
Deep Exponential Families

Rajesh Ranganath Linpeng Tang Laurent Charlin David M. Blei
Princeton University Princeton University Columbia University Columbia University

frajeshr,linpengtg@cs.princeton.edu
flcharlin,bleig@cs.columbia.edu

Abstract

We describe deep exponential families
(DEFs), a class of latent variable models
that are inspired by the hidden structures
used in deep neural networks. DEFs capture
a hierarchy of dependencies between latent
variables, and are easily generalized to many
settings through exponential families. We
perform inference using recent “black box”
variational inference techniques. We then
evaluate various DEFs on text and combine
multiple DEFs into a model for pairwise
recommendation data. In an extensive study,
we show going beyond one layer improves
predictions for DEFs. We demonstrate that
DEFs find interesting exploratory structure
in large data sets, and give better predictive
performance than state-of-the-art models.

1 Introduction

In this paper we develop deep exponential families
(DEFs), a flexible family of probability distributions
that reflect the intuitions behind deep unsupervised
feature learning. In a DEF, observations arise from
a cascade of layers of latent variables. Each layer’s
variables are drawn from an exponential family that is
governed by the inner product of the previous layer’s
variables and a set of weights.

As in deep unsupervised feature learning, a DEF rep-
resents hidden patterns, from coarse to fine grained,
that compose with each other to form the observa-
tions. DEFs also enjoy the advantages of probabilistic
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modeling. Through their connection to exponential
families [7], they support many kinds of data. Over-
all DEFs combine the powerful representations of deep
networks with the flexibility of graphical models.

Consider the problem of modeling documents. We can
represent a document as a vector of term counts mod-
eled with Poisson random variables [9]. In one type of
DEF, the rate of each term’s Poisson count is an inner
product of a layer of latent variables (one level up from
the terms) and a set of weights that are shared across
documents. Loosely, we can think of the latent layer
the observations as per-document “topic” activations,
each of which ignites a set of related terms via their in-
ner product with the weights. These latent topics are,
in turn, modeled in a similar way, conditioned on a
layer above of “super topics.” Just as the topics group
related terms, the super topics group related topics,
again via the inner product.

Figure 1 illustrates an example of a three level DEF
uncovered from a large set of articles in The New York
Times. (This style of model, though with different de-
tails, has been previously studied in the topic model-
ing literature [21].) Conditional on the word counts
of the articles, the DEF defines a posterior distribu-
tion of the per-document cascades of latent variables
and the layers of weights. Here we have visualized
two third-layer topics which correspond to the con-
cepts of “Government” and “Politics”. We focus on
“Government” and notice that the model has discov-
ered, through its second-layer super-topics, the three
branches of government: judiciary ( left), legislative
(center) and executive (right).

This is just one example. In a DEF, the latent vari-
ables can be from any exponential family: Bernoulli
latent variables recover the classical sigmoid belief
network [25]; Gamma latent variables give something
akin to deep version of nonnegative matrix factoriza-
tion [20]; Gaussian latent variables lead to the types of
models that have recently been explored in the context



Deep Exponential Families

of computer vision [28]. DEFs fall into the broad class
of stochastic feed forward networks defined by Neal
[25]. These networks differ from the undirected deep
probabilistic models [30, 37] in that they allow for ex-
plaining away, where latent variables compete to ex-
plain the observations.

In addition to varying types of latent variables, we can
further change the prior on the weights and the obser-
vation model. Observations can be real valued, such
as those from music and images, binary, such as those
in the sigmoid belief network, or multinomial, such as
when modeling text. In the language of neural net-
works, the prior on the weights amounts to choosing a
type of regularization; the observation model amounts
to choosing a type of loss.

Finally, we can embed the DEF in a more complex
model, building ”deep” versions of traditional models
from the statistics and machine learning research lit-
erature. As examples, the DEF can be made part of
a multi-level model of grouped data [10], time-series
model of sequential data [3], or a factorization model
of pairwise data [31]. As am concrete example, we will
develop and study the double DEF. The double DEF
models a matrix of pairwise observations, such as users
rating items. It uses two DEFs, one for the latent rep-
resentation of users and the other for items. The ob-
servation of each user/item interaction combines the
lowest layer of their individual DEF representations.

