Machine Learning for Large-Scale Data Analysis and Decision Making
80-629-17A

Distributed Machine Learning
— Week #9
Today

- Distributed computing for machine learning
- Background
- MapReduce/Hadoop & Spark
 - Theory & Practice

Note: Most lectures so far used stats concepts. Today we’ll turn to computer science.
Modern view of ML

- Understand massive quantities of data
 - Google (4K searches/s), Twitter: (6K tweets/s), Amazon: (100s sold products/s) (source: internetlifestats.com)
 - Banks, insurance companies, etc.
 - Modestly-sized websites
 - Both large n and large p
- Computation will scale up with the data
 - Often fitting an ML models requires one or multiple operations that looks at the whole dataset
Modern view of ML

• Understand massive quantities of data

 • Google (4K searches/s), Twitter: (6K tweets/s), Amazon: (100s sold products/s) (source: internetlifestats.com)

 • Banks, insurance companies, etc.

 • Modestly-sized websites

 • Both large n and large p

• Computation will scale up with the data

• Often fitting an ML models requires one or multiple operations that looks at the whole dataset

 \[w = (X^T X)^{-1} X^T Y \]

 Linear regression
Moore’s Law

[https://en.wikipedia.org/wiki/Moore%27s_law]
Modern Computation paradigms
Modern Computation paradigms

- Floating point operations per second
- Smart phone ~ 0.005 TFlops
- 1 Tera: 1,000 Giga
<table>
<thead>
<tr>
<th>Floating point operations per second</th>
<th>Smart phone ~ 0.005 TFlops</th>
<th>1 Tera: 1,000 Giga</th>
</tr>
</thead>
</table>

1. **“Single” computers**

- Large Computers
 - 125 435.9 TFlops
Modern Computation paradigms

1. “Single” computers
 - Large Computers
 - 125 435.9 TFlops

2. Specialized hardware
 - Focusses on subset of operations
 - Graphical Processing Unit (GPU), Field Programmable Gated Array (FPGA)
 - 7.5 TFlops
Modern Computation paradigms

1. “Single” computers
 - Large Computers
 - 125 435.9 TFlops
2. Specialized hardware
 - Focusses on subset of operations
 - Graphical Processing Unit (GPU), Field Programmable Gated Array (FPGA)
 - 7.5 TFlops
3. Distributed computation
 - ~100 000 TFlops (Folding@home)

- Floating point operations per second
- Smart phone ~ 0.005 TFlops
- 1 Tera: 1,000 Giga
Modern Computation paradigms

1. “Single” computers
 - Large Computers
 - 125 435.9 TFlops

2. Specialized hardware
 - Focusses on subset of operations
 - Graphical Processing Unit (GPU), Field Programmable Gated Array (FPGA)
 - 7.5 TFlops

2. Distributed computation
 - ~100 000 TFlops (Folding@home)

Floating point operations per second
Smart phone ~ 0.005 TFlops
1 Tera: 1,000 Giga
Distributed Computing

• Faster computers can help

• What about a large of “slow” computers working together?

• Divide the computation into small problems

1. All (slow) computers solve a small problem at the same time

2. Combine the solution of small problems into initial solution
Simple example

- You are tasked with counting the number of houses in Montreal

1. Centralized (single computer):
 - Ask a marathon runner to jog around the city and count
 - Build a system to count houses from satellite imagery

2. Distributed (many computers):
 - Ask 1,000 people to each count houses from a small geographical area
 - Once they are done they report their result at your HQ
Tool for distributed computing (for machine learning)

- Apache Spark (https://spark.apache.org/)
 - Builds on MapReduce ideas
 - More flexible computation graphs
 - High-level APIs
 - MLlib
Outline

• MapReduce
 • Fundamentals and bag-of-word example

• Spark
 • Fundamentals & MLlib
 • Live examples
MapReduce

- From Google engineers

“MapReduce: Simplified Data Processing on Large Clusters”, Jeffrey Dean and Sanjay Ghemawat, 2004

- Now also known as (Apache) Hadoop

- Google built large-scale computation from commodity hardware

- Specific distributed interface

- Useful for algorithms that can be expressed using this interface
MapReduce

- Two types of tasks:

 A. Map: Solve a subproblem

 B. Reduce: Combine the results of map workers
TASK: Create a document’s bag-of-word representation

The black dog
A black cat
The blue cat

A. Map

B. Reduce
TASK: Create a document's bag-of-word representation

A. Map

The black dog
A black cat
The blue cat

B. Reduce

The black dog
A black cat
The blue cat
A. Map

The, 1
black, 1
dog, 1

The black dog
A black cat
The blue cat

B. Reduce

The, 1
black, 1
cat, 1

A, 1
black, 1
cat, 1

The black dog
A black cat
The blue cat

The, 1
blue, 1
cat, 1
TASK: Create a document’s bag-of-word representation

A. Map

The black dog
A black cat
The blue cat

A. Map

The black dog
A black cat
The blue cat

Shuffle by key

A. Map

The black dog
A black cat
The blue cat

B. Reduce

The, 1
black, 1
dog, 1

The, 1
black, 1
cat, 1

The, 1
black, 1
cat, 1

Shuffle by key

The, 1
black, 1
dog, 1

The, 1
black, 1
cat, 1

The, 1
black, 1
cat, 1

Shuffle by key

The, 1
black, 1
dog, 1

The, 1
black, 1
cat, 1

The, 1
black, 1
cat, 1

Shuffle by key

The, 1
black, 1
dog, 1

The, 1
black, 1
cat, 1

The, 1
black, 1
cat, 1

Shuffle by key

The, 1
black, 1
dog, 1

The, 1
black, 1
cat, 1

The, 1
black, 1
cat, 1
TASK: Create a document's bag-of-word representation

A. Map

The black dog
A black cat
The blue cat

B. Reduce

The, 2
black, 2
dog, 1
cat, 2

Shuffle by key

The, 1
black, 1
dog, 1

A, 1
black, 1
cat, 1

The, 1
black, 1
dog, 1
cat, 1
Some details

- Typically the number of subproblem is higher than the number of available machines
- ~linear speed-up with more machine
- If a node crashes, need to recompute its subproblem
- Input/Output
 - Data is read from disk when beginning
 - Data is written to disk at the end
MapReduce is quite versatile

- When I was at Google the saying was:

 “If your problem cannot be framed as MapReduce you haven’t thought hard enough about it.”

- A few examples of “map-reduceable” problems:
 - Sorting, filtering, distinct values, basic statistics
 - Finding common friends, sql-like queries, sentiment analysis
MapReduce for machine learning

- Training linear regression
 - Reminder: there is a closed form solution
 \[
 w = (X^T X)^{-1} X^T Y
 \]
MapReduce for machine learning

- Training linear regression

- Reminder: there is a closed form solution

\[
 w = (X^T X)^{-1} X^T Y
\]

\[
 w = (\sum_{ij} X_i^T X_j)^{-1}(\sum_{i} X_i^T Y_i)
\]
MapReduce for machine learning

• Training linear regression

• Reminder: there is a closed form solution

\[
\mathbf{w} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{Y}
\]

\[
\mathbf{w} = (\sum_{ij} \mathbf{X}_i^\top \mathbf{X}_j)^{-1} (\sum_i \mathbf{X}_i^\top \mathbf{Y}_i)
\]

• Each term in the sums can be computed independently.
MapReduce for machine learning

• Training linear regression

• Reminder: there is a closed form solution

\[
\mathbf{w} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{Y}
\]

\[
\mathbf{w} = (\sum_{ij} \mathbf{X}_i^\top \mathbf{X}_j)^{-1} (\sum_{i} \mathbf{X}_i^\top \mathbf{Y}_i)
\]

• Each term in the sums can be computed independently

A. Map

\[
\begin{bmatrix}
X_0^\top \\
X_1^\top
\end{bmatrix}
\]
MapReduce for machine learning

- Training linear regression

 - Reminder: there is a closed form solution

 \[w = (X^T X)^{-1} X^T Y \]

 \[w = \left(\sum_{ij} X_i^T X_j \right)^{-1} \left(\sum_i X_i^T Y_i \right) \]

 - Each term in the sums can be computer independently

- Other models we studies have a closed form solution (e.g., Naive Bayes and LDA)
MapReduce for machine learning

• Training linear regression

• Reminder: there is a closed form solution

\[w = (X^TX)^{-1}X^TY \]

\[w = \left(\sum_{ij} X_i^T X_j \right)^{-1} \left(\sum_i X_i^T Y_i \right) \]

• Each term in the sums can be computer independently

A. Map

\[X_0 X_1 \]

• Other models we studies have a closed form solution (e.g., Naive Bayes and LDA)

• Hyper parameter search

• A neural network with 2 hidden layers and 5 hidden units per layer and another with 3 hidden layers and 10 hidden units
Shortcomings of MapReduce

• Many models are fitted with iterative algorithms

• Gradient descent:
 1. Find the gradient for the current set parameters
 2. Update the parameters with the gradient

