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Abstract

Planning can often be simplified by decomposing the task into
smaller tasks arranged hierarchically. Charlin et al. (2006)
recently showed that the hierarchy discovery problem can be
framed as a non-convex optimization problem. However, the
inherent computational difficulty of solving such an optimiza-
tion problem makes it hard to scale to real-world problems. In
another line of research, Toussaint et al. (2006) developed a
method to solve planning problems by maximum-likelihood
estimation. In this paper, we show how the hierarchy dis-
covery problem in partially observable domains can be tack-
led using a similar maximum likelihood approach. Our tech-
nique first transforms the problem into a dynamic Bayesian
network through which a hierarchical structure can naturally
be discovered while optimizing the policy. Experimental re-
sults demonstrate that this approach scales better than previ-
ous techniques based on non-convex optimization.

1 Introduction

Planning in partially observable domains is notoriously dif-
ficult. However, many planning tasks naturally decom-
pose into subtasks that may be arranged hierarchically (e.g.,
prompting systems that assist older adults with activities of
daily living (Hoey et al. 2007) can be naturally decom-
posed into subtasks for each step of an activity). When a
decomposition or hierarchy is known a priori, several ap-
proaches have demonstrated that planning can be performed
faster (Pineau, Gordon, & Thrun 2003; Hansen & Zhou
2003). However, the hierarchy is not always known or easy
to specify, and the optimal policy may only decompose ap-
proximately. To that effect, Charlin et al. (2006) showed
how a hierarchy can be discovered automatically by formu-
lating the planning problem as a non-convex quartically con-
strained optimization problem with variables corresponding
to the parameters of the policy, including its hierarchical
structure. Unfortunately, the inherent computational diffi-
culty of solving this optimization problem prevents the ap-
proach from scaling to real-world problems. Furthermore,
it is not clear that automated hierarchy discovery simplifies
planning since the space of policies remains the same.

We propose an alternative approach that demonstrates
that hierarchy discovery (i) can be done efficiently and (ii)
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performs a policy search with a different bias than non-
hierarchical approaches that is advantageous when there
exists good hierarchical policies. The approach combines
Murphy and Paskin’s (2001) factored encoding of hierar-
chical structures into a dynamic Bayesian network (DBN)
with Toussaint et al.’s (2006) maximum-likelihood estima-
tion technique for policy optimization. More precisely, we
encode POMDPs with hierarchical controllers into a DBN
in such a way that the policy and hierarchy parameters are
entries of some conditional probability tables. We also con-
sider factored policies that are more general than hierarchi-
cal controllers. The policy and hierarchy parameters are
optimized with the expectation-maximization (EM) algo-
rithm (Dempster, Laird, & Rubin 1977). Since each iteration
of EM essentially consists of inference queries, the approach
scales easily.

Sect. 2 briefly introduces partially observable Markov de-
cision processes, controllers, policy optimization by max-
imum likelihood estimation and hierarchical modeling.
Sect. 3 describes our proposed approach, which combines a
dynamic Bayesian network encoding with maximum likeli-
hood estimation to simultaneously optimize a hierarchy and
the controller. Sect. 4 demonstrates the scalability of the
proposed approach on benchmark problems. Finally, Sect. 5
summarizes the paper and discusses future work.

2 Background
2.1 POMDPs

Partially  observable = Markov  decision  processes
(POMDPs) provide a natural and principled frame-
work for planning. They are formally defined by a tuple
(S, A, O, ps,Dst|as» Po'|s7a> Tas) Where S is the set of states
s, A is the set of actions a, O is the set of observations o,
ps = Pr(Sp=3s) is the initial state distribution (a.k.a. initial
belief), pyjas = Pr(Si41=5"| A =a, S; = s) is the transi-
tion distribution, p,/|sq = Pr(Osp1=0"|Si11=5", A;=a)
is the observation distribution and r,s = R(A; =a, S =)
is the reward function. Since states are not directly observ-
able, let by = Pr(S=s) be a state distribution (conditioned
on the history of past actions and observations) known as
the belief. A belief b can be updated at each time step, based
on the action a taken and the observation o’ made according