In the rest of this paper, we will define, develop, and
study deep exponential families. We will explain some
of their properties and situate them in the larger con-
texts of probabilistic models and deep neural networks.
We will then develop generic variational inference algo-
rithms for using DEFs. We will show how to use them
to solve real-world problems with large data sets, and
we will extensively study many DEFs on the problems
of document modeling and collaborative filtering. We
show that DEF-variants of existing ”shallow” models
give more interesting exploratory structure and bet-
ter predictive performance. More generally, DEFs are
a flexible class of models which, along with our algo-
rithms for computing with them, let us easily explore
a rich landscape of solutions for modern data analysis
problems.

In this section we review exponential families and
present deep exponential families.

Exponential families. Exponential families [7] are
an important class of distributions with convenient
mathematical properties. Their form is

p.x/ D h.x/ exp.�>T .x/ � a.�//;
where h is the base measure, � are the natural param-
eters, T are the sufficient statistics, and a is the log-

normalizer. The expectation of the sufficient statistics
of an exponential family is the gradient of the log-
normalizer EŒT .x/� D r�a.�/. Exponential families
are completely specified by their sufficient statistics
and base measure; different choices of h and T lead
to different distributions. For example, in the normal
distribution the base measure is h D p

.2�/ and the
sufficient statistics are T .x/ D Œx; x2�; and for the Beta
distribution, a distribution with support over .0; 1/,
the base measure is h D 1 and sufficient statistics are
and T .x/ D Œlog x; log 1 � x�.

Deep exponential families. To construct deep ex-
ponential families, we chain exponential families to-
gether in a hierarchy, where the draw from one layer
controls the natural parameters of the next.

For each data point xn, the model has L lay-
ers of hidden variables fzn;1; :::; zn;Lg, where each
zn;` D fzn;`;1; :::; zn;`;K`

g. We assume that zn;`;k
is a scalar, but the model generalizes beyond this.
Shared across data, the model has L � 1 layers of
weights fW1; :::WL�1g, where each W` is a collec-
tion of K` vectors, each one with dimension K`C1:
W` D fw`;1; :::w`;K`

g. We assume the weights have
a prior distribution p.W`/.

For simplicity, we omit the data index n and describe
the distribution of a single data point x. First, the
top layer of latent variables are drawn given a hyper-
parameter �

p.zL;k/ D expfamL.zL;k ; �/;

where the notation expfam.x; �/ denotes x is drawn
from an exponential family with natural parameter �.1

Next, each latent variable is drawn conditional on the
previous layer,

p.z`;k j z`C1;w`;k/ D expfam`.z`;k ; g`.z
>
`C1w`;k//:

(1)
The function g` maps the inner product to the natural
parameter. Similar to the literature on generalized
linear models [26], we call it the link function. Figure 2
depicts this conditional structure in a graphical model.

Confirm that the dimensions work: z`;k is a scalar;
z`C1 is a K`C1 vector and w`;k is a column from a
K`C1 � K` dimension matrix. Note each of the K`
variables in layer ` depends on all the variables of the
higher layer. This gives the model the flavor of a neural
network. The subscript ` on expfam indicates the
type of exponential family can change across layers.
This hierarchy of latent variables defines the DEF.

1We are loose with the base measure h as it can be
absorbed into the dominating measure.
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Figure 1: A fraction of the three layer topic hierarchy on 166K The New York Times articles. The top words
are shown for each topic. The arrows represent hierarchical groupings.
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Figure 2: The deep exponential family with V obser-
vations.

DEFs can also be understood as random effects mod-
els [11] where the variables are controlled by the prod-
uct of a weight vector and a set of latent covariates.

Likelihood. The data are drawn conditioned on the
lowest layer of the DEF, p.xn;i j zn;1/. Separating the
likelihood from the DEF will allow us to compose and
embed DEFs in other models. Later, we provide an
example where we combine two DEFs to form a model
for pairwise data.

In this paper we focus on count data, thus we use the

Poisson distribution as the observation likelihood. The
Poisson distribution with mean � is

p.xn;i D x/ D e���
x

xŠ
:

If we let xn;i be the count of type i associated with
observation n, then xn;i ’s distribution is

p.xn;i j z1;W0/ D Poisson.z>n;1w0;i /;

The observation weights W0 is matrix where each en-
try is gamma distributed. We will discuss gamma dis-
tribution further in the next section.

