Machine Learning I
80-629A

Apprentissage Automatique I
80-629

Parallel computational paradigms for large-scale data processing
— Week #10
Today

- Distributed computing for machine learning
 - Background
 - MapReduce/Hadoop & Spark
 - Theory & Practice
 - Note: Most lectures so far used stats concepts. Today we'll turn to computer science.
Modern view of ML

- Understand massive quantities of data
 - Google (4K searches/s), Twitter: (6K tweets/s), Amazon: (100s sold products/s) (source: internetlifestats.com)
 - Banks, insurance companies, etc.
 - Modestly-sized websites
 - Both large \(n \) and large \(p \)
 - Computation will scale up with the data
 - Often fitting an ML models requires one or multiple operations that looks at the whole dataset
Modern view of ML

- Understand massive quantities of data
 - Google (4K searches/s), Twitter: (6K tweets/s), Amazon: (100s sold products/s) (source: internetlifestats.com)
 - Banks, insurance companies, etc.
 - Modestly-sized websites
 - Both large n and large p

- Computation will scale up with the data

- Often fitting an ML models requires one or multiple operations that looks at the whole dataset

Linear regression $\mathbf{w} = (\mathbf{X}^\top \mathbf{X})^{-1} \mathbf{X}^\top \mathbf{Y}$
Issues with massive datasets

1. Storage
2. Computation
Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

[https://en.wikipedia.org/wiki/Moore's_Law]
Modern Computation paradigms
Modern Computation paradigms

- Floating point operations per second (Flop)
- Smart phone ~ 0.005 TFlops
- 1 Tera: 1,000 Giga
Modern Computation paradigms

1. “Single” computers
 - Large Computers
 - 125 435.9 TFlops

- Floating point operations per second (Flop)
- Smart phone ~ 0.005 TFlops
- 1 Tera: 1,000 Giga
Modern Computation paradigms

1. “Single” computers
 - Large Computers
 - 125 435.9 TFlops

2. Specialized hardware
 - Focusses on subset of operations
 - Graphical Processing Unit (GPU), Field Programmable Gated Array (FPGA)
 - 7.5 TFlops

- Floating point operations per second (Flop)
- Smart phone ~ 0.005 TFlops
- 1 Tera: 1,000 Giga
Modern Computation paradigms

1. “Single” computers
 - Large Computers
 - 125 435.9 TFlops

2. Specialized hardware
 - Focusses on subset of operations
 - Graphical Processing Unit (GPU), Field Programmable Gated Array (FPGA)
 - 7.5 TFlops

2. Distributed computation
 - ~100 000 TFlops (Folding@home)

- Floating point operations per second (Flop)
- Smart phone ~ 0.005 TFlops
- 1 Tera: 1,000 Giga
Modern Computation paradigms

1. “Single” computers
 - Large Computers
 - 125 435.9 TFlops

2. Specialized hardware
 - Focusses on subset of operations
 - Graphical Processing Unit (GPU), Field Programmable Gated Array (FPGA)
 - 7.5 TFlops

2. Distributed computation
 - ~100 000 TFlops (Folding@home)

- Floating point operations per second (Flop)
- Smart phone ~ 0.005 TFlops
- 1 Tera: 1,000 Giga
Distributed Computing
Distributed Computing

- Faster computers can help
Distributed Computing

- Faster computers can help
- What about a large of “slow” computers working together?
 - Divide the computation into small problems
 1. All (slow) computers solve a small problem at the same time
 2. Combine the solution of small problems into initial solution
Distributed Computing

- Faster computers can help
- What about a large of “slow” computers working together?
- Divide the computation into small problems
 1. All (slow) computers solve a small problem at the same time
 2. Combine the solution of small problems into initial solution
Simple example

- You are tasked with counting the number of houses in Montreal

1. Centralized (single computer):
 - Ask a marathon runner to jog around the city and count
 - Build a system to count houses from satellite imagery
Simple example

- You are tasked with counting the number of houses in Montreal

1. Centralized (single computer):
 - Ask a marathon runner to jog around the city and count
 - Build a system to count houses from satellite imagery

2. Distributed (many computers):
 - Ask 1,000 people to each count houses from a small geographical area
 - Once they are done they report their result at your HQ
Tool for distributed computing (for machine learning)

- Apache Spark (https://spark.apache.org/)
 - Builds on MapReduce ideas
 - More flexible computation graphs
 - High-level APIs
 - MLlib
Outline

- MapReduce
 - Fundamentals and bag-of-words example
- Spark
 - Fundamentals & MLlib
 - Live examples
MapReduce

- From Google engineers

“MapReduce: Simplified Data Processing on Large Clusters”, Jeffrey Dean and Sanjay Ghemawat, 2004

