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ABSTRACT
Matrix factorization (MF) models and their extensions are
standard in modern recommender systems. MF models de-
compose the observed user-item interaction matrix into user
and item latent factors. In this paper, we propose a co-
factorization model, CoFactor, which jointly decomposes the
user-item interaction matrix and the item-item co-occurrence
matrix with shared item latent factors. For each pair of items,
the co-occurrence matrix encodes the number of users that
have consumed both items. CoFactor is inspired by the recent
success of word embedding models (e.g., word2vec) which
can be interpreted as factorizing the word co-occurrence ma-
trix. We show that this model significantly improves the
performance over MF models on several datasets with little
additional computational overhead. We provide qualitative
results that explain how CoFactor improves the quality of
the inferred factors and characterize the circumstances where
it provides the most significant improvements.

Keywords
Collaborative filtering; matrix factorization; item embedding;
implicit feedback.

1. INTRODUCTION
Recommender systems model users through their prefer-

ences for items. User preferences are often encoded as sets of
user-item-preference triplets. For instance “user A gave item
B a 4-star rating” or in the case of implicit data, which we
focus on, “user A clicked on item B”. The task of interest is
to predict missing user-item preferences given the observed
triplets. Predicted preferences can then be used downstream
to fuel recommendations.
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The preference triplets can be seen as the sparse repre-
sentation of a user-item preference matrix (or click matrix).
Predicting preferences can be seen as filling in the missing
entries of this matrix. Models such as matrix factorization—
which decompose the preference matrix into user and item
factors [10, 20]—are standard for preference prediction: their
performance is high [10], maximum a posteriori inference
can be done efficiently with closed-form updates [9], and they
can be composed to incorporate additional side information
(e.g., [1, 4, 13, 23, 26]).

Encoding user preferences in a matrix and modeling it with
matrix factorization is a particular modeling assumption. In
this paper we explore an alternative which models item co-
occurrence across users. We posit that pairs of items which
are often consumed in tandem by different users are similar.
This is similar to modeling a set of documents (users) as a
bag of co-occurring words (items). In that context frequently
co-occurring words are likely to be about the same topic. For
example, in a corpus of scientific papers “planet” and “Pluto”
are likely to frequently co-occur. A similar idea has been
explored in recommendations for next-item prediction [24].
Item co-occurrence information is, in principle, available to
matrix factorization, but it may not be easy to infer from
the click matrix: matrix factorization models are bi-linear
with limited modeling capacity.

We propose a co-factorization model, CoFactor, which si-
multaneously factorizes both the click matrix and the item co-
occurrence matrix. The factorization of item co-occurrence
is inspired by the recent models for learning word embedding
from sequences of words [14, 11]. We learn item embedding
using the sets of items each user has consumed (or rated),
and the co-occurrence counts of these items across users in
the data.

We show that learning CoFactor from data can be done
efficiently with coordinate updates. We use a sequence of
closed-form updates which scale in the number of observed
preference triplets. CoFactor outperforms matrix factoriza-
tion [9] across datasets of user clicking on scientific articles,
rating movies, and listening to music. We also provide ex-
ploratory results to better understand the effectiveness of
our method. This shows that we outperform standard ma-
trix factorization due to the ability of our model to exploit
co-occurrence patterns for rare items (items not consumed
by many users).

http://dx.doi.org/10.1145/2959100.2959182


2. THE COFACTOR MODEL
We first introduce the two building blocks of the CoFactor

model: matrix factorization (MF) and item embedding. Then
we describe CoFactor and how to compute with it.

Matrix factorization. MF is standard in collaborative
filtering [10]. Given the sparse user-item interaction matrix

Y 2 RU�I from U users and I items, MF decomposes it into
the product of user and item latent factors denoted �u 2 RK

(u D 1; : : : ; U ) and ˇi 2 RK (i D 1; : : : ; I /, respectively. Here
we focus on implicit feedback data [9, 16]. However, this is not
a limiting aspect of CoFactor—it can be readily extended
to the explicit feedback setting. Matrix factorization for
implicit feedback model [9] optimizes the following objective:
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The scaling parameter cui is a hyperparameter that is nor-
mally set to be cyD1 > cyD0. It can be tuned to balance
the unobserved ratings (y D 0) which far outnumber the
observed ratings (y D 1) in most click data. The regular-
ization parameters �� and �ˇ are hyperparameters which
are selected from validation data. The (global) optimum
of Lmf can be interpreted as the maximum a posteriori es-
timate of the probabilistic Gaussian matrix factorization
model [20].