Returning to the example from the introduction of
modeling documents, the xn are a vector of term
counts. The observation weights W0 put positive mass
on groups of terms and thus form “topics.” Similarly,
the weights on the second layer represents “super top-
ics,” and the weights on the third layer represent “con-
cepts.” The distribution p.zn;1 j zn;2;W1/ represents
the distribution of “topics” given the “super topics”
of a document. Figure 1 depicts the compositional
and sharing semantics of DEFs.

The link function. Here we explore some of the
connections between neural networks and deep expo-
nential families. As we discussed, the latent variable
layers in deep exponential families are connected to-
gether via a link function, g`. This link function spec-
ifies the natural parameters for z`;k from z>

`C1w`;k .

Using properties of exponential families we can deter-
mine how the link function alters the distribution of
the `th layer. The moments of the sufficient statistics
of an exponential family are given by the gradient of
the log-normalizer r�a.�/. These moments completely
specify the exponential family [7]. Thus in DEFs, the
mean of the next layer is controlled by the link func-
tion g` via the gradient of the log-normalizer,

EŒT .z`;k/� D r�a.gl .z>`C1w`;k//: (2)
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Consider the case of the identity link function, where
gl .x/ D x. In this case, the expectation of z` in deep
exponential families is a linear function of the weights
and previous layer transformed by the gradient of the
log-normalizer. This transformation of the expectation
is one source of non-linearity in DEFs. It parallels the
non-linearities used in neural networks.

To be clear, here is a representation of how
the values and weights of one layer control
the expected sufficient statistics at the next:

zn,`+1

w`,k

g`
ra

E[T (zn,`,k)]

For example, in the sigmoid belief network [25], we will
see that the identity link function recovers the sigmoid
transformation used in neural networks.

2 Examples

To illustrate the potential of deep exponential families,
we present three examples: the sparse gamma DEF,
the sigmoid belief network, and a latent Poisson DEF.

Sparse gamma DEF. The sparse gamma DEF is
a DEF with gamma distributed layers. The gamma
distribution is an exponential family distribution with
support over the positive reals. The probability den-
sity of the gamma distribution with natural parame-
ters, ˛ and ˇ, is

p.z/ D z�1 exp.˛ log.z/ � ˇz � log� .˛/ � ˛ log.ˇ//:

where � is the gamma function. The expectation of
the gamma distribution is EŒz� D ˛ˇ�1.
Through the link function in DEFs, the inner product
of the previous layer and the weights control the nat-
ural parameters of the next layer. For sparse gamma
models, we let control the expected activation of the
next layer, while the shape at each layer remains fixed
for each layer at ˛`. From the expectation of the
gamma distribution, these conditions mean the link
function can be given as

g˛ D ˛`; gˇ D
˛`

z>
`C1w`;k

:

As the expectation of gamma variables needs to be
positive, we let the weight matrices be gamma dis-
tributed as well.

We set the shape parameters for the weights and layers
to be less than 1. When the shape is less than 1,
gamma distributions put most of their mass near zero;
we call this type of distribution sparse gamma. This
type of distribution is akin to a soft spike-slab prior

[16]. Spike and slab priors have shown to perform well
on feature selection and unsupervised feature discovery
[12, 14].

The sparse gamma distribution differs from distribu-
tions such as the normal and Poisson in how the prob-
ability mass moves given a change in the mean. For ex-
ample, when the expected value is high, draws from the
Poisson distribution are likely to be much larger than
zero, while in the sparse gamma distribution draws
will either be close to zero or very large. This is like
growing the slab of our soft spike and slab prior. We
visually demonstrate this in the appendix.

We estimate the posterior on this DEF using one to
three layers for two large text copora: Science and
The New York Times (NYT). We defer the discussion
of the details of the corpora to Section 5. The topic
hierarchy shown earlier in Figure 1 is from a three
layer sparse gamma DEF. In the appendix we present
a portion of the Science hierarchy.

Sigmoid belief network. The sigmoid belief net-
work [23, 25] is a widely used deep latent variable
model. It consists of latent Bernoulli layers where the
mean of a feature at layer ` is given by a linear com-
bination of the features at layer `C1 with the weights
passed through the sigmoid function.

