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A Framework for Optimizing Paper Matching
Laurent Charlin, Richard Zemel and Craig Boutilier

Standard solutions have limitations: 
   - Completely centralized or de-centralized
   - Bidding
Some recent work using CF + matching

We propose a flexible framework for 
matching reviewers to papers:
      - Predict missing suitabilities (ratings) 
      - Find optimal matchings

Learning Methods

Matching

LR - Linear regression using words from 
        submitted papers
    

LM - Language model
         - Model reviewers using a word-level model 

Possible desiderata: 
    o Match papers to best reviewers
    o Load constraints 

    o Load equity

    o Conflicts of  interest
    o Non-linear relationship between utilities

Experiments
- Data from NIPS'09 and NIPS'10 
   - Use top 1,000 words
   - Suitabilities: 0--3
   - N10: 1250 papers, 48 revs
      - avg. 143 suitabilities per reviewer 
      - mean suitability 1.14

   - N09: 1079 papers, 30 revs 
      - mean suitability 0.19
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- RMSE objective
- LR does the best
    - Information contained  
      in papers is useful

Matching Performances

Learning Predictions

Absolute matching 
performance

Assignments by 
score value

Load equity

Transformed objective 

- Better performance when learning with transformed objective

- LR outperforms other methods  - LM does well at the beg.

Conclusion: Effective for determining high-quality 
matches using few suitabilities

Current work: Active learning approaches
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BPMF -Bayesian probabilistic matrix factorization 
               - Factorizes the suitability matrix
               - Collaborative filtering

          - Aim: make learning sensitive to final objective

Problem: Assign submitted papers to reviewers
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Our contributions:
      - Compare learning methods
      - Incorporate objectives and constraints
      - Interaction between learning & matching
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