Sequential Decision Making II
— Week #12
Brief recap

- Markov Decision Processes (MDP)
 - Offer a framework for sequential decision making
 \[\langle A, S, P, R, \gamma \rangle \]
 - Goal: find the optimal policy
- Dynamic programming several algorithms (e.g., VI, PI)
From MDPs to RL

• In MDPs we assume that we know

1. Transition probabilities: $P(s' \mid s, a)$
2. Reward function: $R(s)$

• RL is more general

• In RL both are typically unknown

• RL agents navigate the world to gather this information
Experience (I)

A. Supervised Learning:
 - Given fixed dataset
 - Goal: maximize objective on test set (population)

B. Reinforcement Learning
 - Collect data as agent interacts with the world
 - Goal: maximize sum of rewards
Experience (II)

• Any supervised learning problem can be mapped to a reinforcement learning problem
 • Loss function can be used as a reward function
 • Dependent variables (Y) become the actions
 • States encode information from the independent variables (x)
 • Such mapping isn’t very useful in practice
 • SL is easier than RL
Example

Supervised Learning

Don't touch your tongue will get stuck.

Reinforcement Learning

Slide adapted from Pascal Poupart

RL applications

• Key: decision making over time, uncertain environments.

• Robot navigation: Self-driving cars, helicopter control

• Interactive systems: recommender systems, chatbots

• Game playing: Backgammon, go.

• Healthcare: monitoring systems.
Reinforcement learning and recommender systems

• Most users have multiple interactions with the system over time.

• Making recommendations over time can be advantageous (e.g., you could better explore one's preference).

• States: Some representation of user preferences (e.g., previous items they consumed).

• Actions: what to recommend.

• Reward:
 • + user consumes the recommendation.
 • - user does not consume the recommendation.
Challenges of reinforcement learning
Challenges of reinforcement learning

- Credit assignment problem: which action(s) should be credited for obtaining a reward

- A series of actions (getting coffee from cafeteria)

- A small number of actions several time steps ago may be important (test taking: study before, getting grade long after)

- Exploration/Exploitation tradeoff: As agent interacts should it exploit its current knowledge (exploitation) or seek out additional information (exploration)
Algorithms for RL

- Two main classes of approach
Algorithms for RL

• Two main classes of approach

1. Model-based

• Learns a model of the transition and uses it to optimize a policy given the model
Algorithms for RL

• Two main classes of approach

 1. Model-based

 • Learns a model of the transition and uses it to optimize a policy given the model

 2. Model-free

 • Learns an optimal policy without explicitly learning transitions
Monte Carlo Methods

- Model-free
- Assume the environment is episodic
 - Think of a poker hand
 - Updates the policy after each episode
- Intuition
 - Experience many episodes
 - Play many hands of poker
 - Average the rewards received at each state
 - What is the proportion of wins of each hand
Prediction vs. control

1. Prediction: evaluate a given policy

2. Control: Learn a policy
 - Sometimes also called
 - passive (prediction)
 - active (control)
First-visit Monte Carlo

- Given a fixed policy (prediction)
- Calculate the value function $v(s)$ for each state
- Converges to $v_{\pi}(s)$ as the number of visits to each state goes to infinity

[Sutton & Barto, RL Book, Ch 5]
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode:

First-visit MC prediction, for estimating $V \approx v_\pi$

Initialize:
- $\pi \leftarrow$ policy to be evaluated
- $V \leftarrow$ an arbitrary state-value function
- $\text{Returns}(s) \leftarrow$ an empty list, for all $s \in S$

Repeat forever:
- Generate an episode using π
- For each state s appearing in the episode:
 - $G \leftarrow$ the return that follows the first occurrence of s
 - Append G to $\text{Returns}(s)$
 - $V(s) \leftarrow$ average($\text{Returns}(s)$)
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode:
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: (1, \rightarrow)
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: (1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow)
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy Π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy \(\pi \) is given (gray arrows)