to Bayes’ theorem: bg,"/ = kY, bsDs|asPor|sra (K s a



normalization constant). A policy is a mapping from beliefs
to actions (e.g., m(b) = a). The value V™(b) of a policy
m starting in belief b is measured by the discounted sum
of expected rewards: V™ (b) = >, ¥ Ep, |z [r'x(5,),] Where
Tab = Zs bsrqes. The goal is to find an optimal policy 7*
with the highest value V* for all beliefs: V*(b) > V7™ Vr, b.
The optimal value function also satisfies Bellman’s equa-

tion: V*(b) = max,rar + )., po/‘abV*(b‘w,) where
Po'|ab = ESS/ bsps’|aspo’|s’a'

2.2 Finite State Controllers

A convenient representation for an important class of poli-
cies consists of finite state controllers (Hansen 1998). A
controller with a finite set A/ of nodes n can encode a
stochastic policy m with three distributions: Pr(Ng=n) =
Py (initial node distribution), Pr(A; = a| Ny = n) = pgjn
(action selection distribution) and Pr(N;y; = n'| Ny =
n, O 41 =0") = ppr|no (Successor node distribution). Such
a policy can be executed by starting in a node n sampled
from p,,, executing an action a sampled from p,|,,, receiv-
ing observation o/, transitioning to node n’ sampled from
Pn/|nor @nd so on. The value of a controller can be com-
puted by solving a linear system: Vs = > Dajn[ras +
Y Zs’o’n’ Ps'|asPo’|s'aPn/|no’ Vn’s’] Vn,s. The value at a
given belief b is then V7(b) = > > bsppVpns. Sev-
eral techniques have been proposed to optimize controllers
of a given size, including gradient ascent (Meuleau et
al. 1999), stochastic local search (Braziunas & Boutilier
2004), bounded policy iteration (Poupart & Boutilier 2003),
non-convex quadratically constrained optimization (Amato,
Bernstein, & Zilberstein 2007) and likelihood maximiza-
tion (Toussaint, Harmeling, & Storkey 2006). We briefly
describe the last technique since we will use it in Sect. 3.
Toussaint et al. (2006) recently proposed to convert
POMDPs into equivalent dynamic Bayesian networks
(DBNs) by normalizing the rewards and to optimize a pol-
icy by maximizing the likelihood of the normalized rewards.
Let R be a binary variable corresponding to normalized re-
wards. The reward function r, is then replaced by a reward

distribution pj|sqr = Pr(R =7|A; = a,S; = s, T = t)
that assigns probability 7/ ("maz — Tmin) to B = 1 and
1 - Tas/('r‘max - Tmin) 0 R = 0 (rmin = mings 745 and
Tmaz = MaXgesTqs). An additional time variable 7' is in-
troduced to simulate the discount factor and the summation
of rewards. Since a reward is normally discounted by a fac-
tor ' when earned ¢ time steps in the future, the prior p; =
Pr(T =t) is set to (1 —+) where the factor (1 —y) ensures
that )% p; = 1. The resulting dynamic Bayesian network
is illustrated in Fig. 1. It can be thought of as a mixture of
finite processes of length ¢ with a 0-1 reward R earned at
the end of the process. The nodes N; encode the internal
memory of the controller. Given the controller distributions
Pns Pajn a0d Pp/ipner, it is possible to evaluate the controller

by computing the likelihood of R = 1. More precisely,

Vﬂ-(ps) = (PI‘(R: 1) - Tmin)/[(rmaac - Tmin)(l - 7)]
Optimizing the policy can be framed as maximizing the

likelihood of R = 1 by varying the distributions py, pg|n

Figure 1: POMDP represented as a mixture of finite DBNs. For
an infinite horizon, a large enough ¢.,,4 can be selected at runtime
to ensure that the approximation error is small.

and py|, encoding the policy. Toussaint et al. use the
expectation-maximization (EM) algorithm. Since EM is
guaranteed to increase the likelihood at each iteration, the
controller’s value increases monotonically. However, EM is
not guaranteed to converge to a global optimum. An im-
portant advantage of the EM algorithm is its simplicity both
conceptually and computationally. In particular, the com-
putation consists of inference queries that can be computed
using a variety of exact and approximate algorithms.