Word embedding. Word embedding models (e.g.,
word2vec [14]) have gained success in many natural language
processing tasks. Given a sequence of words, these models
embed each word into a low-dimensional continuous space
(relative to the vocabulary size). In the skip-gram model,
the objective is to predict context words—surrounding words
within a fixed window—given the current word. Stochastic
gradient descent (SGD) with negative sampling is normally
used to train a word embedding model (see Mikolov et al.
[14]).

Levy and Goldberg [11] show an equivalence between skip-
gram word2vec trained with negative sampling value of k
and implicit factorizing the pointwise mutual information
(PMI) matrix shifted by log k. PMI between a word i and
its context word j is defined as:

PMI.i; j / D log
P.i; j /

P.i/P.j /
:

Empirically, it is estimated as:

PMI.i; j / D log
#.i; j / �D

#.i/ �#.j /
: (2)

Here #.i; j / is the number of times word j appears in the
context of word i . #.i/ D

P
j #.i; j / and #.j / D

P
i #.i; j /.

D is the total number of word-context pairs.
After making the connection between word2vec and im-

plicit matrix factorization, Levy and Goldberg [11] further
propose to perform word embedding by spectral dimension-
ality reduction (e.g., singular value decomposition) on the
(sparse) shifted positive PMI (SPPMI) matrix:

SPPMI.i; j / D max
˚
PMI.i; j / � log k; 0

	
This is attractive because it does not require tuning an
optimization procedure.1 We will follow the similar approach
in CoFactor.

1Under this setting, k becomes a hyperparameter that con-

Item embedding. Users consume items sequentially.
Sequences of items are analogous to sequences of words, so
we can use word embedding models to learn item embeddings
(e.g., Guàrdia-Sebaoun et al. [5]).

Define M 2 RI�J
C

as the co-occurrence SPPMI matrix

for item consumptions.2 We can obtain item embedding
by factorizing M . In this paper, we do not assume that
the order (or timestamp) of each user’s item consumption
is available. For a consumed item i from a particular user,
we define its context j as all other items in this user’s click
history. We use Equation (2) to compute mij with the
empirical estimates of PMI.i; j /. In this estimate, #.i; j /
corresponds to the number of users that consumed both item
i and j . By defining the context in this way, CoFactor does
not require any additional information other than what is
already available in the standard MF model. This departs, at
least in spirit, from the traditional word embedding models
and Guàrdia-Sebaoun et al. [5], where context is defined as
neighbors within a fixed window. Those methods require the
order within a sequence.

Our definition of context is a design choice and CoFactor
can work with any type of co-occurrence SPPMI matrix.
Context could be data- and problem-specific. For example, if
we did know the order of item consumption, we could break
it down into shorter segments of sequences.

The CoFactor model. Both MF and item embedding
models infer latent item representations. The difference
is that the item representations inferred from MF encode
users’ preferences for items, while the item embeddings must
explain item co-occurrence patterns. We propose learning
these representations jointly:
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This is the CoFactor model objective. The item factor (or
item embedding) ˇi is shared by both the MF and item
embedding parts of the objective. We include context embed-
ding j as additional model parameter. We do not regularize
item and context biases wi and cj . Notice that the item
embeddings ˇi must account for both user-item interactions
and item-item co-occurrence. We can also interpret this
objective as regularizing the traditional MF objective Lmf

(Equation (1)) with item embeddings learned by factorizing
the item co-occurrence matrix.3

The scaling parameter cui in the CoFactor objective en-
forces a balance between the unobserved zeros and observed
ones in the click matrix. Additionally, its relative scale will
balance the MF and item embedding parts of the model. Set-
ting its relative scale smaller will impose more regularization

trols the sparsity of the SPPMI matrix, as opposed to the
original skip-gram word2vec model [14] where k explicitly
controls the number of negative examples sampled in SGD.
2For generality, we use i D 1; : : : ; I and j D 1; : : : ; J to index
an item and its context. In experiments, the set of items and
the set of context items are the same.
3This model does not have a clear generative interpretation
as the regular MF model, since the user-item interaction
matrix Y deterministically defines the co-occurrence SPPMI
matrix M .



from the co-occurrence matrix and vice versa. This scale is
an important hyperparameter. In our empirical study, we
will select it based on recommendation performance on a
validation set.

