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Abstract

Neighborhood Components Analysis (NCA)
is a popular method for learning a distance
metric to be used within a k-nearest neigh-
bors (kNN) classifier. A key assumption built
into the model is that each point stochasti-
cally selects a single neighbor, which makes
the model well-justified only for kNN with
k = 1. However, kNN classifiers with k >
1 are more robust and usually preferred in
practice. Here we present kNCA, which gen-
eralizes NCA by learning distance metrics
that are appropriate for kNN with arbitrary
k. The main technical contribution is show-
ing how to efficiently compute and optimize
the expected accuracy of a kNN classifier. We
apply similar ideas in an unsupervised setting
to yield kSNE and kt-SNE, generalizations
of Stochastic Neighbor Embedding (SNE, t-
SNE) that operate on neighborhoods of size
k, which provide an axis of control over em-
beddings that allow for more homogeneous
and interpretable regions. Empirically, we
show that kNCA often improves classification
accuracy over state of the art methods, pro-
duces qualitative differences in the embed-
dings as k is varied, and is more robust with
respect to label noise.

1. Introduction
Distance metrics are used extensively in machine
learning, both as an essential part of an algorithm like
in k-means or k-nearest neighbors (kNN) algorithms,
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and as a regularizer in, e.g., semi-supervised learning.
An obvious problem is that the space in which data
is collected is not always suitable for the target task
(e.g., nearest neighbor classification); the choice of pa-
rameters like the scale of each dimension can signif-
icantly impact performance of algorithms. Thus, a
long-standing goal is to learn the distance metric so as
to maximize performance on the target task.

Neighborhood Component Analysis (NCA) is a
method that aims at doing precisely this, adapting the
distance metric to optimize a smooth approximation
to the accuracy of the kNN classifier. A shortcoming
of the NCA model is that it assumes k = 1, and in-
deed, all of the experiments in (Goldberger et al., 2004)
and many in follow-up applications are performed with
k = 1. This choice appears to be made for the sake of
computational convenience: generalizing NCA for arbi-
trary k requires computing expected accuracies over all
possible ways of choosing k neighbors from N points,
which appears to be difficult when k is large. But since
kNN with k > 1 tends to perform better in practice,
it seems desirable to formulate an NCA method that
directly optimizes the performance of kNN for k > 1.

The primary method we present, kNCA, is a strict
generalization of NCA, which optimizes the distance
metric for expected accuracy of kNN for any choice
of k, and is equivalent to NCA when k is set to 1.
The main algorithmic contribution of our work is a
construction that allows the expected accuracy to be
computed and differentiated exactly and efficiently.
We also show that similar techniques can be applied
to other problems related to the stochastic selection
of k-neighborhoods, such as is required when extend-
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ing Stochastic Neighbor Embedding (SNE) methods
to their k-neighbor analogs.

Thus, we make several contributions. The primary
contribution is the extension of NCA so that it is ap-
propriate when we wish to use a kNN classifier at test
time with k > 1. Secondary contributions are the tech-
niques for computing expected accuracy and the exten-
sion of SNE to the k-neighborhood setting. We explore
the methods empirically: quantitatively, by comparing
performance to several popular baselines on a range
of illustrative problems, and qualitatively, by visualiz-
ing the learned embeddings by (supervised) kNCA and
(unsupervised) kSNE.

2. Background
We begin with some basic notation. Input vectors are
denoted by x ∈ RD. In supervised settings, the class
label for a vector is denoted y ∈ {1, . . . , C}. A data set
D is made up of N tuples (xi, yi)N

i=1, and X ∈ RD×N

is the concatenation of all xi as column vectors. Sim-
ilarly, Y is the vector of all the labels yi. We use
zi ∈ RP to represent a point in the transformed space
that is associated with xi, and Z to represent the con-
catenation of all zi as column vectors. We use [·] as
the indicator function.
2.1. Neighborhood Components Analysis
At a high level, the goal of NCA is to optimize a dis-
tance metric under the objective of performance of
kNN algorithms. There are many ways to parameter-
ize a distance metric, and this choice is not fundamen-
tal to the approach (for example, a non-linear exten-
sion like in Salakhutdinov & Hinton (2007) would be
straightforward). For simplicity, we follow NCA and
frame the presentation under the assumption that the
distance between two vectors x and x′ is defined as

dA(x, x′) = (x− x′)#A#A(x− x′). (1)

This choice has the interpretation that we are first lin-
early projecting points x ∈ RD into P -dimensional
space via the matrix A ∈ RP×D, then comput-
ing Euclidean distances in the P -dimensional space.
NCA also gives us the ability to visualize the learned
metric by setting P to be small and plotting trans-
formed points Z = AX.