2.3 Hierarchical Modeling

While optimizing a bounded controller allows an effec-
tive search in the space of bounded policies, such an ap-
proach is clearly suboptimal since the optimal controller of
many problems grows doubly exponentially with the plan-
ning horizon and may be infinite for infinite horizons. Alter-
natively, hierarchical representations permit the representa-
tion of structured policies with exponentially fewer parame-
ters. Several approaches were recently explored to model
and learn hierarchical structures in POMDPs. Pineau et
al. (2003) sped up planning by exploiting a user specified
action hierarchy. Hansen et al. (2003) proposed hierarchical
controllers and an alternative planning technique that also
exploits a user specified hierarchy. Charlin et al. (2006)
proposed recursive controllers (which subsume hierarchical
controllers) and an approach that discovers the hierarchy
while optimizing a controller. In another line of research,
dynamic Bayesian networks are used to model hierarchical
hidden Markov models (HMMs) (Murphy & Paskin 2001)
and hierarchical POMDPs (Theocharous, Murphy, & Kael-
bling 2004). We briefly review this DBN encoding since we
will use it in our approach to model factored controllers.
Murphy and Paskin (2001) proposed to model hierarchi-
cal hidden Markov models (HMMs) as dynamic Bayesian
networks (DBNs). The idea is to convert a hierarchical
HMM of L levels into a dynamic Bayesian network of L
state variables, where each variable encodes abstract states
at the corresponding level. Here, abstract states can only
call sub-HMMs at the previous level. Fig. 2 illustrates a
two-level hierarchical HMMs encoded as a DBN. The state



Figure 2: DBN encoding of a 2-level hierarchical HMM.

variables S! are indexed by the time step ¢ and the level I.
The E; variables indicate when a base-level sub-HMM has
ended, returning its control to the top level HMM. The top-
level abstract state transitions according to the top HMM,
but only when the exit variable E; indicates that the base-
level concrete state is an exit state. The base-level concrete
state transitions according to the base-level HMM. When an
exit state is reached, the next base-level state is determined
by the next top-level abstract state. Factored HMMs sub-
sume hierarchical HMMs in the sense that there exists an
equivalent factored HMM for every hierarchical HMM. In
Sect. 3.1, we will use a similar technique to convert hierar-
chical controllers into factored controllers.

3 Factored Controllers

We propose to combine the DBN encoding techniques of
Murphy et al. (2001) and Toussaint et al. (2006) to convert
a POMDP with a hierarchical controller into a mixture of
DBNSs. The hierarchy and the controller are simultaneously
optimized by maximizing the reward likelihood of the DBN.
We also consider factored controllers which subsume hierar-
chical controllers.

3.1 DBN Encoding

Fig. 3a illustrates two consecutive slices of one DBN in
the mixture (rewards are omitted) for a three-level hierar-
chical controller. Consider a POMDP defined by the tuple
(S, A, O,Ds,Ds|as> Po’|s’a> Tas) and a three-level hierarchi-
cal controller defined by the tuple (p, 1, Prt—1|nts Prstjntor)
for each level [. The conditional probability distributions of
the mixture of DBNs (denoted by p) are:

transition distribution: py|qs = Ps/|as

observation distribution: po/|s7q = Por|s’a

reward distribution: p7jos = (Tas — Tmin)/(Tmaz — T'min)
mixture distribution: p; = (1 — v)~*

action distribution: p,|,0 = pg|no

base level node distribution:
Ppojpn
Pnro |o’n0
e middle level node distribution:

Dt |pr2 if el =exit

Pnitjornt  if e¥ =exit and e #exit
Op/inl otherwise

e top level node distribution:

Dnr2jorn2  if el =exit

0122 otherwise

if e® =exit

D 101,007l 57 0 — .
Pr/0nonstore otherwise

ﬁnfl |n1n’20’eoel =

Pnr2jo'n2el = {

Figure 3: (a) Two slices of the DBN encoding the hierarchical
POMDP controller. (b) Exit variables are eliminated. (c¢) Variables
O and A are eliminated. (d) Corresponding junction tree.

o base-level exit distribution:

. [ 1 ifn®isanend node

Peoln® =1 0 otherwise
e middle-level exit distribution:

. [ 1 ife’=exit and n* is an end node

Pelln'e® =\ 0 otherwise

While the E! variables help clarify when the end of a sub-
controller is reached, they are not necessary. Eliminating
them yields a simpler DBN illustrated in Fig. 3b. The con-
ditional probability distributions of each N} become:

e base level node distribution:
if n is an end node

~ _ Prro|nt
Pr/0n0nrtor = Pni0jorno  Otherwise
e middle level node distribution:
D/t |n’2 if n* and n° are end nodes
Pnijnin20! = Pnijornt if n® is an end node, but not n'
Opripl otherwise
e top level node distribution:

Pnr2jn2or  if n' and n° are end nodes
Opr2p2 otherwise

Note that ignoring the above constraints in the conditional
distributions yields a factored controller that is more flexible
than a hierarchical controller since the conditional probabil-
ity distributions of the N/} variables do not have to follow the
structure imposed by a hierarchy.

Pnr2in2otel =

3.2 Maximum Likelihood Estimation

Following Toussaint et al. (2006), we optimize a factored
controller by maximizing the reward likelihood. Since the
policy parameters are conditional probability distributions of



the DBN, the EM algorithm can be used to optimize them.
Computation alternates between the E and M steps below.
We denote by n‘°? and n®?*¢ the top and base nodes in a
given time slice. We also denote by ¢(V') and ¢(v) the par-
ents of V' and a configuration of the parents of V.

e E-step: expected frequency of the hidden variables

Eptop = Pr(NE? =n'P|R=1)

Eppase = ., Pr(Ar=a, NP**¢ =n"**¢|R=1)

Epgmny =22, Pr(Nipi=n", ¢(Nit1) :¢(”i+1)|R: 1)
e M-step: relative frequency computation

Pntop = Entop/ Zntop Entop

Pa|nbase = Eanba,se/ Za Eanba,se

Pritigmty = Enrtgnny/ 2onn Enitgouy VI
Parameter initialization W.l.o.g. we initialize the start
node NJ of the top layer to be the first node (i..,
Pr(N)? = 1) = 1). The node conditional distributions
Pn/t|g(nt) are initialized randomly as a mixture of three dis-
tributions: ppt|g(pny X €1 + caldpngnny + €30p,1,:. The
mixture components are a uniform distribution, a random
distribution U,y (an array of uniform random numbers

in [0,1]), and a term enforcing n! to stay unchanged. For
the node distributions at the base level we choose ¢; =
1,c0 = 1,c3 = 0 and for all other levels we choose ¢; =
1,co =1, c3 =10. Similarly we initialize the action proba-
bilities as p,jppase X €1 + Caldgpbase + C304(ppaseqq) With
c1 =1,co =1, c3 =100, where the last term enforces each
node nb?¢ =1 to be associated with action a =i%a.

E-step To speed up the computation of the inference
queries in the E-step, we compute intermediate terms using
a forward-backward procedure. Here, N and n denote all
the nodes and their joint configuration in a given time slice.
e Forward term: aj,; = Pr(N,=n, Sy =5s)

ags = PnPs

O{:IIS, = Zn,s O{f.:slpnlsl‘ns
e Backward term: g}, =Pr(R=1|N;,_,=n,S; ,=s,T=t)

ﬂgs = Za Pa|nTas

ﬁrq;s = Zn/,s/ pn’s’lnsﬂ;/_s}

To fully take advantage of the structure of the DBN, we
first marginalize the DBN w.r.t. the observations and actions
to get the DBN in Fig. 3c. This 2-slice DBN corresponds
to the joint transition distribution py/ s used in the above
equations. Then we compile this 2-slice DBN into the junc-
tion tree (actually junction chain) given in Fig. 3d.