2.1 Inference
We take the gradient of CoFactor objective Lco (Equa-

tion (3)) with respect to the model parameters f�1WU ; ˇ1WI ; 1WJ ;
w1WI ; c1WJ g and set it to zero. This gives the following closed-
form coordinate updates:
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These updates are very similar to the alternating least

squares (ALS) of Hu et al. [9]. The main difference is in
how we update ˇi in CoFactor. We can view each update of
ALS as a weighted ridge regression. Therefore, the update
for ˇi is collectively performing ridge regression with two
sources of data: the click data yui with covariates �u, and
the co-occurrence data mij with covariates j . Iteratively
performing these updates reaches a stationary point of the
model objective Lco.

Complexity We set the scaling parameter cui as cui D
`.1C˛ �yui / where ` is the relative scale. This is similar to Hu
et al. [9] and we use the same pre-computing trick to speed
up the computation for updating �u and ˇi . For the item
embeddings, the complexity scales linearly with the number
of non-zero entires in the SPPMI matrix, which is usually
very sparse. Furthermore, all the coordinate updates are
embarrassingly parallelizable across users and items. Con-
structing the SPPMI matrix can be time-consuming as it
scales quadratically with the number of items consumed by
each user. Fortunately, the SPPMI matrix only needs to be
constructed once and it is parallelizable across users. Our
Python implementation of the CoFactor model scales easily
to large datasets.4

3. RELATED WORK
The user and item factors learned through matrix fac-

torization are usually regularized with their `2-norm. It is
also standard to further regularize the factors with side in-
formation [1, 2, 7, 12], which comprises user, item, and/or
user-item covariates (e.g., item metadata or user demograph-
ics which can be indicative of user preferences). We can
interpret CoFactor as regularizing the learned item factors

4https://github.com/dawenl/cofactor

beyond simple `2-norm. The distinguishing feature of Co-
Factor is that the regularization comes from a deterministic
non-linear transformation of the original user-item preference
data instead of additional data.

This kind of regularization (either through incorporation of
side information or re-encoding the input as in CoFactor) can
alternatively be viewed as enforcing more complex structure
in the prior of the latent factors. For example, Ranganath
et al. [17] find that imposing a deep exponential family prior
on the matrix factorization model, which implicitly conditions
on consumption counts in a non-linear fashion, can be helpful
in reducing the effect of extremely popular (or extremely
unpopular) items on held-out recommendation tasks. This is
analogous to our findings with the CoFactor model.

Collective matrix factorization [25] explores co-factorizing
multiple matrices in the context of relational learning. For
example, a database with users, movies, and genres contains
two relational matrices: one representing users’ ratings of
movies, and the other representing the genres each movie
belongs to. Collective matrix factorization jointly factorizes
these two matrices with shared movie factors to leverage the
additional genre information for better preference prediction.
We can consider CoFactor as a special case of collective
matrix factorization with the user-item preference relation
deterministically defines the item-item co-occurrence relation.
Our contribution lies in the construction of the item-item
relation, which is motivated by the recent development of
word embedding models [14, 11].

Guàrdia-Sebaoun et al. [5] observe that user trajectories
over items can be modeled much like sequences of words. In
detail, they use a word embedding model [14] to learn item
embeddings. User embeddings are then inferred as to predict
the next item in the trajectory (given the previous item).
User and item embeddings are finally used as covariates
in a subsequent regression model of user-item preferences.
Learning item embeddings from user trajectories is similar to
our work. The difference is that we treat the items consumed
by each user as exchangeable (i.e., we do not assume that
the trajectories are given, rather we assume that we are
given an unordered set of items for each user). Additionally
we show that jointly learning all parameters yields higher
performance.