This is a special case of a deep exponential family with
Bernoulli latent layers and the identity link function.
To see this, use Eq. 1 to form the Bernoulli conditional
of a hidden layer,

p.z`;k j z`C1;w`;k/
D exp.z>`C1w`;kz`;k � log.1C exp.z>`C1w`;k///

where z`;k 2 f0; 1g.
Using Eq. 2, the expectation of z`;k is the derivative
of the log-normalizer of the Bernoulli. This derivative
is the logistic function. Thus, a DEF with Bernoulli
conditionals and identity link function recovers the sig-
moid belief network. The weights are real valued, so
we set p.W`/ to be a factorized normal distribution.

In the sigmoid belief network, we allow for the natural
parameters to have intercepts. The intercepts provide
a baseline activation for each feature independent of
the shared weights.

Poisson DEF. The Poisson distribution is a distri-
bution over counts that models the number of events
occurring in an interval. Its exponential family form
with parameter � is

p.z/ D zŠ�1 exp.�z � exp.�//;

where the mean of this distribution is e�.
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We define the Poisson deep exponential family as a
DEF with latent Poisson levels and log-link function. 2

This corresponds to the following conditional distribu-
tion for the layers

p.z`;k j z`C1;w`;k/
D .z`;kŠ/�1 exp.log.z>`C1w`;k/z`;k � z>`C1w`;k/:

In the case of document modeling, the value of z2;k
represents how many times “super topic” k is repre-
sented in this example.

Using the link function property of DEFs described
earlier, the mean activation at the next layer is given
by the gradient of the log-normalizer

EŒzlk � D r�a.log.z>`C1w`;k//:

For the Poisson, a is the exponential function. Thus its
derivative is the exponential function. This means the
mean of the next layer is equal to a linear combination
of the weights of the previous layer. Our choice of link
function requires positivity on the weights, so we let
p.W`/ be a factorized gamma distribution.

We also consider Poisson DEFs with real valued
weights to allow negative relations between lower lay-
ers and higher layers. We set the prior on the weights
to be Gaussian in this case. We use log-softmax
� D log.log.1C exp.�zT

`C1w`;k/// as the link function,
where the function inside the first log is the softmax
function. It preserves approximate linear relations be-
tween mean activation and the inner product zT

`C1w`;k
when it is large while allowing for the inner product
to take negative values as well.

Similar to the sigmoid belief network, we allow the
natural parameter to have an intercept. This type of
Poisson DEF can be seen as an extension of the sig-
moid belief network, where each observation expresses
an integer count number of a feature rather than a bi-
nary feature. Table 1 summarizes the DEFs we have
described and will study in our experiments.

3 Related Work

Graphical models and neural nets have a long and dis-
tinguished history. A full review is outside of the scope
of this article, however we highlight some key results as
they relate to DEFs. More generally, deep exponential
families fall into the broad class of stochastic feed for-
ward belief networks [25], but Neal [25] focuses mainly
on one example in this class, the sigmoid belief net-
work, which is a binary latent variable model. Several
existing stochastic feed forward networks are DEFs,

2We add an intercept to ensure positivity of the rate.

such as latent Gaussian models [28] and the sigmoid
belief network with layerwise dependencies [23].

Undirected graphical models have also been used in in-
ferring compositional hierarchies. Salakhutdinov and
Hinton [30] propose deep probabilistic models based on
Restricted Boltzmann Machines (RBMs) [36]. RBMs
are a two layer undirected probabilistic model with one
layer of latent variables and one layer of observations
tied together by a weight matrix. Directed models
such as DEFs have the property of explaining away,
where independent latent variables under the prior be-
come dependent conditioned on the observations. This
property makes inference harder than in RBMs, but
forces a more parsimonious representation where sim-
ilar features compete to explain the data rather than
work in tandem [12, 1].

RBMs have been extended to general exponential fam-
ily conditionals in a model called exponential family
harmoniums (EFH) [39]. A certain infinite DEF with
tied weights is equivalent to an EFH [15], but as our
weights are not tied, deep exponential families repre-
sent a broader class of models than exponential family
harmoniums (and RBMs).

The literature of latent variable models relates to
DEFs through hierarchical models and Bayesian fac-
tor analysis. Latent tree hierarchies have been con-
structed with specific distributions (Dirchlet) [21],
while Bayesian factor analysis methods such as expo-
nential family PCA [24] and multinomial PCA [8] can
be seen as a single layer deep exponential family.

4 Inference

The central computational problem for working with
DEFs is posterior inference. The intractability of the
partition function means posterior computations re-
quire approximations. Past work on sigmoid belief
networks has proposed doing greedy layer-wise learn-
ing (for a specific kind of network) [15]. Here, instead,
we develop variational methods [35] that are applica-
ble to general DEFs.