Let Bns = > Pr(T =7)B%, and ans = Y, Pr(T =
t)al ,, then the last two expectations of the E-step can be

ns?
computed as follows:
E, base X Zs,nf{nbase} QnsPa|nbase [ms—|—
25/70/7,,/ DPs’|asPo’|s’ aPn’ \o’nﬂn’s’}
En/l¢(nll) 0.8 Zs,a,l’l—(b(n”) O(rlspa|nbase [Tas+
Es/,n’*l ps/|aspo’ \S’apn’ ‘O/nﬁnlsl] Vl
M-step The standard M-step adjusts the parameters of the
controller by normalizing the expectations computed in the
E-step. Instead, to speed up convergence, we perform a soft-
ened greedy M-step. In the greedy M-step, each parameter
Dulg(v) 18 greedily set to 1 when v = argmaxs fr4(5) and

0 otherwise, where f,4() = Eug(v)/Po|g(v)- The greedy
M-step can be thought of as the limit of an infinite sequence
of alternating partial E-step and standard M-step where the
partial E-step keeps f fixed. The combination of a standard
M-step with this specific partial E-step updates p,|4(,) by a
multiplicative factor proportional to f,¢(,). In the limit, the
largest f,4(,) €nds up giving all the probability to the cor-
responding pi|4()- EM variants with certain types of par-
tial E-steps ensure monotonic improvement of the likelihood
when the hidden variables are independent (Neal & Hinton
1998). This is not the case here, however by softening the
greedy M-step we can still obtain monotonic improvement
most of the time while speeding up convergence. We update
Duj(v) as follows:

p:)l\ed?zv) X pgl\i(v) [67”1* +c+ E] where U* = a‘rgmaxv fv¢(v)

For ¢ = 0 and € = 0 this is the greedy M-step. We use ¢ = 3
which softens (shortens) the step and ensures more robust
convergence. Furthermore, adding small Gaussian noise € ~
N(0,1073) helps to escape local minima.

Complexity For a flat controller, the number of parame-
ters (neglecting normalization) is |O||N|? for Pn’|on and
| A||N] for pqj,,. The complexity of the forward (backward)
procedure is O(tmaz (IN]|S|? + |N|?|S])) where the two
terms correspond to the size of the two cliques for infer-
ence in the 2-slice DBN after O and A are eliminated. The
complexity of computing the expectations from « and [ is
O(IN|A[(|S]?+]S]|O])+ |N|?]S||O]), which corresponds
to the clique sizes of the 2-slice DBN including O and A.

In comparison, 2-level hierarchical and factored con-
trollers with [N/%°P| = |[N®@%¢| = |\/|%-5 nodes at each level
have fewer parameters and a smaller complexity, but also
a smaller policy space due to the structure imposed by the
hierarchy/factorization. While there is a tradeoff between
policy space and complexity, hierarchical and factored con-
trollers are often advantageous in practice since they can find
more quickly a good hierarchical/factored policy when there
exists one.

A 2-level factored controller with |[NV|%® nodes at each
level has 2|O[|N|"5 parameters for p,,top|orpbasentor and
Prsvase|prtopgrppase, and [A||N|%® parameters for p,pase.
The complexity of the forward (backward) procedure is
O (tmaz (IN|S]? + |N|*?|S])) and the complexity of com-
puting the expectations is O(|N]|A[(|S]*> + |S||O]) +
IN|1210||S| + [N J?|O]). A 2-level hierarchical controller
is further restricted and therefore has fewer parameters, but
the same time complexity.