Optimizing the entries of A requires the specification
of a learning objective. A first attempt might be the
accuracy of a kNN classifier. This approach is not
feasible, because as a function of A, the performance
of a kNN classifier is a piecewise constant function,
which is not possible to optimize with gradient meth-
ods (note that any change in A that does not change
the neighbor set of any point will not affect this ob-
jective). However, even if this approach were feasible,

we still might prefer a smooth objective for the sake
of robustness to noise in the data. For example, if a
point has a neighbor of the proper class at a distance
of b away, and many neighbors of other classes at a dis-
tance of b+ε away, the kNN accuracy where k = 1 will
attain the maximum objective. This clearly is not a
robust solution, though, since a slight perturbation of
the data would likely lead to an error on this example.

These considerations lead to the central NCA idea
of casting kNN in a probabilistic light. Specifically,
(Goldberger et al., 2004) define a probability of select-
ing each point as its 1-nearest neighbor, which is a
function of distance in transformed space. The learn-
ing objective is then the expected accuracy of a 1-
nearest neighbor classifier under this probability dis-
tribution:

L(A) =
∑

i

∑

j $=i

pi(j) [yi = yj ] , (2)

where pi(j) ∝ exp
{
−‖Axi −Axj‖22

}
is the proba-

bility that i selects j as its (single) neighbor. This
smooth objective has a nice interpretation as max-
imizing the expected accuracy of a 1-nearest neigh-
bor classifier. Note that (Goldberger et al., 2004) also
proposes an alternative objective, which can be inter-
preted as the (log) probability of obtaining an error
free classification on the entire training set, L(A) =∑

i log
∑

j $=i pi(j) [yi = yj ], and note that performance
is similar between the two objectives. Our generaliza-
tion applies to either objective, and we similarly found
performance to be similar between the two methods.

2.2. Stochastic Neighbor Embedding
Stochastic Neighbor Embedding (SNE) (Hinton &
Roweis, 2002) is an unsupervised dimensionality re-
duction method that attempts to reproduce the lo-
cal structure of high-dimensional data in a low-
dimensional space. While this approach to dimen-
sionality reduction is taken by popular methods such
as Locally Linear Embedding (LLE) (Roweis & Saul,
2000) and Isomap (Balasubramanian et al., 2002), the
SNE method differs from these methods because it
uses a fundamentally smooth objective that is based
on matching distances between distributions.

Given a set of high-dimensional points, {x1, . . . , xn},
SNE defines a distribution pi(j) for each point i that
assigns a greater probability to its closer neighbors:

pi(j) ∝ exp
{
−‖xi − xj‖2

2σ2
i

}
(3)

This distribution depends strongly on the length-scale
σ2

i , which is chosen in order to bring the entropy of pi

to a certain user-specified value (in experiments we set
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σ2
i using the procedure described in Hinton & Roweis

(2002)). This way, the distributions pi smoothly de-
scribe the local neighborhood structure of the high-
dimensional data.

Given a set of points {z1, . . . , zn} that are embedded in
a low-dimensional space, we can define a similar distri-
bution qi(j) ∝ exp

{
−‖zi − zj‖2

}
which describes the

local neighborhood structure of the embedded points.

SNE finds an embedding whose local neighborhood
structure matches that of the original data by mini-
mizing the following objective:

∑

i

KL(pi‖qi) = −
∑

i

∑

j

pi(j) log qi(j)+ const. (4)

In contrast to many other dimensionality reduction
methods such as multidimensional scaling methods
(for a good explanation see (van der Maaten et al.,
2009)), SNE penalizes configurations that do not keep
the neighbors close, while being more lenient to config-
urations that bring points together that are far apart.

