e

Problem: Assign submitted papers to reviewers

Standard solutions have limitations:
- Completely centralized or de-centralized
- Bidding

Some recent work using CF + matching

We propose a flexible framework for
matching reviewers to papers:
- Predict missing suitabilities (ratings)
- Find optimal matchings
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Our contributions:
- Compare learning methods
- Incorporate objectives and constraints
- Interaction between learning & matching
- Aim: make learning sensitive to final objective

Learning Methods

LR - Linear regression using words from
submitted papers

BPMF -Bayesian probabilistic matrix factorization
- Factorizes the suitability matrix
- Collaborative filtering
LM - Language model
- Model reviewers using a word-level model

A Framework for Optimizing Paper Matching
Laurent Charlin, Richard Zemel and Craig Boutilier

Matching
Possible desiderata:

o Match papers to best reviewers
o Load constraints /
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o Conflicts of interest
o Non-linear relationship between utilities
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of the suitabilities

Experiments Histogram of
suitabilities
- Data from NIPS'09 and NIPS'10 = N10

- Use top 1,000 words
- Suitabilities: 0--3
- N10: 1250 papers, 48 revs

- avg. 143 suitabilities per reviewer
- mean suitability 1.14

- N09: 1079 papers, 30 revs

- mean suitability 0.19
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- LR outperforms other methods - LM does well at the beg.
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- Better performance when learning with transformed objective
Conclusion: Effective for determining high-quality
matches using few suitabilities
Current work: Active learning approaches