4 Experiments

We first compared the performance of the maximum like-
lihood (ML) approach to previous optimization-based ap-
proaches from (Charlin, Poupart, & Shioda 2006). Ta-
ble 1 summarizes the results for 2-layer controllers with
certain combinations of |A*?*¢| and |N*°P|. The prob-
lems include paint, shuttle and 4x4 maze (previously used
in (Charlin, Poupart, & Shioda 2006)) and three additional
problems: chain-of-chains (described below), hand-washing
(reduced version from (Hoey et al. 2007)) and cheese-



Table 1: V* denotes the optimal value, except for handwashing and cheese-taxi, where we show both the optimal value of the equivalent
fully-observable problem as well as best values obtained by point-based value iteration (pbvi). The ML approach optimizes a factored
controller for 200 EM iterations with a planning horizon of t;,q. = 100. (5,3) nodes means |A°**¢| = 5 and |N*°P| = 3. For cheese-taxi,
we get a maximum value of 2.25. N/A indicates that the solver did not complete successfully.

p IS] | |4] | 10] v Best results (Charlin et al., 2006) ML approach (avg. over 10 runs)
roblem . .

nodes | time %4 nodes | time (secs) 1%
paint I 42 33 13 | <1 329 (53) | 0.96£0.26 | 3.26 £0.004
shuttle 8 3 5 32.7 (1,3) 2 31.87 5,3) | 2.812+0.2 31.6 £ 0.5
4x4 maze 16 4 2 3.7 (1,2) 30 3.73 3,3) 2.84+0.8 3.72 £ 8e—5
chain-of-chains | 10 4 1 157.07 N/A (10,3) 6.4+0.2 151.6 £ 2.6
handwashing 84 7 12 | <1052 (pbvi:981) N/A (10,5) 655 £ 2 984 £ 1
cheese-taxi 33 7 10 <5.3 (pbvi:2.45) N/A (10,3) 311+ 14 -9+ 11(2.25%)

Table 2: Optimization time and values depending on the number of nodes (200 EM iterations with t.,q, = 100 planning steps). The results
are averaged over 10 runs with error bars of +1 standard deviation. (5,3) nodes means |N***¢| = 5 and [N*°?| = 3.
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taxi (variant from (Pineau 2004)). On the first three prob-
lems, ML reaches the same values as the optimization-
based approaches, but with larger controllers. We attribute
this to EM’s weaker ability to avoid local optima than the
optimization-based approaches. However, the optimization-
based approaches run out of memory on the last three prob-
lems (memory exceeds 2 Gb of RAM), while ML scales
gracefully (as analyzed in Sect. 3.2). The ML approach
demonstrates that hierarchy discovery can be tractable.

The next experiment demonstrates that policy optimiza-
tion while discovering a hierarchy can be done faster and/or
yield higher value when there exists good hierarchical poli-
cies. Table 2 compares the performance when optimizing
flat, hierarchical and factored controllers on chain-of-chains,
hand-washing and cheese-taxi. The factored and hierarchi-
cal controllers have two levels and correspond respectively
to the DBNs in Fig. 3a and 3b. The x-axis is the number of
nodes for flat controllers and the product of the number of
nodes at each level for hierarchical and factored controllers.
Taking the product is justified by the fact that the equivalent
flat controllers of some hierarchical/factored controllers re-
quire that many nodes. The graphs in the top row of Table 2
demonstrate that hierarchical and factored controllers can be
optimized faster, confirming the analysis done in Sect. 3.2.

90 100 0 10 20 30 40 50 60 70 80

90 100 0 10 20 30 40 50 60 70 80

There is no difference in computational complexity between
the strictly hierarchical and unconstrained factored architec-
tures. Recall however that the efficiency gains of the hierar-
chical and factored controllers are obtained at the cost of a
restricted policy space. Nevertheless, the graphs in the bot-
tom row of Table 2 suggest that hierarchical/factored con-
trollers can still find equally good policies when there ex-
ist one. Factored controllers are generally the most robust.
With a sufficient number of nodes, they find the best poli-
cies on all three problems. Note that factored and hierar-
chical controllers need at least a number of nodes equal to
the number of actions in the base layer in order to repre-
sent a policy that uses all actions. This explains why hier-
archical and factored controllers with less than 4 base nodes
(for chain-of-chains) and 7 base nodes (for hand-washing
and cheese-taxi) do poorly. The optimization of flat con-
trollers tend to get stuck in local optima if too many nodes
are used. Comparing the unconstrained factored architecture
versus hierarchical, we find that the additional constraints in
the hierarchical controller make the optimization problem
harder although there are less parameters to optimize. As a
result, EM gets stuck more often in local optima.