SNE has been extended in several ways. Uni-
SNE (Cook et al., 2007) alters the definition of
qi(j) by the addition of a small constant: qi(j) ∝
exp

{
−‖zi − zj‖2

}
+ κ. This provides SNE with more

“effective space” in the low-dimensional space, since it
can now place far points arbitrarily far. t-SNE (van der
Maaten, 2009) alters the definition of qi(j) even more
drastically, to qi(j) ∝ (1 + ‖zi − zj‖2)−1, which tends
to work even better in practice due to the heavier tails
of the Cauchy distribution.

3. Related Work
Following the work of NCA, several researchers have
proposed approaches to the problem of metric learn-
ing for kNN classification using the idea of stochas-
tic neighbors. We note the method of Globerson &
Roweis (2006), Maximally Collapsing Metric Learning
algorithm (MCML), which presents a convex optimiza-
tion function that approximates the desiderata that all
points belonging to a class should be mapped to a sin-
gle location in the embedding space infinitely far away
from the points in other classes. A non-linear version
of NCA (NLNCA) has also been introduced where a
neural net is used to learn a non-linear mapping from
original to embedding space (Salakhutdinov & Hinton,
2007). We are not aware of other NCA-based work
that tailors the objective to the case of k > 1.

There has also been a plethora of research on met-
ric learning for kNN classification using determin-
istic neighborhoods. Standard learning techniques
such as random forests (Xiong et al., 2012), boost-
ing (Shen et al., 2009), and large margin classification

approaches (Weinberger & Saul, 2009) have been ap-
plied to this problem. A good review of this work is
provided in Yang (2007), which also surveys some of
the classic methods first introduced in the field such as
RCA and LDA. We highlight the work of Weinberger &
Saul (2009), which introduced a Large Margin Nearest
Neighbor method (LMNN). They frame the problem
as the optimization of a cost function which penal-
izes large within-class distance and small out-of-class
distances in the embedding space. The within-class
distances is only taken with respect to a number of
target neighbors. Setting the size of this target neigh-
borhoods acts in a similar fashion as setting k (and
we will compare experimentally to this). Finally, we
briefly note the method Information Theoretical Met-
ric Learning (ITML) (Davis et al., 2007), where the
problem is framed as a Bregman optimization prob-
lem and does not require the solution of an expensive
semidefinite program. Empirically ITML often rivals
LMNN in performance but its run-time is generally
significantly shorter.

For the unsupervised case, a brief review of existing
approaches is provided in Section 2.2; a good survey
is also available (van der Maaten et al., 2009).

4. k-Neighborhood Components
Analysis

Our starting point is the NCA objective from Eq. 2.
While the objective has a desirable simplicity, it is
heavily tailored to the case of a 1-nearest neighbor
classifier: the distribution over neighbors assumes so,
and the accuracy measure within the expected accu-
racy objective is the accuracy relative to selecting 1-
nearest neighbor. Our goal in this section is to tailor
NCA to the case of a kNN classifier for arbitrary k.

There are two components. First, we define a probabil-
ity distribution over the selection of sets of k neighbors.
Second, we modify the accuracy measure to reflect that
the kNN procedure selects a label by majority vote of
the k neighbors. Putting these two components to-
gether yields the kNCA expected accuracy objective:

L(k)(A) =
∑

i

∑

s∈Si

pi(s | k;A) [Maj(s) = yi] , (5)

where Si is the set of all subsets of neighbors of i,
Maj(s) denotes the majority function—equal to the
kNN classifier output that would result from choos-
ing s as the set of neighbors—and pi(s | k;A) rep-
resents the probability that i chooses s as its set of
neighbors given that it chooses k neighbors. We define
pi(s | k;A) to be a function of the distances between i
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k = 1 k > 1

Figure 1. An illustration of the effect of k on the kNCA ob-
jective. (left) When k = 1, two points can be isolated from
others in their class and have no pressure to seek out larger
clusters. (right) When k is greater than 1, small clusters of
points have greater pressure to join larger clusters, leading
the objective to favor larger consistent groups of points.