- Now also known as (Apache) Hadoop

- Google built large-scale computation from commodity hardware

- Specific distributed interface

- Useful for algorithms that can be expressed using this interface
MapReduce

• Two types of tasks:

 A. Map: Solve a subproblem

 B. Reduce: Combine the results of map workers
TASK: Create a document's bag-of-word representation

The black dog
A black cat
The blue cat
TASK: Create a document's bag-of-word representation

The black dog
A black cat
The blue cat

A. Map

B. Reduce
The black dog
A black cat
The blue cat

A. Map

The, 1
black, 1
dog, 1

The black dog

A black cat
The blue cat

The, 1
blue, 1
cat, 1

B. Reduce

A, 1
black, 1
cat, 1
TASK: Create a document's bag-of-word representation

A. Map

B. Reduce

The black dog
A black cat
The blue cat
TASK: Create a document's bag-of-word representation

A. Map

- The, 1
- black, 1
- dog, 1
- The black dog

- A, 1
- black, 1
- cat, 1
- A black cat

- The, 1
- black, 1
- cat, 1
- The blue cat

- The, 1
- blue, 1
- cat, 1

Sort by key

B. Reduce

- The, 2
- black, 2
- dog, 1
- cat, 2

- The, 1
- black, 1
- dog, 1
- cat, 1

- The, 1
- blue, 1
- cat, 1
Some details

- Typically the number of subproblems is higher than the number of available machines
 - ~linear speed-up wrt to the number of machines
- If a node crashes, need to recompute its subproblem
- Input/Output
 - Data is read from disk when beginning
 - Data is written to disk at the end
MapReduce is quite versatile

• When I was at Google the saying was:

 “If your problem cannot be framed as MapReduce you haven’t thought hard enough about it.”

• A few examples of “map-reduceable” problems:

 • Sorting, filtering, distinct values, basic statistics
 • Finding common friends, sql-like queries, sentiment analysis
MapReduce for machine learning

- Training linear regression
 - Reminder: there is a closed-form solution

\[w = (X^T X)^{-1} X^T Y \]
MapReduce for machine learning

• Training linear regression

• Reminder: there is a closed-form solution

\[w = (X^TX)^{-1}X^TY \]

\[w = \left(\sum_{ij} X_i^T X_j \right)^{-1} \left(\sum_i X_i^T Y_i \right) \]
MapReduce for machine learning

- Training linear regression

- Reminder: there is a closed-form solution

\[
w = (X^T X)^{-1} X^T Y
\]

- Each term in the sums can be computed independently

\[
w = \left(\sum_{ij} X_i^T X_j \right)^{-1} \left(\sum_i X_i^T Y_i \right)
\]
MapReduce for machine learning

• Training linear regression

 • Reminder: there is a closed-form solution

\[w = (X^T X)^{-1} X^T Y \]

\[w = (\sum_{ij} X_i^T X_j)^{-1} (\sum_i X_i^T Y_i) \]

• Each term in the sums can be computer independently

A. Map

\[X_0^T X_1 \]
MapReduce for machine learning

- Training linear regression
- Reminder: there is a closed-form solution
 \[w = (X^TX)^{-1}X^TY \]
 \[w = \left(\sum_{ij} X_i^TX_j \right)^{-1} \left(\sum_i X_i^TY_i \right) \]
- Each term in the sums can be computed independently
- Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)
MapReduce for machine learning

- Training linear regression
 - Reminder: there is a closed-form solution

\[w = (X^TX)^{-1}X^TY \]

- Other models we studied have a closed form solution (e.g., Naive Bayes and LDA)

- Hyper-parameter search
 - A neural network with 2 hidden layers and 5 hidden units per layer and another with 3 hidden layers and 10 hidden units
Shortcomings of MapReduce

• Many models are fitted with iterative algorithms
 • Gradient descent:
 1. Find the gradient for the current set parameters
 2. Update the parameters with the gradient
 • Not ideal for MapReduce
 • Would require several iterations of MapReduce
 • Each time the data is read/written from/to the disk
(Apache) Spark

- Advantages over MapReduce

1. Less restrictive computations graph (DAG instead of Map then Reduce)
 - Doesn’t have to write to disk in-between operations

2. Richer set of transformations
 - map, filter, cartesian, union, intersection, distinct, etc.

3. In-memory processing
Spark History

- Started in Berkeley’s AMPLab (2009)
- Version 1.0 2014
 - Based on Resilient Distributed Datasets (RDDs)
- Version 2.0 June 2016
- Version 2.3 February 2018, Version 2.4.4 September 2019
- We will be using pySpark
- Best (current) documentation:
 2. Project docs: https://spark.apache.org/docs/latest/
Application

MapReduce Spark Tez ...