• Not ideal for MapReduce
 • Would require several iterations of MapReduce
 • Each time the data is read/written from/to the disk
(Apache) Spark

• Advantages over MapReduce

1. Less restrictive computations graph (DAG instead of Map then reduce)
 • Doesn’t have to write to disk in-between operations

2. Richer set of transformations
 • map, filter, cartesian, union, intersection, distinct, etc.

3. In-memory processing
Spark History

- Started in Berkeley's AMPLab (2009)
- Version 1.0 2014
 - Based on Resilient Distributed Datasets (RDDs)
- Version 2.0 June 2016
- Version 2.2 July
- We will be using pySpark
- Best (current) documentation:
 2. Project docs: https://spark.apache.org/docs/latest/
[https://www.safaribooksonline.com/library/view/hadoop-the-definitive/9781491901687/ch04.html]
Resilient Distributed Datasets (RDDs)

• A data abstraction
 • Collection of partitions. Partitions are the distribution unit.
 • Operations on RDDs are (automatically) distributed.

• RDDs support two types of operations:
 1. Transformations
 • Transform a dataset and return it
 2. Actions
 • Compute a result based on an RDD
 • These operations can then be “chained” into complex execution flows
DataFrames

- An extra abstraction on top of RDDs
 - Encodes rows as a set of columns
 - Each column has a defined type
 - Useful for (pre-processed) machine learning datasets
- Same name as `data.frame` (R) or `pandas.DataFrame`
 - Similar type of abstraction but for distributed datasets
- Two types of actions (for our needs): transformers, estimators.
data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)
Spark’s “Hello World”

```python
DataFrame

data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)
```
Spark’s “Hello World”

```python
DataFrame → data = spark.read.format("libsvm").load("hdfs://...")

model = LogisticRegression(regParam=0.01).fit(data)
```

Estimator
Parallel gradient descent

• Logistic Regression

\[y = \frac{1}{1 + \exp(-w_0 - w_1 x_1 - w_2 x_2 - \ldots - w_p x_p)} \]
Parallel gradient descent

- Logistic Regression

\[y = \frac{1}{1 + \exp(-w_0 - w_1 x_1 - w_2 x_2 - \ldots - w_p x_p)} \]

- No closed-form solution, can use gradients

\[\frac{\partial \text{Loss}(Y, X, w)}{\partial w_i} \]
Parallel gradient descent

- Logistic Regression
 \[y = \frac{1}{1 + \exp(-w_0 - w_1 x_1 - w_2 x_2 - \ldots - w_p x_p)} \]

- No closed-form solution, can use gradients
 \[\frac{\partial \text{Loss}(Y, X, w)}{\partial w_i} \]

- Loss functions are often decomposable
 \[\frac{\partial \sum_j \text{Loss}(Y_j, X_j, w)}{\partial w_i} \]
Parallel gradient descent

- Logistic Regression
 \[y = \frac{1}{1 + \exp(-w_0 - w_1 x_1 - w_2 x_2 - \ldots - w_p x_p)} \]
- No closed-form solution, can use gradients
 \[\frac{\partial \text{Loss}(Y, X, w)}{\partial w_i} \]
- Loss functions are often decomposable
 \[\frac{\partial \sum_j \text{Loss}(Y_j, X_j, w)}{\partial w_i} \]
Demo

• Fitting Logistic Regression

• Dataset: [https://www.kaggle.com/c/criteo-display-ad-challenge]

• Ad clicks given ad and user features

• 45M observations, 39 features (13 continuous, 26 categorical)

[Sklearn: http://35.196.155.184:8123/notebooks/sklearnDemo.ipynb]

[Spark: http://35.196.155.184:8123/notebooks/sparkExamples.ipynb]
Accessing resources

- Ask me for an account
- Notebook access
- Available kernels: python2, python3, pySpark
- Your account is on a google cloud cluster
 - Master node (8 vCPUs, 40G RAM, 1TB HD), 10 worker nodes (4 vCPUs, 15G RAM)
- If you want to use spark then your data will need to reside on a distributed filesystem
 1. Create a `dat/` directory
 2. Your data will be synced to (every 1 minute):

 `gs://80-629bucket/$USERNAME/dat/`
Takeaways

• Distributed computing is useful:
 • for large-scale data
 • for faster computing

• Current frameworks (e.g., spark) offer easy access to popular ML models + algorithms
 • Useful speedups by decomposing the computation into a number of identical smaller pieces
 • Still requires some engineering/coding
Administrative matters

- Final presentation

 In front of class or poster session?

- Final exam

 With or without documentation?