and the points j ∈ s as follows:

pi(s | k;A) =
{ 1

Z(A) exp{−
∑

j∈s dij(A)} if |s| = k

0 otherwise
,

where we use the shorthand dij = dij(A) = ||Axi −
Axj ||22. While it is not yet obvious that Eq. 5 can be
optimized efficiently, as the normalization Z = Z(A)
entails considering all subsets of size k, it should be
clear that it is the expected accuracy of a kNN clas-
sifier in the same way that the NCA objective is the
expected accuracy of a 1NN classifier. Indeed, with
k = 1 we recover NCA.

5. Efficient Computation

The main computational observation in this work is
that Eq. 5 can be computed and optimized efficiently.
To describe how, we begin by rewriting the inner sum-
mation from Eq. 5 (throughout this section, we will
focus on the objective for a single point i, and will
drop dependencies on i in the notation):

∑
s:|s|=k exp{−

∑
j∈s dij} [Maj(s) = yi]∑

s∈S:|s|=k exp{−
∑

j∈s dij}
, (6)

Our strategy is to formulate a set of factor graphs to
represent the components of this problem such that the
objective can be expressed as a sum of ratios of parti-
tion functions. Afterwards, we will show how efficient
exact inference can be done on these factor graphs.

Factor graph construction. We start by con-
structing a factor graph for which the associated par-
tition function is equal to the denominator in Eq. 6;
see Fig. 2 (b). Note this is all with respect to a single
point i considering its set of k neighbors. First (at the
bottom of the factor graph), there is a binary indica-
tor variable hj for each possible neighbor j, indicating
whether it is chosen to be a neighbor of i. Unary po-
tentials (not drawn) are added, with potential set to
θj(hj) = hjdij . We group these variables according to

?

(a) A point considering neighborhoods of size k.

sum sum sum

=k

sum

Σ1 Σ2 Σ3

Σ

(b) Zk
0 Construction

<k'<k'=k'

sum sum sum

=k

sum

Σ1 Σ2 Σ3

Σ

(c) Zk,k′

1 Construction for true label = “blue”.

Figure 2. Factor graph constructions used to efficiently
compute expected kNN accuracy. The bottom row of each
figure shows h variables grouped according to class label.
The Σc variables represent the number of neighbors from
class c that are selected, and Σ represents the total num-
ber of neighbors that are selected. The text next to fac-
tors notes the constraint that is represented by the factor.
Unary potentials are omitted to reduce clutter.

class and introduce an auxiliary variable for each class
c (next level up in the factor graph, denoted by Σc)
that deterministically computes the number of neigh-
bors that are chosen from class c. Finally (top level
in the factor graph), there is an auxiliary variable Σ
that counts the total number of neighbors that were
chosen across all classes. At this point, we can add a
constraint that the total number of neighbors selected
across all classes is k, and this is simply a unary poten-
tial on Σ that disallows all values other than k. Once
this constraint is added, the partition function of the
resulting model is equal to the denominator of Eq. 6.

To construct the numerator, we first observe that
Maj(s) = yi is true if and only if there is some k′ such
that

∑
j∈s[yj = yi] = k′ and

∑
j∈s[yj = c] < k′ for

all c %= yi. That is, the true label gets k′ votes, and
all other labels get fewer than k′ votes. For a given
k′, these constraints can be expressed as unary poten-
tials on the intermediate sum variables Σc. Counts
for the true class yi are constrained to exactly equal
k′, and counts for the other classes are constrained
to be less than k′. This is illustrated in Fig. 2 (c).
By then summing over the partition function of these
models for k′ = 1, . . . , k, we cover all possible ways for
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Maj(s) = yi to be true, and thus recover the numer-
ator of Eq. 6. Specifically, Eq. 6 can be rewritten as
follows:

=

∑k
k′=1

∑
s:|s|=k exp{−

∑
j∈s dij}[φk′(s)]∑

s∈S:|s|=k exp{−
∑

j∈s dij}
(7)

=
∑k

k′=1 Zk,k′

1

Zk
0

, where (8)

φk′(s)=(
∑

j∈s

[yj =yi]=k′) ∧ (∀c %=yi,
∑

j∈s

[yj = c]<k′).