Episode: (1, \(\rightarrow \)) \(\rightarrow \) (2, \(\rightarrow \)) \(\rightarrow \) (3, \(\downarrow \)) \(\rightarrow \) (7, \(\downarrow \)) \(\rightarrow \) (6, \(\rightarrow \)) \(\rightarrow \) (7, \(\downarrow \))
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy \(\pi \) is given (gray arrows)

Episode: 🩺 ← (1, →) → (2, →) → (3, ↓) → (7, ↓) → (6, →) → (7, ↓) → (10, ↓)
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \rightarrow)$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \rightarrow)$

For state 7:
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \rightarrow)$

For state 7: $\text{return}(7) = \gamma R(6) + \gamma^2 R(7) + \gamma^3 R(10) + \gamma^4 R(13) + \gamma^5 R(17) + \gamma^6 R(18) = \gamma^6 10$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \rightarrow)$

For state 7: $\text{return}(7) = \gamma R(6) + \gamma^2 R(7) + \gamma^3 R(10) + \gamma^4 R(13) + \gamma^5 R(17) + \gamma^6 R(18) = \gamma^6 10$
Example: grid world

- Start state is top-left (start of episode)
- Bottom right is absorbing (end of episode)
- Policy π is given (gray arrows)

Episode: $(1, \rightarrow) \rightarrow (2, \rightarrow) \rightarrow (3, \downarrow) \rightarrow (7, \downarrow) \rightarrow (6, \rightarrow) \rightarrow (7, \downarrow) \rightarrow (10, \downarrow) \rightarrow (13, \downarrow) \rightarrow (17, \rightarrow)$

For state 7:

\[
\text{return}(7) = \gamma R(6) + \gamma^2 R(7) + \gamma^3 R(10) + \gamma^4 R(13) + \gamma^5 R(17) + \gamma^6 R(18) \\
= \gamma^6 10
\]

\[
V(7) = \gamma^6 \times 10
\]
Example: Black Jack

- Episode: one hand
- States: Sum of player’s cards, dealer’s card, usable ace
- Actions: {Stay, Hit}
- Rewards: {Win +1, Tie 0, Loose -1}
- A few other assumptions: infinite deck
• Evaluates the policy that hits except when the sum of the cards is 20 or 21

[Figure 5.1, Sutton & Barto]
• Evaluates the policy that hits except when the sum of the cards is 20 or 21

[Figure 5.1, Sutton & Barto]
• Evaluates the policy that hits except when the sum of the cards is 20 or 21

[Figure 5.1, Sutton & Barto]
• Evaluates the policy that hits except when the sum of the cards is 20 or 21

[Figure 5.1, Sutton & Barto]
Q-value for control

- We know about state-value functions $V(s)$
Q-value for control

- We know about state-value functions $V(s)$

- If state transitions are known then they can be used to derive an optimal policy:

$$\pi^*(s) = \arg \max_a \left\{ R(s) + \gamma \sum_{s'} P(s' | s, a) V_i(s') \right\} \quad \forall s$$
Q-value for control

• We know about state-value functions $V(s)$

• If state transitions are known then they can be used to derive an optimal policy:

$$\pi^*(s) = \arg\max_a \left\{ R(s) + \gamma \sum_{s'} P(s' | s, a)V_i(s') \right\} \ \forall s$$

• When state transitions are unknown what can we do?