In item-based collaborative filtering [22], an item-item
similarity matrix is built from user consumption data, much
like the SPPMI matrix in CoFactor. The difference is that
in CoFactor we only use the SPPMI matrix to regularize
the item factors, while in item-based collaborative filter-
ing we directly use the similarity matrix to predict missing
preferences. Previous work shows that the performance of
item-based collaborative filtering is highly sensitive to the
choice of similarity metric and data normalization [8]. It
would be interesting to consider SPPMI matrix as similarity
matrix in item-based collaborative filtering.

4. EMPIRICAL STUDY
We study the performance of CoFactor both quantitatively

and qualitatively. We provide insights into its performance
by exploring the resulting fits. We highlight the following
results:
� On three datasets, the CoFactor model performs signif-

icantly better than the state-of-the-art weighted matrix
factorization (WMF) model [9].
� We investigate where CoFactor improves performance

https://github.com/dawenl/cofactor


ArXiv ML-20M TasteProfile

# of users 25,057 111,148 221,830
# of items 63,003 11,711 22,781

# interactions 1.8M 8.2M 14.0M
% interactions 0.12% 0.63% 0.29%

with timestamps yes yes no

Table 1: Attributes of datasets after preprocessing. Inter-
actions are non-zero entries (listening counts, watches, and
clicks). % interactions refers to the density of the user-item
interaction matrix (Y ). For datasets with timestamps, we
ensure there is no overlap in time between the training and
test sets.

to understand why jointly factoring both the user click
matrix and item co-occurrence matrix boosts certain
recommendations.
� We demonstrate the importance of joint learning by

comparing to a two-stage model that first does word2vec
for item embeddings and then fits a MF.

4.1 Datasets
We study three medium- to large-scale user-item consump-

tion datasets from various domains: 1) scientific articles
data from the arXiv5; 2) users’ movie viewing data from
MovieLens [6]; 3) the taste profile subset of the million song
dataset [3]. In more details:

ArXiv: User-paper clicks derived from log data collected
in the first half of 2012 from the arXiv pre-print server.
The data is binarized (multiple clicks by the same user on
the same paper are considered to be a single click). We
preprocess the data to ensure that all users and items have
a minimum of ten clicks.

MovieLens-20M (ML-20M): User-movie ratings col-
lected from a movie recommendation service. We binarize
explicit data by keeping the ratings of four or higher and
interpret them as implicit feedback. We only keep users who
have watched at least five movies.

TasteProfile: User-song play counts collected by the
music intelligence company Echo Nest6. We binarize play
counts and interpret them as implicit preference data. We
keep users with at least 20 songs in their listening history
and songs that are listened to by at least 50 users.

ArXiv and Movielens are time stamped. To create the
training/validation/test splits for these data, we order all
the user-item interactions by time and take the first 80%
as training data, from which we randomly selected 10% as
the validation set. For the remaining 20% of the data, we
only keep the users and items that appear in the training
and validation sets to obtain the test set. For TasteProfile,
which is not timestamped, we randomly split the observed
user-item interactions into training/validation/test sets with
70/10/20 proportions. Table 1 summarizes the dimensions
of all the datasets after preprocessing.

4.2 Metrics
We use ranking-based metrics: Recall@M , truncated nor-

malized discounted cumulative gain (NDCG@M ), and mean
average precision (MAP@M ). For each user, all the metrics

5http://arxiv.org
6http://the.echonest.com

compare the predicted rank of (unobserved) items with their
true rank. While Recall@M considers all items ranked within
the first M to be equivalent, NDCG@M and MAP@M use
a monotonically increasing discount to emphasize the impor-
tance of higher ranks versus lower ones. Formally, define
� as a permutation over all the items, 1f�g is the indicator
function, and u.�.i// returns 1 if user u has consumed item
�.i/. CoFactor predicts ranking � for each user by sorting
the predicted preference �>u ˇi for i D 1; : : : ; I .

Recall@M for user u is

Recall@M.u; �/ WD

MX
iD1

1fu.�.i// D 1g

min.M;
PI
i 0 1fu.�.i

0// D 1g/
:

The expression in the denominator evaluates to the minimum
between M and the number of items consumed by user
u. This normalizes Recall@M to have a maximum of 1,
which corresponds to ranking all relevant items in the top
M positions.

DCG@M for user u is

DCG@M.u; �/ WD

MX
iD1

21fu.�.i//D1g � 1

log.i C 1/
:

NDCG@M is the DCG@M normalized to Œ0; 1�, where one
signifies a perfect ranking.