Efficient inference. At this point, we have reduced
the difficulty of the kNCA objective to computation
of partition functions in the models constructed in
the previous section. If these partition functions can
be efficiently computed and differentiated, then the
kNCA objective can be optimized.

The key observation is that the models in Fig. 2
(b) and (c) are special cases of Recursive Cardinal-
ity (RC) models (Tarlow et al., 2012). An RC model
defines a probability distribution over binary vectors
h = (h1, . . . , hN ) based on an energy function of the
form E(h) =

∑
i θi(hi) +

∑
s∈S fs(

∑
j∈s hj), where S

is a set of subsets of {1, . . . , N} that must obey a nest-
edness constraint: for all s, s′ ∈ S, either s ∩ s′ = ∅ or
s ⊂ s′ or s′ ⊂ s. The fs(·) functions are arbitrary func-
tions of the number of variables within the associated
subset that take on value 1 and can be different for
each s. Given this energy function, an RC model de-
fines the probability of a binary vector h as a standard
Gibbs distribution: p(h) = 1

Z exp{−E(h)}, where Z
is the partition function that ensures the distribution
sums to 1. The key utility of RC models is that the
partition function (and marginal distributions over all
hi variables) can be computed efficiently. Briefly, in-
ference works by constructing a binary tree that has
hi variables at the leaves, and variables representing
counts of progressively larger subsets at internal nodes,
then doing fast sum-product updates up and down the
tree. See Tarlow et al. (2012) for more details.

For all applications of RC models considered here, this
computation of each partition function and associated
marginals would take O(N log2 N) time. Below, we
alternatively show how to implement the same com-
putations in O(Nk +Ck2) time (where recall N is the
total number of points considered as neighbors, k is the
number of neighbors to select, and C is the number of
classes). For our purposes where k is typically small,
and due to the smaller constant factors, an efficient
C++ implementation of this algorithm outperformed
a generic implementation from (Tarlow et al., 2012),
so we used the special-purpose algorithm throughout.

Algorithm 1 kNCA inference for point i
for c = 1, ..., C do

f1
c (1)← [1, exp{−Dist(i, c, 1)}, 0, . . . , 0]

for j = 2, ..., Jc do
f1

c (j)← Forward1(f1
c (j − 1),Dist(i, c, j))

end for
end for
f2(1)← f1

c (Jc)
for c = 2, ..., C do

f2(c)← Forward2(f2(c− 1), f1
c (Jc), θc(Σc))

end for
b2(C)← θ(Σ)
for c = C − 1, ..., 1 do

b2(c− 1)← Backward2(b2(c), f1
c (Jc), θc(Σc))

end for
for c = C, ..., 1 do

b1
c(Jc)← b2(c)

for j = Jc − 1, ..., 2 do
b1
c(j − 1)← Backward1(b1

c(j),Dist(i, c, j))
end for

end for

Alternative O(Nk + Ck2) algorithm. Here we
present the alternative algorithm for computing
marginal probabilities (used for gradients) and par-
tition functions (used to evaluate the expected
kNCA objective) for the models illustrated in Fig. 2.
The structure of the algorithm is given in Alg. 1. The
overall idea is to do dynamic programming over two
levels of chain-structures. The first level of the forward
pass computes probabilities over the number of neigh-
bors chosen from each class separately, then the second
level combines the results across classes to compute
probabilities over the total neighbors selected. The
backward pass propagates information from the other
classes backward to the individual classes.

The computations use dynamic programming, incre-
mentally computing a vector fc(j) ∈ Rk+1 that stores
the probability for each k̂ ∈ 0, . . . , k that k̂ vari-
ables from class c were chosen as neighbors of i from
amongst the first j points of class c, assuming that
the point j is chosen independently with probability
pij = exp(−dij)

1+exp(−dij)
. The Forward1 function computes

f1
c (j + 1) from f1

c (j) in O(k) time, using the update
that f1

c (j + 1)[k̂] = f1
c (j)[k̂ − 1]pij + f1

c (j)[k̂](1− pij).
Intuitively, there are only two ways for k̂ variables to
be chosen from amongst the first j variables: either k̂
were chosen from the first j − 1 and the jth was not
used, or k̂−1 were chosen from the first j−1, and the
jth was used.