• $Q(s,a)$ the value function of a (state,action) pair

$$\pi^*(s) = \arg\max_a \{ Q(s, a) \}$$
Monte Carlo ES (control)

First-visit MC prediction, for estimating $V \approx V^*$

Initialize:
- $\pi \leftarrow$ policy to be evaluated
- $V \leftarrow$ an arbitrary state-value function
- $Returns(s) \leftarrow$ an empty list, for all $s \in \mathcal{S}$

Repeat forever:
- Generate an episode using π
- For each state s appearing in the episode:
 - $G \leftarrow$ the return that follows the first occurrence of s
 - Append G to $Returns(s)$
- $V(s) \leftarrow$ average($Returns(s)$)

Monte Carlo ES (Exploring Starts), for estimating $\pi \approx \pi^*$

Initialize, for all $s \in \mathcal{S}, a \in A(s)$:
- $Q(s, a) \leftarrow$ arbitrary
- $\pi(s) \leftarrow$ arbitrary
- $Returns(s, a) \leftarrow$ empty list

Repeat forever:
- Choose $S_0 \in \mathcal{S}$ and $A_0 \in A(S_0)$ s.t. all pairs have probability > 0
- Generate an episode starting from S_0, A_0, following π
- For each pair s, a appearing in the episode:
 - $G \leftarrow$ the return that follows the first occurrence of s, a
 - Append G to $Returns(s, a)$
- $Q(s, a) \leftarrow$ average($Returns(s, a)$)

For each s in the episode:
- $\pi(s) \leftarrow \arg \max_a Q(s, a)$

[Sutton & Barto, RL Book, Ch.5]
Monte Carlo ES (control)

- Strong reasons to believe that it converges to the optimal policy
- “Exploring starts” requirement may be unrealistic
Learning without “exploring states”

- Exploring states ensure that all states can be visited regardless of the policy
- Specific policy may not visit all states
Learning without “exploring states”

• Exploring states ensure that all states can be visited regardless of the policy

• Specific policy may not visit all states

• Solution: inject some uncertainty in the policy
Monte Carlo without exploring states (on policy)

[Sutton & Barto, RL Book, Ch.5]
Monte Carlo without exploring states (on policy)

- Policy value cannot decrease
 \[v_{\pi'}(s) \geq v_{\pi}(s), \forall s \in S \]

\[\pi \]: policy at previous step
\[\pi' \]: policy at previous step

[Sutton & Barto, RL Book, Ch.5]
Monte-Carlo methods summary

- Allow a policy to be learned through interactions
- States are effectively treated as being independent
- Focus on a subset of states (e.g., states for which playing optimally is of particular importance)
- Episodic (with or without exploring stats)
Temporal Difference (TD) Learning
Temporal Difference (TD) Learning

- One of the “central ideas of RL” [Sutton & Barto, RL book]
Temporal Difference (TD) Learning

- One of the “central ideas of RL” [Sutton & Barto, RL book]

- Monte Carlo methods

\[V(s_t) = V(s_t) + \alpha [G_t - V(s_t)] \]

Observed return:

\[G_t = \sum_{t}^{T} \gamma^t R(s_t) \]

Step size
Temporal Difference (TD) Learning

- One of the “central ideas of RL” [Sutton & Barto, RL book]

- Monte Carlo methods

\[V(s_t) = V(s_t) + \alpha [G_t - V(s_t)] \]

Observed returned: \(G_t = \sum_t \gamma^t R(s_t) \)

First-visit MC prediction, for estimating \(V(s) \):

Initialize:
- \(\pi \) → policy to be evaluated
- \(V \) → an arbitrary state-value function
- \(Returns(s) \) → an empty list, for all \(s \in \mathcal{S} \)

Repeat forever:
- Generate an episode using \(\pi \)
- For each state \(s \) appearing in the episode:
 - \(G \) → the return that follows the first \(s \)
 - Append \(G \) to \(Returns(s) \)
- \(V(s) \) ← average(\(Returns(s) \))
Temporal Difference (TD) Learning

- One of the “central ideas of RL” [Sutton & Barto, RL book]

- Monte Carlo methods

- TD(0)

- updates “instantly”

\[V(s_t) = V(s_t) + \alpha [G_t - V(s_t)] \]

\[V(s_t) = V(s_t) + \alpha [R_{t+1} + \gamma V(s_{t+1}) - V(s_t)] \]
TD(0) for prediction