Mean average precision (MAP@M ) calculates the mean of
users’ average precision (AP). The average precision AP@M
for a user u is

AP@M.u; �/ WD

MX
iD1

Precision@i.u; �/

min.i;
PI
i 0 1fu.�.i

0// D 1g/
:

4.3 Experiment protocols
We compare CoFactor to weighted matrix factorization

(WMF) [9]. Given the similarity between the CoFactor ob-
jective Lco (Equation (3)) and WMF objective Lmf (Equa-
tion (1)), we can attribute the performance differences to
the regularization imposed by the co-occurrence SPPMI ma-
trix.

In all fits, the dimension of the latent space K is set to
100. The CoFactor model is trained following the inference
algorithm described in Section 2.1. We monitor the conver-
gence of the algorithm using NDCG@100 on the validation
set for both CoFactor and WMF.

Both CoFactor and WMF require hyperparameter tun-
ing. We first select the best hyperparameters for WMF
(the weight cyD0 and cyD1, the regularization parameters
� D �� D �ˇ ) based on their performance on the validation
set. For CoFactor, we then keep the same cyD1=cyD0 ratio
and regularization parameters, and grid search for the best
relative scale ` 2 f0:01; 0:05; 0:1; : : : ; 1; 5; 10g (Section 2.1).
Note when scaling cui , we also scale �� and �ˇ . The value
of the relative scale indicates the importance of regular-
ization with co-occurrence information. If a large scaling
parameter cui is selected, the MF part of the model can be
effective at recommendation on its own without significant
help from the information provided by the co-occurrence
matrix. (As the scaling parameter goes to infinity, CoFactor
effectively reduces to WMF, as the MF part of the objective
will completely dominate.) On the other hand, a smaller
scaling parameter indicates that the model benefits from
the co-occurrence patterns in the observed user behavior

http://arxiv.org
http://the.echonest.com


ArXiv ML-20M TasteProfile

WMF CoFactor WMF CoFactor WMF CoFactor

Recall@20 0.063 0.067 0.133 0.145 0.198 0.208
Recall@50 0.108 0.110 0.165 0.177 0.286 0.300

NDCG@100 0.076 0.079 0.160 0.172 0.257 0.268
MAP@100 0.019 0.021 0.047 0.055 0.103 0.111

Table 2: Comparison between the widely-used weighted matrix factorization (WMF) model [9] and our CoFactor model.
CoFactor significantly outperforms WMF on all the datasets across all metrics. The improvement is most pronounced on the
movie watching (ML-20M) and music listening (TasteProfile) datasets.

data. We also grid search for the negative sampling value
k 2 f1; 2; 5; 10; 50g, which effectively modulates how much to
shift the empirically estimated PMI matrix.

4.4 Analyzing the CoFactor model fits
Table 2 summarizes the quantitative results. Each metric

is averaged across all users in the test set. CoFactor outper-
forms WMF [9] on all datasets and across all metrics. The
improvement is very clear for the MovieLens (ML-20M) and
music (TasteProfile) data. We emphasize that both models
make use of the same data and optimize similar objectives,
with CoFactor benefiting from an extra co-occurrence regu-
larization term.

Exploratory analysis
When does CoFactor do better/worse? Figure 1 shows
the breakdown of NDCG@100 by user activity in the train-
ing set for all three datasets. Although details vary across
datasets, the CoFactor model consistently improves recom-
mendation performance for users who have only consumed a
small number of items. This makes sense because MF cannot
accurately infer inactive users’ preferences, while CoFactor
explicitly makes use of the additional signal from item co-
occurrence patterns to learn better latent representations,
even when user-item interaction data is scarce. For active
users (the rightmost bar pairs in each plot), WMF does worse
than CoFactor on ArXiv, better on ML-20M, and roughly
the same on TasteProfile. However, since active users are the
minority (most recommendation datasets have a long tail),
the standard error is also bigger.