Compute

YARN

Storage

HDFS and HBase

[https://www.safaribooksonline.com/library/view/hadoop-the-definitive/9781491901687/ch04.html]
Resilient Distributed Datasets (RDDs)

- A data abstraction
 - Collection of partitions. Partitions are the distribution unit.
 - Operations on RDDs are (automatically) distributed.
- RDDs support two types of operations:
 1. Transformations
 - Transform a dataset and return it
 2. Actions
 - Compute a result based on an RDD
 - These operations can then be “chained” into complex execution flows
DataFrames

- An extra abstraction on top of RDDs
- Encodes rows as a set of columns
 - Each column has a defined type
- Useful for (pre-processed) machine learning datasets
- Same name as `data.frame (R)` or `pandas.DataFrame`
 - Similar type of abstraction but for distributed datasets
- Two types of operations (for our needs): transformers, estimators.
Spark’s “Hello World”

```python
data = spark.read.format("libsvm").load("hdfs://...")
model = LogisticRegression(regParam=0.01).fit(data)
```
Spark’s “Hello World”

\[
\text{DataFrame} \quad \rightarrow \quad \text{data} = \text{spark.read.format("libsvm").load("hdfs://...")}
\]

\[
\text{model} = \text{LogisticRegression(\text{regParam}=0.01).fit(data)}
\]
Spark’s “Hello World”

\[
\text{data} = \text{spark.read.format("libsvm").load("hdfs://...")}
\]

\[
\text{model} = \text{LogisticRegression}(\text{regParam}=0.01).\text{fit(data)}
\]
Parallel gradient descent

- Logistic Regression

\[
y = \frac{1}{1 + \exp(-w_0 - w_1 x_1 - w_2 x_2 - \ldots - w_p x_p)}
\]
Parallel gradient descent

• Logistic Regression

\[y = \frac{1}{1 + \exp(-w_0 - w_1 x_1 - w_2 x_2 - \ldots - w_p x_p)} \]

• No closed-form solution, can use gradients

\[\frac{\partial \text{Loss}(Y, X, w)}{\partial w_i} \]
Parallel gradient descent

• Logistic Regression

\[
y = \frac{1}{1 + \exp(-w_0 - w_1x_1 - w_2x_2 - \ldots - w_px_p)}
\]

• No closed-form solution, can use gradients

\[
\frac{\partial \text{Loss}(Y, X, w)}{\partial w_i}
\]

• Loss functions are often decomposable

\[
\frac{\partial \sum_j \text{Loss}(Y_j, X_j, w)}{\partial w_i}
\]
Parallel gradient descent

• Logistic Regression

\[
y = \frac{1}{1 + \exp(-w_0 - w_1x_1 - w_2x_2 - \ldots - w_px_p)}
\]

• No closed-form solution, can use gradients

\[
\frac{\partial \text{Loss}(Y, X, w)}{\partial w_i}
\]

• Loss functions are often decomposable

\[
\frac{\partial \sum_j \text{Loss}(Y_j, X_j, w)}{\partial w_i}
\]
ML setup

1. Load your data as an RDD

Machine Learning Library (MLlib) Guide
MLlib is Spark's machine learning (ML) library. Its goal is to make practical machine learning scalable and easy. At a high level, it provides tools such as:

- ML Algorithms: common learning algorithms such as classification, regression, clustering, and collaborative filtering
- Featureization: feature extraction, transformation, dimensionality reduction, and selection
- Pipelines: tools for constructing, evaluating, and tuning ML Pipelines
- Persistence: saving and load algorithms, models, and Pipelines
- Utilities: linear algebra, statistics, data handling, etc.

Classification and Regression - RDD-based API
The spark.mllib package supports various methods for binary classification, multiclass classification, and regression analysis. The table below outlines the supported algorithms for each type of problem.

<table>
<thead>
<tr>
<th>Problem Type</th>
<th>Supported Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Classification</td>
<td>linear SVMs, logistic regression, decision trees, random forests, gradient-boosted trees, naive Bayes</td>
</tr>
<tr>
<td>Multiclass Classification</td>
<td>logistic regression, decision trees, random forests, naive Bayes</td>
</tr>
<tr>
<td>Regression</td>
<td>linear least squares, Lasso, ridge regression, decision trees, random forests, gradient-boosted trees, isotonic regression</td>
</tr>
</tbody>
</table>

https://spark.apache.org/docs/latest/ml-guide.html
Takeaways

• Distributed computing is useful:
 • for large-scale data
 • for faster computing

• Current frameworks (e.g., spark) offer easy access to popular ML models + algorithms

• Useful speedups by decomposing the computation into a number of identical smaller pieces

• Still requires some engineering/coding