[Sutton & Barto, RL Book, Ch.6]
• Demo: http://www.cs.toronto.edu/~lcharlin/courses/80-629/reinforcejs/gridworld_td.html

(from Andrej Karpathy)
Comparing TD and MC

- MC requires going through full episodes before updating the value function. Episodic.
- Converges to the optimal solution

- TD updates each V(s) after each transition. Online.
- Converges to the optimal solution (some conditions on α)
- Empirically TD methods tend to converge faster
Q-learning for control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

1. Initialize $Q(s,a)$, for all $s \in S, a \in A(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
2. Repeat (for each episode):
 1. Initialize S
 2. Repeat (for each step of episode):
 1. Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 2. Take action A, observe R, S'
 3. $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$
 4. $S \leftarrow S'$
 3. until S is terminal

[Sutton & Barto, RL Book, Ch.6]
Q-learning for control

ϵ-greedy policy $a = \begin{cases} \arg \max_a Q(a,s) & \text{with probability } 1 - \epsilon, \\ \text{random } a & \text{with probability } \epsilon. \end{cases}$

[Sutton & Barto, RL Book, Ch.6]
Q-learning for control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Initialize $Q(s, a)$, for all $s \in S$, $a \in A(s)$, arbitrarily, and $Q(\text{terminal-state, } \cdot) = 0$

Repeat (for each episode):
 Initialize S

Repeat (for each step of episode):
 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 Take action A, observe R, S'
 $Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_a Q(S', a) - Q(S, A) \right]$
 $S \leftarrow S'$

until S is terminal

ϵ-greedy policy $a = \begin{cases} \arg \max_a Q(a, s) & \text{with probability } 1 - \epsilon, \\ \text{random } a & \text{with probability } \epsilon. \end{cases}$

[Sutton & Barto, RL Book, Ch.6]
Q-learning for control

$. \epsilon$-greedy policy

\[
\begin{aligned}
\alpha &= \begin{cases}
\text{arg max}_a Q(a, s) & \text{with probability } 1 - \epsilon, \\
\text{random } a & \text{with probability } \epsilon.
\end{cases}
\end{aligned}
\]
Q-learning for control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Initialize $Q(s, a)$, for all $s \in S, a \in A(s)$, arbitrarily, and $Q(terminal-state, \cdot) = 0$
Repeat (for each episode):
 Initialize S
 Repeat (for each step of episode):
 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 Take action A, observe R, S'
 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_a Q(S', a) - Q(S, A)]$
 $S \leftarrow S'$
 until S is terminal

ϵ-greedy policy $a = \begin{cases}
\arg \max_a Q(a, s) & \text{with probability } 1 - \epsilon, \\
\text{random } a & \text{with probability } \epsilon.
\end{cases}$

[Sutton & Barto, RL Book, Ch.6]
Q-learning for control

Q-learning (off-policy TD control) for estimating $\pi \approx \pi^*$

Initialize $Q(s,a)$, for all $s \in S, a \in A(s)$, arbitrarily, and $Q(\text{terminal-state}, \cdot) = 0$
Repeat (for each episode):
 Initialize S
 Repeat (for each step of episode):
 Choose A from S using policy derived from Q (e.g., ϵ-greedy)
 Take action A, observe R, S'
 $Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma \max_{a} Q(S', a) - Q(S, A)]$
 $S \leftarrow S'$
 until S is terminal

[Sutton & Barto, RL Book, Ch.6]

- Converges to Q^* as long as all (s,a) pairs continue to be updated and with minor constraints on learning rate
Approximation techniques

- Methods we studied are “tabular”

- State value functions (and Q) can be approximated

 - Linear approximation: \(V(s) = w^T x(s) \)

 - Coupling between states through \(x(s) \)

- Adapt the algorithms for this case.