In the second level chain, we use the result of the first
level forward pass to compute vectors f2(c), which
store the upward probabilities that each possible num-
ber of neighbors were chosen from amongst the first
c classes. The Forward2 functions compute these
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updates on O(k2) time using the update f2(c)[k̂] =∑
kc,kc−1:kc+kc−1=k̂ f2(c− 1)[kc−1] · f1

c (Jc)[kc] · θc(kc),
where θc(kc) expresses the constraints that are given
as unary factors on the Σc variables in Fig. 2. Similar
reasoning can be used to derive the backward updates.

It can be shown that the above updates correspond to
performing sum-product belief propagation on the fac-
tor graphs in Fig. 2, which are tree-structured, so the
partition function and marginal probabilities of each
neighbor being selected can be read off from the re-
sults. See Tarlow et al. (2012) for more details on
this interpretation. Algorithmically, relative to Tar-
low et al. (2012), the main difference is that we take
advantage of the fact that any configuration with more
than k neighbors chosen is disallowed.

Objective Function Variations. The construc-
tion from the previous section allows for other choices
of the accuracy measure than the Maj one. For ex-
ample, by requiring that all selected neighbors are of
the target class (i.e., [

∑
j∈s[yj = yi] = |s|]), we get

an accuracy measure that only rewards neighborhoods
where all neighbors are of the target class. While
this alternative measure which maximizes the num-
ber of points with “perfect” k-neighborhoods does not
correspond to optimizing the expected accuracy of a
kNN classifier, we will show below that it can boost
the classifier’s performance in practice. The preceding
derivations can also easily be applied to a “probability
of error free classification” variant of kNCA, analo-
gous to the NCA variants discussed in Sec. 2.1, which
amounts to taking a sum of logs of Eq. 6 instead of
just a sum.

6. k-Stochastic Neighbors Embedding
So far, we have focused on the supervised case, where
class labels are available for all points. In this sec-
tion, we consider the unsupervised analog of kNCA.
The starting point is Stochastic Neighbor Embedding
(SNE), which like NCA has an interpretation that in-
volves the stochastic selection of one neighbor.

Rather than selecting one neighbor, we proceed again
by defining distributions over sets of k neighbors. For
the unsupervised version, we have a target distribu-
tion p and an approximating distribution q. The goal
is to minimize the sum of KL divergences for each
point i: −

∑
i

∑
s∈S:|c|=kpi(s | k) log qi(s | k) + const,

where pi(·) is defined in terms of target distances d∗ij
in the original space, while qi(·) is defined in terms of
distances in the lower dimensional space:

pi(s | k) =
{ 1

Z exp{−
∑

j∈s d∗ij} if |s| = k
0 otherwise (9)

qi(s | k) =
{ 1

Z exp{−
∑

j∈s dij} if |s| = k
0 otherwise . (10)

We can leverage the previous efficient computations of
this objective after some re-arranging of the objective.
Focusing on a single i:

∑

s∈S:|s|=k

pi(s | k) log qi(s | k) (11)

= −
∑

s∈S:|s|=k

pk
ij

∑

j∈s

dij − log Zk
0 = −

∑

j

dijp
k
ij − log Zk

0 ,

where pk
ij denotes the probability that i chooses j,

given that i chooses sets of k neighbors according to
pi(c | k). The computations involved here are the same
as are involved in computing Z0 for kNCA. Note that
pk

ij can be precomputed once, then used throughout
learning, and also that this formulation is agnostic to
the distance measure used and therefore can be easily
adapted to suit the measures used in SNE, t-SNE and
other variants. We focus on the t-SNE variant.