Variational inference [18] casts the posterior inference
problem as an optimization problem. Variational al-
gorithms seek to minimize the KL divergence to the
posterior from an approximating distribution q. This
is equivalent to maximizing the following [2],

L.q/ D Eq.z;W /Œlogp.x; z;W / � log q.z;W /�;

where z denotes all latent variables associated with the
observations and W all latent variables shared across
observations. This objective function is called the Ev-
idence Lower BOund (ELBO) because it is a lower
bound on logp.x/.
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z-Dist z`C1 W-dist w`;k g` EŒT .z`;k/�

Gamma R
K`C1

C Gamma R
K`C1

C [constant; inverse] Œz>
`C1w`;k ; 	.˛`/ � log.˛/C log.z>

`C1w`;k/�
Bernoulli f0; 1gK`C1 Normal RK`C1 identity �.z>

`C1w`;k/
Poisson NK`C1 Gamma R

K`C1

C log z>
`C1w`;k

Poisson NK`C1 Normal RK`C1 log-softmax log.1C exp.z>
`C1w`;k//

Table 1: A summary of all the DEFs we present in terms of their layer distributions, weight distributions, and
link functions.

For the approximating distribution, q, we use the
mean field variational family. In the mean field ap-
proximating family, the distribution over the latent
variables factorizes. Let N be the number of obser-
vations, then the variational family is

q.z;W / D q.W0/

LY
`D1

q.W`/

NY
nD1

q.zn;`/;

where q.zn;`/ and q.W`/ are fully factorized. Each
component in q.zn;`/ is

q.zn;`;k/ D expfam`.zn;`;k ; �n;`;k
/;

where the exponential family is the same one as the
model distribution p. Similarly, we choose q.W / to be
in the same family as p.W / with parameters �.

To maximize the ELBO, we need to compute expecta-
tions under the approximation q. These expectations
for general DEFs will not have a simple analytic form.
Thus we use more recent “black box” variational in-
ference techniques that step around computing this
expectation [40, 34, 27].

Black box variational inference methods use stochas-
tic optimization[29] to avoid the analytic intractability
of computing the objective function. Stochastic opti-
mization works by following noisy unbiased gradients.
In black box variational inference [27], the gradient of
the ELBO with respect to the parameters of a latent
variable can be written as an expectation with respect
to the variational approximation.

More formally, let pn;`;k.x; z;W / be the terms in the
log-joint that contains zn;`;k (its Markov blanket), then
the gradient for the approximation of zn;`;k is

r�n;l;k
L D EqŒr�n;`;k

log q.zn;`;k/

.logpn;`;k.x; z;W / � log q.zn;`;k//�:

We compute Monte Carlo estimates of this gradient
by averaging the evaluation of the gradient at several
samples. To compute the Monte Carlo estimate of the
gradient, we need to be able to sample from the ap-
proximation to evaluate the Markov blanket for each
latent variable, the approximating distribution, and

the gradient of the log of the approximating distribu-
tion (score function). We detail the score functions in
the appendix. From this equation, we can see that the
primary cost in computing the gradients is in evaluat-
ing the likelihood and score function on a sample. To
speed up our algorithm, we parallelize the likelihood
computation across samples.

The Markov blanket for a latent variable in the first
layer of a DEF is

logpn;1;k.x; z;W / D logp.zn;1;kjzn;2;w1;k/
C logp.xnjzn;1;W0/: (3)

The Markov blank for a latent variable in the interme-
diate layer is

logpn;`;k.x; z;W / D logp.zn;`;kjzn;`C1;w`;k/
C logp.zn;`�1jzn;`;W`�1/: (4)

The Markov blanket for the top layer is

logpn;L;k.x; z;W / D logp.zn;L;k/

C logp.zn;L�1jzn;L;WL�1/: (5)

The gradients for W can be written similarly.

Stochastic optimization requires a learning rate to
scale the noisy gradients before applying them. We
use RMSProp which scales the gradient by the square
root of the online average of the squared gradient.3

RMSProp captures the varying length scales and noise
through the sum of squares term used to normalize the
gradient step. We present a sketch of the algorithm in
Alg. 1, and present the full algorithm in the appendix.