 - Updates to the value function now imply updating the weights \(w \) based using a gradient
Approximation techniques (prediction)

- Linear approximation: \(V(s) = w^T x(s) \)
Approximation techniques (prediction)

- Linear approximation: \(V(s) = w^T x(s) \)

- Objective: \(\sum_{s \in S} [v_\pi(s) - w^T x(s)]^2 \)
Approximation techniques (prediction)

- Linear approximation: \(V(s) = w^T x(s) \)

- Objective: \(\sum_{s \in S} [v_\pi(s) - w^T x(s)]^2 \)

- Gradient update: \(w_{t+1} = w_t - 2\alpha \sum_{s \in S} [v_\pi(s) - w^T x(s)] x(s) \)
Approximation techniques (prediction)

- Linear approximation: \(V(s) = w^\top x(s) \)

- Objective: \(\sum_{s \in S} [v_\pi(s) - w^\top x(s)]^2 \)

- Gradient update: \(w_{t+1} = w_t - 2\alpha \sum_{s \in S} [v_\pi(s) - w^\top x(s)] x(s) \)

Gradient Monte Carlo Algorithm for Estimating \(\hat{v} \approx v_\pi \)

Input: the policy \(\pi \) to be evaluated
Input: a differentiable function \(\hat{v} : S \times \mathbb{R}^d \rightarrow \mathbb{R} \)

Initialize value-function weights \(w \) as appropriate (e.g., \(w = 0 \))
Repeat forever:
 - Generate an episode \(S_0, A_0, R_1, S_1, A_1, \ldots, R_T, S_T \) using \(\pi \)
 - For \(t = 0, 1, \ldots, T - 1 \):
 - \(w \leftarrow w + \alpha [G_t - \hat{v}(S_t, w)] \nabla \hat{v}(S_t, w) \)

[Sutton & Barto, RL Book, Ch.9]
Approximation techniques (prediction)

- **Linear approximation:** \(V(s) = w^T x(s) \)

- **Objective:** \(\sum_{s \in S} \left[v_\pi(s) - w^T x(s) \right]^2 \)

- **Gradient update:** \(w_{t+1} = w_t - 2\alpha \sum_{s \in S} \left[v_\pi(s) - w^T x(s) \right] x(s) \)

\[
V(s) = w^T x(s)
\]

\[
G_t \text{ is an unbiased estimator of } v_\pi(s_t)
\]

[Sutton & Barto, RL Book, Ch.9]
Approximation techniques

- Works both for prediction and control
Approximation techniques

- Works both for prediction and control
- Any model can be used to approximate
Approximation techniques

- Works both for prediction and control

- Any model can be used to approximate

- Recent work using deep neural networks yield impressive performance on computer (Atari) games
Summary

• Today we have defined RL studied several algorithms for solving RL problems (mostly for for tabular case)

• Main challenges
 • Credit assignment
 • Exploration/Exploitation tradeoff

• Algorithms
 • Prediction
 • Monte Carlo and TD(0)
 • Control
 • Q-learning

• Approximation algorithms can help scale reinforcement learning
Practical difficulties

- Compared to supervised learning setting up an RL problem is often harder
 - Need an environment (or at least a simulator)
- Rewards
 - In some domains it’s clear (e.g., in games)
 - In others it’s much more subtle (e.g., you want to please a human)
• The algorithms are from “Reinforcement Learning: An Introduction” by Richard Sutton and Andrew Barto

• The definitive RL reference

• Some of these slides were adapted from Pascal Poupart’s slides (CS686 U.Waterloo)

• The TD demo is from Andrej Karpathy
Administration

- Project
 - Poster presentation (November 29, room: CSC Groupe Cholette)
 - Get there by 8:30am be ready to present by 8:45am
 - Adhesive putty will be provided
 - Project report (December 5)
 - Exam (December 8, 9am-12pm, room: CSC Deloitte.)
 - Material: all slides, all required readings.
 - Except probabilistic clustering (after slide 15)
 - Documentation: 1 double-sided standard sheet of notes (format 8.5x11 inches)