7. Experiments
In a similar fashion to Goldberger et al. (2004), we
experimented with various loss functions on several
UCI datasets as well as the USPS handwritten digits
dataset. For our experiments we divide the datasets
into 10 different partitions of training and testing sets.
Each partition uses 70% of the data for training and
the remainder for testing. We inititialize the embed-
ding matrix using PCA. We experimented with vari-
ous values for k between 1 and 10, where k = 1 implies
normal NCA. For each value of k, we trained separate
models using the two loss functions discussed in the
text: one that favors all k neighbors belonging to the
same class (All) and one that favors that the majority
belong to the same class (Majority) (when k = 1 these
are equivalent). We experimented with both NCA ob-
jective variants and found performance to be similar,
but we found the sum of logs variant (probability of er-
ror free classification) to be slightly easier to work with
numerically, so we report results using it. Once each
model is trained, we test using k-nearest neighbors on
the learned models for k ∈ {1, 2, ..., 15}. We experi-
mented with learning parameters that either project
the data down to 2 dimensions, or retain the origi-
nal data dimensions. To optimize, we used stochastic
gradient descent with momentum, subsampling a set
of points to compute the gradients (but still always
considering all points as possible neighbors).

7.1. kNN Classification and kNCA Embedding
Our first set of experiments mimics those found in
Goldberger et al. (2004). The extended results are
given in the supplementary materials. For purposes
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(a) Embeddings for Majority

(b) Embeddings for All

Figure 3. Illustrative learned embeddings on wine dataset
for various choices of k. Setting k = 1 is standard NCA.
The Majority measure uses the standard objective, and the
All objective is described in Sec. 5.

of illustration, we show the learned embeddings from
the different kNCA methods for one dataset (wine)
in Fig. 3. For k = 1 (in (a) and (b), top left) the
green class can be seen to wrap around the blue in the
training embedding. While this satisfies the 1NCA
objective well, it leads to worse generalization, as the
boundary between blue and green becomes confused in
the test data (bottom left). With larger k, generaliza-
tion is improved. The All-trained models promote a
larger margin while the Majority-trained models allow
for a smaller margin and more dispersion within the
clusters. The key point to note is that the All models
can be seen as trying to build a larger margin between
classes with k=1 being the weakest example of this.
Meanwhile the Majority models are given more free-
dom to manipulate the projection. We found that this
translates to the Majority objective converging more
quickly in terms of optimization.

In the supplementary materials, we present quantita-
tive results and an extensive comparison to other dis-
tance metric learning methods discussed in Sec. 3, in-
cluding LMNN, MCML, 1NCA, and ITML (when A is
full rank since ITML cannot be used to reduce the di-
mensionality of the data). In general, the UCI results
are more variable, but kNCA compares favorably (ei-
ther being the best, or near the best) in all cases.

In the experiments on the USPS digits, we evaluate
performance of the various algorithms when the data
is more difficult and noisy. To study this in a con-
trolled manner, we created three variations of the data
with increasing levels of corruption in the labels. The
first variant is the uncorrupted, original dataset while
the others have 25% and 50% of the labels resampled
uniformly. To evaluate performance, the votes of the
neighbors come from the corrupted data, but we re-
port correctness based on the uncorrupted labels. As
can be seen by the increasing trend of all the curves
in Fig. 4, using larger k at test time results in better
performance. The improvements are steepest in the
high noise cases. We also see that the kNCA methods
substantially outperform 1-NCA, LMNN, and MCML.
Although not reported here for lack of space, the above
conclusions hold when comparing kNCA to ITML (in
the full dimensional setting). Training accuracies are
similar to test accuracies.

For a final experiment in the supervised setting, we
tried to better understand why (a) kNCA with larger
k outperforms 1NCA, and (b) why the All-trained
models outperformed the Majority-trained models on
the USPS data. One hypothesis is that the perfor-
mance can be explained in terms of the severity of
non-convexity in the objectives: since 1NCA is so nar-
rowly focused on its immediate neighborhood, there
are many local optima to fall into; and since Majority
is forgiving of impure neighborhoods, there are more
configurations that it is satisfied with, and thus more
local optima. To test this, we took the parameters
learned by kNCA, with both the Majority and All ob-
jective, and evaluated the 1NCA objective (Eq. 2). We
repeated this several times across 10 different folds of
the data (with different random initialization of the pa-
rameters for each fold) to measure the variance, which
we attribute to reaching different local optima. Results
are shown in Fig. 5. As hypothesized, the kNCA meth-
ods with larger k do actually achieve better 1NCA ob-
jectives, and the All training achieves better 1NCA
objectives than the Majority training.

