Compututer
Science, 112(1):5–52, 1993.

10. R. Janicki and M. Koutny, Semantics of Inhibitor Nets, Information and Compu-
tation, 123(1):1–16, 1995.

11. R. Janicki and M. Koutny, Fundamentals of Modelling Concurrency Using Discrete
Relational Structures, Acta Informatica, 34:367–388, 1997.

12. G. Juhás, R. Lorenz, S. Mauser, Synchronous + Concurrent + Sequential = Earlier
Than + Not Later Than, Proc. of ACSD’06 (Application of Concurrency to System
Design), Turku, Finland 2006, pp. 261-272, IEEE Press.

13. H. C. M. Kleijn, M. Koutny, Process Semantics of General Inhibitor Nets, Infor-
mation and Computation, 190:18–69, 2004.

14. A. Mazurkiewicz, Introduction to Trace Theory, in [5], pp. 3–42.
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