To understand when CoFactor makes better recommen-
dation, we compare it to WMF in how it ranks rare items.
Figure 2 shows the histogram of ranks (derived from pre-
dicted scores) for movies with less than 10 viewings in the
training set (which consists of 3,239 movies out of the 11,711
total movies). We report results using four randomly-selected
users on the MovieLens ML-20M data. (The general trend is
consistent across the entire dataset, and we observe a similar
patten for the TasteProfile dataset.) WMF mostly ranks
rare movies around the middle of its recommendation list,
which is expected because the collaborative filtering model
is driven by item popularity.7 On the other hand, CoFactor
can push these rare movies both to the top and bottom of
its recommendations. We did not observe as clear of a pat-
tern on the ArXiv data. We conjecture that this is because
the ArXiv data is less popularity-biased than ML-20M and
TasteProfile: the mean (median) of users who consumed an

7It is also reasonable given the relatively high model uncer-
tainty around rare items.
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Figure 1: Average normalized discounted cumulative gain
(NDCG@100) breakdown for both CoFactor and weighted
matrix factorization (WMF) [9] based on user activity on
different datasets (higher is better). Error bars correspond to
one standard error. There is some variation across datasets,
but CoFactor is able to consistently improve recommenda-
tion performance for users who have only consumed a small
amount of items.



item is 597 (48) for ML-20M and 441 (211) for TasteProfile,
while only 21 (12) for ArXiv.
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Figure 2: The histogram of ranks from four randomly se-
lected users for movies with less than 10 watches in the Movie-
Lens ML-20M training set for both CoFactor and weighted
matrix factorization (WMF) [9]. The extra regularization in
CoFactor allows it to push these rare items further up and
down its recommendation list for each user.

In Figure 3, we compare CoFactor and WMF for a par-
ticular user who has watched many popular movies (e.g.,
“Toy Story” and “Fight Club”), as well as some rare French
movies (e.g. “Mouchette” and “Army of Shadows”). We find
that WMF highly ranks popular movies and places them
on top of its recommendations. Even when it recommends
a French movie (“That Obscure Object of Desire”) to this
user, it is a relatively popular one (as indicated by the num-
ber of users who have watched it). In contrast, CoFactor
will better balance between the popular movies and relevant
(but relatively rare) French movies in its recommendation.
This makes sense because rare French movies co-occur in the
training set, and this is captured by the SPPMI matrix. We
find similar exploratory examples in TasteProfile.

This explains the performance gap between CoFactor and
WMF among active users on ML-20M, as CoFactor could
potentially rank popular movies lower than WMF. For active
users, they are more likely to have watched popular movies
in both the training and test sets. When we look at the top
100 users where WMF does better than CoFactor in terms
of NDCG@100, we find that the performance difference is
never caused by WMF recommending a rare movie in the
test set that CoFactor fails to recommend.

How important is joint learning? One of the main
contributions of the proposed CoFactor model is incorpo-
rating both MF and item embedding in a joint learning
objective. This “end-to-end” approach has proven effective in
many machine learning models. To demonstrate the advan-
tage of joint learning, we conduct an alternative experiment
on ArXiv where we perform the learning in a two-stage pro-
cess. First, we train a skip-gram word2vec model on the click
data, treating users’ entire click histories as the context—this
is equivalent to factorizing the SPPMI matrix in CoFactor
model. We then fix these learned item embeddings from

WMF CoFactor word2vec + reg

Recall@20 0.063 0.067 0.052
Recall@50 0.108 0.110 0.095

NDCG@100 0.076 0.079 0.065
MAP@100 0.019 0.021 0.016

Table 3: Comparison between joint learning (CoFactor)
and learning from a separate two-stage (word2vec + reg)
process on ArXiv. Even though they make similar modeling
assumptions, CoFactor provides superior performance.

word2vec as the latent factors ˇi in the MF model, and learn
user latent factors �u. Learning �u in this way is the same
as one iteration of CoFactor, which is effectively doing a
weighted ridge regression.

We evaluate the model learned from this two-stage process
(word2vec + reg) and report the quantitative results in Ta-
ble 3. (The results for WMF and CoFactor are copied from
Table 2 for comparison.) The performance of the two-stage
model is much worse. This is understandable because the
item embeddings learned from word2vec are certainly not
as well-suited for recommendation as the item latent factors
learned from MF. Using this item embedding in the second
stage to infer user preferences will likely lead to inferior per-
formance. On the other hand, CoFactor is capable of finding
the proper balance between MF and item embeddings to get
the best of both worlds.