7.2. kt-SNE Embeddings
We also experimented with kt-SNE. The details for
construction of the target distribution p followed the
details presented in (Hinton & Roweis, 2002). In
Fig. 6, we show the embeddings that have been learned
by both t-SNE and kt-SNE with k = 5 at two points of
learning: first, at iteration 25, where clusters are be-
ginning to take form; second, at iteration 250, which
had reached convergence. Note the global rearrange-
ment that occurs even after iteration 25 when k = 5.

Quantitatively, in Fig. 6 (e), we use the true labels to
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Test, 0 noise Test, 0.5 noise

Figure 4. Test accuracies on USPS digits data for projec-
tions to 2 dimensions with varying levels of noise. 0.25
noise is omitted for space but interpolated 0 and 0.5.

0% noise 25% noise 50% noise

Figure 5. Mean and standard deviations of training 1-
NCA objectives achieved by optimizing kNCA objectives
for varying k (higher is better). Legend follows Fig. 4.

measure the leave-one-out accuracy for a kNN classi-
fier applied to the points output by t-SNE and kt-SNE.
t-SNE performs better on 1-nearest neighbor accuracy,
but when k is increased, 5t-SNE overtakes t-SNE. This
further illustrates the myopic nature of using k = 1
in t-SNE. In the supplementary material, we provide
animations illustrating the evolution of kSNE embed-
dings on USPS digits for various choices of k. In these
animations, qualitative differences are visible, where t-
SNE exhibits the myopic behavior illustrated in Fig. 1.

8. Discussion
There are several desirable properties of kNCA. First,
it provides a proper methodology for doing NCA-like
learning when the desire is to use kNN with k > 1
at test time. Our work here derives the NCA-like ob-
jective that is properly matched to using kNN at test
time. kNN classifiers are ubiquitous, and a choice of
k > 1 is nearly always used, so the method has wide
applicability. Second, it provides robustness in two
ways: first, the majority objective is relatively uncon-
cerned with outliers, so long as the majority of neigh-
bors in a region have the correct label; second, the
objective optimizes an expectation over the selection
of all sets of k neighbors, so we do not expect small
perturbations in the data to have a significant effect
on the learning objective. Robustness is not achieved

(a) t-SNE iter 25 (b) t-SNE iter 250

(c) 5t-SNE iter 25 (d) 5t-SNE iter 250

k = 1 k = 5 k = 9 k = 13
t-SNE 0.934 0.925 0.916 0.914

5t-SNE 0.928 0.946 0.953 0.949
(e) kNN accuracy after unsupervised learning.

Figure 6. Unsupervised USPS digits results.

by the methods we compare to, which we attribute to
either their global or non-probabilistic nature.

Curiously, in most cases, the All objective outper-
formed the Majority objective. The argument can
be made that All is like a margin-enhanced version of
Majority, which inherits robustness due to the prob-
abilistic formulation, but generalizes well due to its
margin-enforcing tendencies. We believe this to be an
interesting result for those people wishing to design
better learning objectives; it challenges the common
intuition that the best learning objective is to mini-
mize expected loss. However, our final supervised ex-
periments suggest that the story may be more com-
plicated, and that we might need to find better ways
of initializing and optimizing the two methods before
having a clear answer.

One disadvantage of NCA (and thus also kNCA) is
the inherently quadratic nature of the algorithm that
comes from basing it on pairwise distances. We be-
lieve the method to still have desirable properties when
the set of potential neighbors is restricted (either ran-
domly or deterministically) but a fuller exploration of
the tradeoffs involved require further investigation.

Finally, we believe the general technique used to com-
pute the expected majority function to be of interest
beyond just for kNN classifiers and for kNCA learning.
It would be interesting to find further applications.
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