We also examine whether learnt hierarchies make intu-
itive sense. Good policies for the cheese-taxi and hand-
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Figure 4: Hierarchical controller learnt for the chain-of-chains.
The diamond indicates an exit node, for which p.oj,,0 = 1.

Level 0

washing problems can often be represented hierarchically,
however the hierarchical policies found didn’t match hier-
archies expected by the authors. Since these are non-trivial
problems for which there may be many ways to represent
good policies in a hierarchical fashion that is not intuitive,
we designed the chain-of-chains problem, which is much
simpler to analyze. The optimal policy of this problem con-
sists of executing n times the same chain of n actions fol-
lowed by a submit action to earn the only reward. The opti-
mal policy requires 2+ 1 nodes for flat controllers and n+1
nodes at each level for hierarchical controllers. For n = 3,
ML found a hierarchical controller of 4 nodes at each level,
illustrated in Fig. 4. The controller starts in node 0. Nodes
at level 1 are abstract and descend into concrete nodes at
level 0 by following the dashed edges. Control is returned to
level 1 when an end node (denoted by a diamond) is reached.
The optimal policy is to do A-B-C three times followed by
D. Hence, a natural hierarchy would abstract A-B-C and D
into separate subcontrollers. While the controller in Fig. 4
is not completely optimal (the vertical transition from ab-
stract node O should have probability 1 of reaching A), it
found an equivalent, but less intuitive abstraction by having
subcontrollers that do A-B-C and D-A-B-C. This suggests
that for real-world problems there will be many valid ab-
stractions that are not easily interpretable and the odds that
an automated procedure finds an intuitive hierarchy without
any guidance are slim.

5 Conclusion

The key advantage of maximum likelihood is that it can ex-
ploit the factored structure in a controller architecture. This
facilitates hierarchy discovery when the hierarchical struc-
ture of the controller is encoded into a corresponding dy-
namic Bayesian network (DBN). Our complexity analysis
and the empirical run time analysis confirm the favorable
scaling. In particular, we solved problems like handwashing
and cheese-taxi that could not be solved with the previous
approaches in (Charlin, Poupart, & Shioda 2006). Com-
pared to flat controllers, factored controllers are faster to
optimize and less sensitive to local optima when they have
many nodes. Our current implementation does not exploit
any factored structure in the state, action and observation
space, however we envision that a factored implementation
would naturally scale to large factored POMDPs.

For the chain-of-chains problem, maximum likelihood
finds a reasonable hierarchy. For other problems like hand-
washing, there might be many hierarchies and the one found
by our algorithm is usually hard to interpret. We cannot ex-
pect our method to find a hierarchy that is human readable.
Interestingly, although the strictly hierarchical architectures

have less parameters to optimize, they seem to be more sus-
ceptible to local optima as compared to a factored but oth-
erwise unconstrained controller. Future work will need to
investigate different heuristics to escape local optima during
optimization.

In this paper, we made explicit assumptions about the
structure — we prefixed the structure of the DBN to mimic
a strict hierarchy or a level-wise factorization and we had to
fix the number of nodes in each level. However, the DBN
framework allows us to build on existing methods for struc-
ture learning of graphical models. A promising extension
would be to use such structure learning techniques to op-
timize the factored structure of the controller. Since the
computational complexity for evaluating (training) a single
structure is reasonable, techniques like MCMC could sam-
ple and evaluate a variety of structures. This variety might
also help to circumvent local optima, which currently define
the most dominant limit of our approach.
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