5. DISCUSSION
It is interesting that CoFactor improves over WMF by

re-using the preference data in a different encoding. The
item co-occurrence information is, in principle, available
from the user-item interaction data to MF. However, as a bi-
linear model with limited capacity, MF cannot uncover such
information. On the other hand, highly non-linear models,
such as deep neural networks, have shown limited success at
the task of preference prediction [21, 17]. Our approach is
somewhat in between, where we have used a deterministic
non-linear transformation to re-encode the input.

A natural question is whether it is always better to in-
corporate item co-occurrence information. This depends on
the problem and specific data. However, as mentioned in
Section 4.3, as the relative scale on the weight cui goes to
infinity, CoFactor is effectively reduced to WMF. Therefore,
as long as there is additional information that is useful in
the co-occurrence matrix, in principle, the performance of
CoFactor is lower bounded by that of WMF.

5.1 Possible extensions to the model
It is straightforward to extend our CoFactor model to

explicitly handle sessions of user-item consumption data
by constructing a session-based co-occurrence matrix, as
discussed in Section 2. This is likely to yield improved
performance in some settings, such as in purchase behavior
or music listening data, where the notion of a ‘shopping cart’
or ‘playlist’ induce session-based patterns.

Adding user-user co-occurrence to our model to regularize
user latent factors is another natural extension, which we
leave to future work. We anticipate this extension to yield
further improvements, especially for users in the long tail.
The type of regularization we have added to MF models can



Toy Story (24659) 
Fight Club (18728) 

Kill Bill: Vol. 1 (8728) 
Mouchette (32) 

Army of Shadows (L'armée des 
ombres) (96)

The Silence of the Lambs (37217) 
Pulp Fiction (37445) 
Finding Nemo (9290) 

Atalante L’ (90) 
Diary of a Country Priest (Journal d'un 

curé de campagne) (68)

Rain Man (11862) 
Pulp Fiction (37445) 
Finding Nemo (9290) 

The Godfather: Part II (15325) 
That Obscure Object of Desire (Cet 

obscur objet du désir) (300)

User’s watch history Top recommendation 
by CoFactor

Top recommendation 
by WMF

Figure 3: Comparison between CoFactor and WMF [9] for a particular user in MovieLens ML-20M data. On the right, we
show a subset of the user’s watch history from the training set. The number in the parenthesis after the movie title is the
number of users who have watched this movie in the training set. The top recommendations by CoFactor and WMF are shown
in the middle and left tables, respectively. Here only the movies that are watched by the same user in the test set are shown.
The NDCG@100 of this user is high for both CoFactor and WMF (0.893 vs 0.783).

also be extended to higher-order co-occurrence patterns. It
is unclear which datasets may benefit from this, but this
type of prior structure may be interesting to explore. It
may help for complex recommendation data where long-term
higher-order interactions are assumed to be important. For
example, in the ArXiv dataset, researchers reading the same
sets of papers over many years could exhibit such patterns.
It is unclear how best to capture this type of co-occurrence in
a procedure. Our regularization approach provides an initial
solution.

Another line of future work is to explore CoFactor’s co-
occurrence regularization in other collaborative filtering meth-
ods. For example, we can regularize Bayesian Personalized
Ranking (BPR) [19], factorization machine [18], or sparse lin-
ear method (SLIM) [15] with item and/or user co-occurrence
patterns.

6. CONCLUSION
We present CoFactor, a regularization scheme for MF

models inspired by word embeddings. We force the standard
MF objective to share item representations with a factorized
shifted positive pointwise mutual information matrix of item
co-occurrence counts. This is analogous to word embedding
models [11, 14] which factorize a similar matrix of word co-
occurrence patterns in text corpora. We show that this type
of joint factorization yields performance boosts in recommen-
dation metrics in a variety of settings: recommending papers
to researchers on ArXiv, movies on MovieLens, and music
on TasteProfile.

We identify the scenarios where CoFactor outperforms
standard MF, which gives further insights into the benefits
of ‘reusing’ the data. We show that regularizing using item
co-occurrence counts enables CoFactor to recommend rare
items by capturing their co-occurrence patterns, whereas
this feature is absent in standard MF. We point to the
potential of alternative methods such as regularizing with
user-user co-occurrence or in the context of other widely-used
collaborative filtering models.
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