5 Experiments

We have introduced DEFs and detailed a procedure
for posterior inference in DEFs. We now provide an
extensive evaluation of DEFs. We report predictive
results from 28 different DEF instances where we ex-
plore the number of layers (1, 2 or 3), the latent vari-
able distributions (gamma, Poisson, Bernoulli) and the
weight distributions (normal, gamma) using a Poisson
observational model. Furthermore, we instantiate and

3
www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
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Algorithm 1 BBVI for DEFs

Input: data X , model p, L layers.
Initialize �; � randomly, t D 1.
repeat

Sample a datapoint x
for s = 1 to S do
zx Œs�;W Œs� � q
pŒs� D logp.zx Œs�;W Œs�; x/
qŒs� D log q.zx Œs�;W Œs�/
gŒs� D r log q.zx Œs�;W Œs�/

end for
Compute gradient using BBVI
Update variational parameters for z and W

until change in validation likelihood is small

report results using a combination of two DEFs for
pairwise data.

Our results:

� Show improvements over strong baselines for both
topic modeling and collaborative filtering on a to-
tal of four corpora.
� Lead us to conclude that deeper DEFs and sparse

gamma DEFs display the strongest performance
overall.

5.1 Text Modeling

We consider two large text corpora Science and The
New York Times. Science consists of 133K documents
and 5.9K terms. The New York Times consists of
166K documents and 8K terms.

Baselines. As a baseline we consider Latent Dirich-
let Allocation [5] a popular topic model, and state-
of-the-art DocNADE [19]. DocNADE estimates the
probability of a given word in a document given the
previously observed words in that document. In Doc-
NADE, the connections between each observation and
the latent variables used to generate the observations
are shared.

We note that the one layer sparse gamma DEF is
equivalent to Poisson matrix factorization [9, 13] but
our model is fully Bayesian and our variational distri-
bution is collapsed.

Evaluation. We compute perplexity on a held out
set of 1,000 documents. Held out perplexity is given
by

exp

��Pd2docs
P
w2d logp.w j# held out in d/

Nheld out words

�
Conditional on the total number of held out words,
the distribution of the held out words becomes multi-

Model W NYT Science
LDA [6] 2717 1711

DocNADE [19] 2496 1725
Sparse Gamma 100 ; 2525 1652

Sparse Gamma 100-30 � 2303 1539
Sparse Gamma 100-30-15 � 2251 1542

Sigmoid 100 ; 2343 1633
Sigmoid 100-30 N 2653 1665

Sigmoid 100-30-15 N 2507 1653
Poisson 100 ; 2590 1620

Poisson 100-30 N 2423 1560
Poisson 100-30-15 N 2416 1576

Poisson log-link 100-30 � 2288 1523
Poisson log-link 100-30-15 � 2366 1545

Table 2: Perplexity on a held out collection of 1K Sci-
ence and NYT documents. Lower values are better.
The DEF W column indicates the type of prior distri-
bution over the DEF weights, � for the gamma prior
and N for normal (recall that one layer DEFs consist
only of a layer of latent variables, thus we represent
their prior with the ;).

nomial. The mean of the conditional multinomial is
given by the normalized Poisson rate in each docu-
ment. We set the rates to the expected value under the
variational distribution. Additionally, we let all meth-
ods see ten percent of the words in each document; the
other ninety percent form the held out set. This is sim-
ilar to the document completion evaluation metric [38]
except we query the test words independently. We use
the observed ten percent to compute the variational
distribution for the document specific latent variables,
the DEF for the document, while keeping the approx-
imation on the shared weights fixed. In DocNADE,
this corresponds to always seeing a fixed set of words
first, then evaluating each new word given the first ten
percent of the document.

Held out perplexity differs from perplexity computed
from the predictive distribution p.x� j x/. The former
can be a more difficult problem as we only ever con-
dition on a fraction of the document. Additionally
computing perplexity from the predictive distribution
requires computationally demanding sampling proce-
dures which for most models like LDA only allow test-
ing of only a small number (50) of documents [38, 33].
In contrast our held-out test metric can be quickly
computed for 1,000 test documents.

Architectures and hyperparameters. We build
one, two and three layer hierarchies of the sparse
gamma DEF, sigmoid belief network, Poisson DEF,
and log-link Poisson DEF. The sizes of the layers are
100, 30, and 15, respectively. We note that while dif-
ferent DEFs may have better predictive performance
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Model Netflix Perplexity Netflix NDCG ArXiv Perplexity ArXiv NDCG
Gaussian MF [32] – 0.008 – 0.013

1 layer Double DEF 2319 0.031 2138 0.049
2 layer Double DEF 2299 0.022 1893 0.050
3 layer Double DEF 2296 0.037 1940 0.053

Table 3: A comparison of a matrix factorization methods on Netflix and the ArXiv. We find that the Double
DEFs outperform the shallow ones on perplexity. We also find that the NDCG of around 100 low-activity users
(users with less than 5 and 10 observations in the observed 10% of the held-out set respectively for Netflix and
ArXiv). We use Vowpal Wabbit’s MF implementation which does not readily provide held-out likelihoods and
thus we do not report the perplexity associated with MF.

at different sizes, we consider DEFs of a fixed size as
we also seek a compact explorable representation of
our corpus. One hundred topics fall into the range
of topics searched in the topic modeling literature [4].
We detail the hyperparameters in the appendix.

We observe two phases to DEF convergence; it con-
verges quickly to a good held-out perplexity (around
2,000 iterations) and then slowly improves until final
convergence (around 10,000 iterations). Each iteration
takes approximately 15 seconds on a modern 32-core
machine (from Amazon’s AWS).

Results. Table 2 summarizes the predictive results
on both corpora. We note that DEFs outperform the
baselines on both datasets. Furthermore moving be-
yond one layer models generally improves performance
as expected. The table also reveals that stacking lay-
ers of gamma latent variables always leads to simi-
lar or better performance. Finally, as shown by the
Poisson DEFs with different link functions, we find
gamma-distributed weights to outperform normally-
distributed weights. Somewhat related, we find sig-
moid DEFs (with normal weights) to be more difficult
to train and deeper version perform poorly.

5.2 Matrix Factorization

Previously, we constructed models out of a single DEF,
but DEFs can be embedded and composed in more
complex models. We now present double DEF, a fac-
torization model for pairwise data where both the rows
and columns are determined by DEFs. The graphical
model of the double DEF corresponds to replacing W0

in Figure 2 with another DEF.

We focus on factorization of counts (ratings, clicks).
The observed data are generated with a Poisson.
The observation likelihood for this double DEF is
p.xn;i j zcn;1; zri;1/ D Poisson.zcn;1

>zri;1/, where zcn;1 is
the lowest layer of a DEF for the nth observation and
zri;1 is the lowest layer of a DEF for the ith item. The
double DEF has hierarchies on both users and items.

We infer double DEFs on Netflix movie ratings and

click data from the ArXiv (www.arXiv.org) which in-
dicates how many times a user clicked on a paper.
Our Netflix collection consists of 50K users and 17.7K
movies. The movie ratings range from zero to five
stars, where zero means the movie was unrated by
the user. The ArXiv collection consists of 18K users
and 20K documents. We fit a one, two, and three
layer double DEF where the sizes of the row DEF
match the sizes of the column DEF at each layer.
The sizes of the layers are 100, 30, and 15. We
compare double DEFs to l2-regularized (Gaussian)
matrix factorization (MF) [32]. We re-use the test-
ing procedure introduced in the previous section (this
is referred to as strong-generalization in the recom-
mendation literature [22]) where the held-out test set
contains one thousand users. For performance and
computational reasons we subsample zero-observations
for MF as is standard [13]. Further, we also report
the commonly-used multi-level ranking measure (un-
truncated) NDCG [17] for all methods.

Table 3 shows that two-layer DEFs improve perfor-
mance over the shallow DEF and that all DEFs out-
perform Gaussian MF. On perplexity the three layer
model performs similarly on Netflix and slightly worse
on the ArXiv. The table further highlights that
when comparing ranking performance, the advantage
of deeper models is especially clear on low-activity
users (NDCG across all test users is comparable within
the three DEFs architectures and is not reported here).
This data regime is of particular importance for practi-
cal recommender systems. We postulate that this due
to the hierarchy in deeper models acting as a more
structured prior compared to single-layer models.

6 Discussion

We develop deep exponential families as a way to de-
scribe hierarchical relationships of latent variables to
capture compositional semantics of data. We present
several instantiations of deep exponential families and
achieve improved predictive power and interpretable
semantic structures for both problems in text model-
ing and collaborative filtering.
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